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o  Matter-based	nodes	for	q.	information	storage	&	

manipulation,	connected	with	photonic	quantum	links	
	

o  Unique	feature:	entanglement	(correlations)	

o  Applications	from	table-top	to	inter-continental	scale	

Quantum	link	

Quantum	

node	

Ongoing	research	effort	to	develop	light-matter	quantum	networks	

This	talk,	our	current	work	on:	 1.  Developing	ion	trap	nodes	(context:	quantum	simulation)	

2.  Developing	ion-photon	interfaces	for	networks	

Emerging	consensus	that	this	is	way	to	

scale	up	engineered	quantum	devices:	

Modular	ion-trap	quantum	information	

processor,	(Group	of	C.	Monroe)	



Quantum	simulation	with	trapped	ions	

C.	Roos	 C.	Maier	 T.	Brydges	 P.	Jurcevic	 M.	Joshi	 C.	Steinlechner	A.	Fabre	 B.	Lanyon	 R.	Blatt	



Our	quantum	many-body	system	

1D	string	of	atomic-ions	in	3D	trap	

+	lasers	

1D	chain	of	spin-1/2	particles	

that	we	can	individually	measure	&	

manipulate	

Quantum	degrees	of	freedom:	

•  n	ions	=	n	spins		

•  3n	harmonic	oscillators	
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Our	quantum	many-body	system	

1D	string	of	atomic-ions	in	3D	trap	(15)	

1D	chain	of	spin-1/2	particles	

that	we	can	individually	measure	
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Lasers	 spin-spin	interactions	
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P.	Jurcevic	et	al.,	Nature	511,	202	(2014)	
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Observation	of	coherent	many-body	quantum	dynamics	

Q.	How	scale	up	to	larger	numbers	of	spins?	

	

Q.	How	to	predict	what	system	should	do	in	

ideal	case?	

	

Q.	How	to	find	out	in	the	lab	what	the	system	is	

actually	doing	(how	to	verify	a	quantum	

simulator)?	

•  50	spin	version	of	our	system	could	perform	

dynamics	where	entanglement	grows	too	

fast	to	follow	with	classical	computers	

Schachenmayer	et	al,	PRX,	3,	031015	(2015)	



MPS	tomography:	an	efficient	tool	
to	verify	your	quantum	system	

Collaboration	with	group	of	M.Plenio	(Ulm)	&	group	of	A.	Daley	(Strathclyde)	

	

"Efficient	tomography	of	a	quantum	many-body	system"	
B.	P.	Lanyon,	C.	Maier,	M.	Holzäpfel,	T.	Baumgratz,	C.	Hempel,	P.	Jurcevic,	

I.	Dhand,	A.	S.	Buyskikh,	A.	J.	Daley,	M.	Cramer,	M.	B.	Plenio,	R.	Blatt,	C.	F.	Roos	

Nat.	Phys.	13,	1158	(2017),	arXiv:1612.08000,	

	

Core	result:	There	are	a	broad	class	of	entangled	quantum	states	for	

which	one	can	determine	what	the	state	is	in	the	lab	(can	do	state	

tomography)	with	effort	that	increases	slowly	in	system	size	

	
Application:	to	verify	engineered	quantum	devices,	get	them	to	make	

these	kinds	of	entangled	states	and	see	how	well	they	perform.		



Quantum	State	Tomography	

Goal:	Get	reliable	estimate	for	wavefunction										of	system	in	lab	

Matrix	Product	State	Tomography	

Efforts	scale	polynomially	with	particle	number	J	

	

M.	Cramer	et	al,	Efficient	quantum	state	tomography,		
Nat.	Commun.	1:149	(2010)	

Params	 	 	 		~	Poly(N)	

Measurements 		~	N	

Post	Processing 		~	Poly(N)	Broad	class	of	states	for	which	it	works		

⇢ =
X

i

Tr(⇢Ôi)Ôi

Full	state	tomography	

•  Gold	standard	for	QIP	

•  No.	of	parameters,	measurements	&	post-
processing	time	increases	exponentially	
with	particle	number	L	

	

•  e.g.	20	particles	~	few	billion	observables	

⇢ =
X

i

Tr(⇢Ôi)Ôi
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These data have been generated assuming ideal measurements on the
reconstructed density matrix and using the measurement settings of
the real experiment. For each of the artificial measurement sets a new
density matrix was reconstructed via the maximum-likelihood
method, and the spread of the expectation values of the observables
was extracted.
For an investigation of the entanglement properties, we associate

each particle k of a state r with a (possibly spatially separated) party
Ak. We shall be interested in different aspects of entanglement
between parties Ak, that is, the non-locality of the state r. A detailed
entanglement analysis is achieved by investigating (1) the presence of
genuinemultipartite entanglement, (2) the distillability ofmultipartite
entanglement and (3) entanglement in reduced states of two qubits.
First, we consider whether the production of a single copy of the

state requires non-local interactions of all parties. This leads to the
notion of multipartite entanglement and biseparability. A pure
multipartite state jwl is called biseparable if two groups G1 and G2

within the parties Ak can be found such that jwl is a product state
with respect to the partition

jwl¼ jxlG1
^jhlG2

ð2Þ
otherwise it is multipartite entangled. A mixed state r is called
biseparable if it can be produced by mixing pure biseparable
states jwbs

i l—which may be biseparable with respect to different
bipartitions—with some probabilities pi, that is, the state can be
written as r¼P

ipijwbs
i lkw

bs
i j: If this is not the case, r is multipartite

entangled. The generation of such a genuine multipartite entangled
state requires interaction between all parties. In particular, a mixture
of bipartite entangled states is not considered to be multipartite
entangled. In order to show the presence of multipartite entangle-
ment, we use the method of entanglement witnesses21–23.
An entanglement witness for multipartite entanglement is an obser-
vable with a positive expectation value on all biseparable states. Thus
a negative expectation value proves the presence of multipartite
entanglement. A typical witness for the states jWNl would be23:

WN ¼N2 1

N
l2 jWN l kWN j ð3Þ

This witness detects a state as entangled if the fidelity of the W state
exceeds (N 2 1)/N. However, more sophisticated witnesses can be
constructed, if there is more information available on the state under

investigation than only the fidelity. To do so, we add other operators
to the witness in equation (3) (see Methods) which take into account
that certain biseparable states can be excluded on the grounds of the
measured density matrix. Table 2 lists the expectation values for
these advanced witnesses. The negative expectation values prove
that in our experiment four-, five-, six-, seven- and eight-qubit
entanglement has been produced.
Second, we consider the question of whether one can use many

copies of the state r to distil one puremultipartite entangled state jwl
by local means; that is, whether entanglement contained in r is
qualitatively equivalent to multiparty pure state entanglement. For
this aim one determines whether there exists a number M such that
the transformation

M copies

r^r^· · ·^r|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
$$$$$$$$!LOCC jwl ð4 Þ

is possible. Here, jwl is a multipartite entangled pure state (for

Table 1 | Creation of a jWNl-state (N 5 {6,7,8})

Initialization Entanglement

j0;SSS· · ·Sl (1)
RþN ð2arccosð1=

ffiffiffi
N

p
Þ$$$$$$$$$$$$!

(i1)
RCNðpÞRCN21ðpÞ· · ·RC1 ðpÞ$$$$$$$$$$$$$$! 1ffiffiffi

N
p j0;SDD· · ·Dlþ

ffiffiffiffiffiffiffi
N21

p
ffiffiffi
N

p j1;DDD· · ·Dl

j0;DDD· · ·Dl (2)
RþN21ð2arcsinð1=

ffiffiffiffiffiffiffi
N21

p
Þ$$$$$$$$$$$$$$$$!

Check state via fluorescence 1ffiffiffi
N

p j0;SDD· · ·Dlþ 1ffiffiffi
N

p j0;DSD· · ·Dlþ
ffiffiffiffiffiffiffi
N22

p
ffiffiffi
N

p j1;DDD· · ·Dl

(i2)
Rþ1 ðpÞ$$! ..

. ..
.

j0;DDD· · ·Dl 1ffiffiffi
N

p j0;SDD· · ·Dlþ 1ffiffiffi
N

p j0;DSD· · ·Dlþ · · ·þ 1ffiffiffi
N

p j1;DDD· · ·Dl

Check state via fluorescence (N)
Rþ1 ð2arcsinð1=

ffiffi
1

p
Þ$$$$$$$$$$$$!

(i3)
RCNðpÞ$$! 1ffiffiffi

N
p j0;SDD· · ·Dlþ 1ffiffiffi

N
p j0;DSD· · ·Dlþ · · ·þ 1ffiffiffi

N
p j0;DDD· · ·Sl

j0;SDD· · ·Dl

(i1)–(i3) are initialization steps; (1)–(N) are entanglement steps. First we initialize the ions via sideband cooling and optical pumping in the j0, SS· · ·Sl state, where we use the notation
jn ;xNxN21 · · ·x1l: n describes the vibrational quantum number of the ion motion and x i their electronic state. We then prepare the j0;DDD· · ·Dl state with N p–pulses on the carrier transition
applied to ions 1 to N, denoted by RCn ðv¼ pÞ (the notation is detailed in ref. 29; we do not specify the phase of the pulses because their particular value is irrelevant in this context). Then this
state is checked for vanishing fluorescence with a photomultiplier tube. The same is done after trying to drive a p pulse on the blue sideband on ion 1 to ensure that the ion crystal is in the
motional ground state. After this initialization, we transform the state to j0;SDD· · ·Dl with a carrier p pulse and start the entanglement procedure in step (1). This is carried out by moving most
of the population to j1;DDD· · ·Dl with a blue sideband pulse of length vn ¼ arccosð1= ffiffiffi

n
p Þ leaving the desired part back in j0;SDD· · ·Dl: Finally, we use N 2 1 blue sideband pulses ðRþn ðvn ÞÞ of

pulse length vn ¼ arcsinð1= ffiffiffi
n

p Þ such that at each step we split off a certain fraction of the wave packet. Note that for an ion string in the ground state, blue-sideband pulses acting on an ion in
the D state have no effect. For N ¼ {4,5} we do not check the fluorescence, combine steps (i1) and (i3) and omit step (i2).
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Figure 1 | Absolute values, jrj, of the reconstructed density matrix of a
jW8l state as obtained from quantum state tomography.
DDDDDDDD…SSSSSSSS label the entries of the density matrix r. Ideally,
the blue coloured entries all have the same height of 0.125; the yellow
coloured bars indicate noise. Numerical values of the density matrices for
4 # N # 8 can be found in Supplementary Information. In the upper right
corner a string of eight trapped ions is shown.

LETTERS NATURE|Vol 438|1 December 2005

644



Intuition	to	MPS	tomography	

Entanglement	(correlation)	makes	q.states	&	dynamics	difficult	to	describe	and	verify	

in	the	lab	

However,	if	N	particle	state	has	a	finite	correlation	length:	

Accurate	state	description	with	only	poly(N)	parameters	using	MPS	formalism	

e.g	

Chance	to	identify	state	by	measuring	only	small	number	of	local	observables	

Correlation	length	

Which	states?		

-  States	generated	by	systems	with	local	interactions*	
-  Many	important	states	for	Q.	computing	and	Q.	metrology	e.g.	cluster	and	graph	states	

*Local	interactions	=	interactions	with	finite	range	(e.g.	between	neighbors)	



Our	application:	tracking	the	state	of	a	quantum	simulator	

A	simulator	with	local	interactions	generates	correlations	that	spread	at	a	finite	speed,	therefore:		

	

•  After	finite	evolution	time,	correlations	only	gone	so	far		->	efficient	description	via	MPS	
	

•  All	info.	about	correlations	contained	over	those	distances	->	local	measurements	enough	

Example:	

T
im

e

Some	initial	excited	product	state	of	spins	

Spin-up	prob.	

Lab	results	from	such	experiment	

⇢a,b,c



Our	implementation	with	trapped	ions	

⇢123

⇢234

⇢345

⇢456

⇢567

⇢678

⇢789

4.  Give	measurement	data	to	classical	search	algorithm	which	finds	an	MPS	estimate	

1.  Prepare	initial	product	state,	
then	turn	on	interactions	

3.  Do	enough	measurements	to	

reconstruct	all	local	reductions	

that	we	think	might	span	the	

correlation	length	

2.  Turn	off	at	desired	point	in	
evolution	

5.  Certification	step	to	confirm	that	the	output	state	is	a	good	description	of	the	lab	

state	

In	the	end,	no	assumptions	made	about	state	
See	M.	Cramer	et	al,	Nature	Comms	2010)		

This	technique	is	efficient	in	space	(qubit	number),	but	not	in	time.		

| est
mpsi

h est
mps|⇢lab| est

mpsi

Baumgratz,	et	al	New	J.	Phys.	15,	125004	(2013).	
	



h est
mps|⇢lab| est

mpsiMPS	tomo	results	for	8	spin	case	

As	time	goes	on,	system	is	better	described	by	increasingly	complex	entangled	pure	states	J	

	

Can	follow	simulators	evolution	into	complexity,	up	to	some	limit,	in	a	way	efficient	in	qubit	

number	J	

	

After	e.g.	2ms,	lab	state	has	≥	90%	fid	with	8-body	entangled	pure	state	J	

	

10	minutes	for	each	point	(vs	10	hours	for	full	state	tomo)	

	

All	neighbors	strongly	entangled	

Spin-up	prob.	



Observation	of	entangled	states	of	
a	fully-controlled	20-qubit	system	

N.	Friis,	O.	Marty,	C.	Maier,	C.	Hempel,	M.	Holzapfel,	P.	Jurcevic,	M.	Plenio,	M.	Huber,	C.	Roos,	R.	Blatt,	B.	Lanyon	

Phys	Rev	X.8.021012,	arXiv:1711.11092	

	

Collaboration	with	group	of	M.	Plenio	(Ulm)	and	of	M.	Huber	(Vienna)	

Core	result:	By	designing	entanglement	witnesses,	we	could	directly	

observe	the	generation	of	multipartite	entanglement	in	a	20-qubit	system	



•  Q:	Can	we	directly	probe	higher-order	q.	correlations	from	measurements	that	we	have?	

Data	

*A.	Daley	&	A.	Buyskikh	

Data:	pairwise	entanglement	

•  MPS	tomography	produced	very	low	fidelities	L	

•  20-qubit	dynamics	looks	great	J	

Theory*	



Analytical	witnesses,	based	on	average	Bell	state	fidelities	

1	 2	 3	

F12
B F23

B

F13
B

F12
B +F23

B +F13
B

3
> 0.57if	

then		3-partite	entangled		

•  Analytical	expression	for	extension	to	arbitrary	qubit	numbers	

•  Violated	in	our	ideal	system	by	all	neighbouring	triplets		

Witnesses	found	by	numerical	search	

Exhaustive	search	for	witness	operators	 Qk

Qk = ciMi
k

i
∑

Measurements		

we	carried	out	

Where	 Tr Qkρ k( ) > 0 Proves	k-partite	GME	

Lab	state	of	k	qubits	

•  Limited	to	5-qubit	groups	by	vastness	of	search	

•  Violated	in	our	ideal	system	by	all	neighbouring	groups	of	5	

O.	Gühne	and	G.	Tóth,	Phys.	Rep.	474,	1	(2009).	



All	neigbouring	triplets	multipartite	entangled	

Almost	all	neighbouring	quadruplets	multipartite	entangled	

Some	neighbouring	quintuplets	multipartite	entangled	

‘5th-order’	q.	correlations	are	generated	in	our	simulator,	but	exhibit	larger	deviations	from	ideal	

Provides	feedback	method	to	improve	our	system				
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Measuring	entropy	via	random	
measurements	
in	collaboration	with	A.	Elben,	B.	Vermersch	and	P.	Zoller	

Core	result:	New	method	to	measure	the	entropy	of	engineered	quantum	

systems	of	up	to	a	few	tens	of	qubits,	works	for	all	states	and	dynamics.		

	
Application:	tool	to	determine	global	coherence	of	~20	qubit	partitions	of	a	

many-body	system	&	to	detect	entanglement	between	parts	



Entropy	

ρ = ψ ψ

Pure	state	

Tr ρ2( ) =1
Entropy	=	0	

mixed	state	

Entropy	>	0	

ρ ≠ ψ ψ

Tr ρ2( ) <1
Sn ∝ log Tr ρn( )"

#
$
%

Renyi	Entropy	

S2 •  Log(purity)	

•  Bounds	Von	Neumann	entropy	

•  Quantity	that	tells	you	how	globally	coherent	a	system	is,	and	how	much	bipartite	

entanglement	is	generated	between	its	parts	

•  Very	challenging	to	measure	
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Equation (1) can be framed in terms of entropic quantities1,33.  
A particularly useful and well studied quantity is the nth-order Rényi 
entropy:

ρ( )=
−

( ) ( )S
n

A 1
1

log Tr 2n
n

A

From equation (2), we see that the second-order (n =  2) Rényi entropy 
and purity are related by ρ( )=− ( )S A log Tr2 A

2 . S2(A) provides a lower 
bound15 for the von Neumann entanglement entropy SVN(A) =  S1(A) 
=  − Tr(ρAlogρA), which has been extensively studied theoretically. The 
Rényi entropies are rapidly gaining importance in theoretical con-
densed matter physics because they can be used to extract information 
about the “entanglement spectrum”35, thus providing more complete 
knowledge about the quantum state than just the von Neuman entropy. 
In terms of the second-order Rényi entropy, the conditions sufficient 
to demonstrate entanglement1,33 become S2(A) >  S2(AB), and 
S2(B) >  S2(AB), that is, the subsystems have more entropy than the full 
system. These entropic inequalities are more powerful in detecting 
certain entangled states than other inequalities such as the  
Clauser–Horne–Shimony–Holt (CHSH) inequality30,33.

Measurement of quantum purity
The quantum purity and hence the second-order Rényi entropy can be 
directly measured by interfering two identical and independent copies 
of the quantum state on a 50%–50% beam splitter15,26,27,30. For two 
identical copies of a bosonic Fock state, the output ports always have 
even particle numbers, as illustrated in Fig. 2a. This is due to the 
destructive interference of all odd outcomes. If the system is composed 
of multiple modes, such as internal spin states or various lattice sites 
the expectation value of the total number parity =∏ ( )P pi k i

k  is equal to 
unity in the output ports i =  1, 2. Here the parity for mode k is = ±( )p 1i

k  
for even or odd numbers of particles, respectively.

The well known Hong–Ou–Mandel (HOM) interference of two 
identical single photons36 is a special case of this scenario. Here a pair 
of indistinguishable photons incident upon different input ports of a 
50%–50% beam splitter interfere such that both photons always exit 
from the same output port. In general, the average parity measured 
in the many-body bosonic interference on a beam splitter probes the 
quantum state overlap (Supplementary Information) between the two 
copies, 〈 Pi〉  =  Tr(ρ1ρ2), where ρ1 and ρ2 are the density matrices of 
the two copies respectively and 〈 ...〉  denotes averaging over repeated 
experimental realizations, as shown in Fig. 2b. Hence, for two identical 

systems, that is, for ρ1 =  ρ2 =  ρ, the average parity for both output ports 
(i =  1, 2) equals the quantum purity of the many-body state15,26,27:

ρ〈 〉= ( ) ( )P Tr 3i
2

Equation (3) represents the most important theoretical foundation 
behind this work—it connects a quantity depending on quantum 
coherences in the system to a simple observable in the number of par-
ticles. It holds even without fixed particle number, as long as there 
is no definite phase relationship between the copies (Supplementary 
Information). From equations (1) and (3), detecting entanglement 
in an experiment is thus reduced to simply measuring the average 
particle number parity in the output ports of the multi-mode beam  
splitter.

We probe entanglement formation in a system of interacting 87Rb 
atoms on a one-dimensional optical lattice with a lattice constant 
of 680 nm. The dynamics of atoms in the lattice is described by the  
Bose–Hubbard Hamiltonian:

†∑ ∑=− + ( − )
( )〈 〉

H J a a U n n
2

1
4i j

i j
i

i i
,

where †a a,i i  and †=n a ai i i  are the bosonic creation, annihilation,  
and the number operators at site i, respectively. The atoms tunnel 
between neighbouring lattice sites (indicated by 〈 i, j〉 ) with a rate J and 
experience an onsite repulsive interaction energy U. Planck’s constant 
h is set to 1 and hence both J and U are expressed in hertz. The dimen-
sionless parameter U/J is controlled by the depth of the optical lattice. 
Additionally, we can superimpose an arbitrary optical potential with 
the resolution of a single lattice site by using a spatial light modulator 
as an amplitude hologram through a high-resolution microscope 
(Supplementary Information). This microscope also allows us to image 
the number parity of each lattice site independently28.

Figure 1 | Bipartite entanglement and partial measurements.  
A generic pure quantum many-body state has quantum correlations 
(shown as arrows) between different parts. If the system is divided into  
two subsystems A and B, the subsystems will be bipartite entangled  
with each other when there are quantum correlations between them 
(right column). Only when there is no bipartite entanglement present, 
the partitioned system | ψAB〉  can be described as a product of subsystem 
states | ψA〉  and | ψB〉  (left column). A path for measuring the bipartite 
entanglement emerges from the concept of partial measurements: 
ignoring all information about subsystem B (indicated as ‘Trace’) will put 
subsystem A into a statistical mixture, to a degree given by the amount of 
bipartite entanglement present. Finding ways of measuring the many-body 
quantum state purity of the system and comparing that of its subsystems 
would then enable measurements of entanglement. For an entangled state, 
the subsystems will have less purity than the full system.

Entangled stateProduct state

\ \ \ \\ \

A B A B

TracePure TraceMixed

|����³�= |����³A ⊗ | ���³B |����³�≠ |����³A ⊗ | ���³B

Figure 2 | Measurement of quantum purity with many-body bosonic 
interference of quantum twins. a, When two N-particle bosonic systems 
that are in identical pure quantum states are interfered on a 50%–50% 
beam splitter, they always produce output states with an even number 
of particles in each copy. This is due to the destructive interference of 
odd outcomes and represents a generalized HOM interference, in which 
two identical photons always appear in pairs after interfering on a beam 
splitter. b, If the input states ρ1 and ρ2 are not perfectly identical or not 
perfectly pure, the interference contrast is reduced. In this case the 
expectation value of the parity of particle number 〈 Pi〉  in either output 
(i =  1, 2) measures the quantum state overlap between the two input states. 
For two identical input states ρ1 =  ρ2, the average parity 〈 Pi〉  therefore 
directly measures the quantum purity of the states. We assume only that 
the input states have no relative macroscopic phase relationship.
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Measuring entanglement entropy in a 
quantum many-body system
Rajibul Islam1, Ruichao Ma1, Philipp M. Preiss1, M. Eric Tai1, Alexander Lukin1, Matthew Rispoli1 & Markus Greiner1

Entangled quantum objects1 are correlated in ways that reject the 
principle of local realism. In few-level quantum systems, entangled 
states have been investigated extensively as a means of studying the 
foundations of quantum mechanics2 and as a resource for quantum 
information applications3. Recently, it was realized that the concept of 
entanglement has broad impact in many areas of quantum many-body 
physics, ranging from condensed matter4 to high-energy field theory5 
and quantum gravity6. In this general context, entanglement is most 
often quantified by the entropy of entanglement1 that arises in a sub-
system when the information about the remaining system is ignored. 
This entanglement entropy exhibits qualitatively different behaviour 
from that of classical entropy and has been used in theoretical physics  
to probe various properties of many-body systems. In condensed 
matter physics, for example, the scaling behaviour7 of entanglement 
entropy allows phases to be distinguished that cannot be characterized 
by symmetry properties, such as topological states of matter8–10 and 
spin liquids11,12. Entanglement entropy can be used to probe quan-
tum criticality13 and non-equilibrium dynamics14,15, and to determine 
whether efficient numerical techniques for computing many-body 
physics exist16.

Despite the growing importance of entanglement in theoretical 
physics, current condensed matter experiments do not have a direct 
probe with which to detect and measure entanglement. Synthetic 
quantum systems such as cold atoms17,18, photonic networks19, and 
some microscopic solid state devices20 have unique advantages: in such 
systems control and detection of single particles are possible, they pro-
vide experimental access to relevant dynamical time scales, and they 
are isolated from the environment. In these systems, specific entan-
gled states of few qubits, such as the highly entangled Greenberger–
Horne–Zeilinger (GHZ) state21 have been experimentally created and 
detected using witness operators22. However, entanglement witnesses 
are state specific. For arbitrary states, an exhaustive method of recon-
structing the entire quantum state by tomography23 can be used to 
measure entanglement. This has been accomplished in small systems 
of photonic qubits24 and trapped ion spins25, but there is no known 
way to perform tomography for systems involving itinerant delocal-
ized particles. With multiple copies of a system, however, one can use 
quantum many-body interference to quantify entanglement even in 
itinerant systems15,26,27.

In this work, we take advantage of the precise control and readout 
afforded by our quantum gas microscope28 to prepare and interfere two 
identical copies of a four-site Bose–Hubbard system. This many-body 
quantum interference enables us to measure quantities that are not 
directly accessible in a single system (without tomography), for exam-
ple, quadratic functions of the density matrix15,26,27,29–32. Such non-
linear functions can reveal entanglement1. In our system, we directly 
measure the quantum purity, Rényi entanglement entropy, and mutual 
information to probe the entanglement in site occupation numbers.

Bipartite entanglement
To detect entanglement in our system, we use a fundamental property 
of entanglement between two subsystems (bipartite entanglement): 
ignoring information about one subsystem results in the other becom-
ing a classical mixture of pure quantum states. This classical mixture 
in a density matrix ρ can be quantified by measuring the quantum 
purity, defined as Tr(ρ2). For a pure quantum state the density matrix 
is a projector and Tr(ρ2) = 1, whereas for a mixed state Tr(ρ2) <  1.  
In the case of a product state, the subsystems A and B of a many-body 
system AB described by a separable wavefunction | ψAB〉  (Fig. 1)  
are individually pure as well, that is, ρ ρ ρ( )= ( )= ( )=Tr Tr Tr 1A

2
B
2

AB
2 . 

Here the reduced density matrix of A is ρA =  TrB(ρAB), where  
ρAB =  | ψAB〉 〈ψAB|  is the density matrix of the full system. TrB indicates 
tracing over or ignoring all information about the subsystem B. For an 
entangled state, the subsystems become less pure compared to the full 
system as the correlations between A and B are ignored in the reduced 
density matrix, ρ ρ ρ( )= ( )< ( )= .Tr Tr Tr 1A

2
B
2

AB
2   Even if the many-body 

state is mixed ( ρ( )<Tr 1AB
2 ), it is still possible to measure entanglement 

between the subsystems1. It is sufficient33 to prove this entanglement by 
showing that the subsystems are less pure than the full system, that is:

ρ ρ

ρ ρ

( )< ( )

( )< ( ) ( )

Tr Tr
Tr Tr 1

A
2

AB
2

B
2

AB
2

These inequalities provide a powerful tool with which to detect entan-
glement in the presence of experimental imperfections. Furthermore, 
quantitative bounds on the entanglement present in a mixed many-
body state can be obtained from these state purities34.

Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between 
quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse 
fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. 
This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of 
spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using 
quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms 
in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly 
measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for 
using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
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Entanglement	across	partition	if:	

Connection	to	entanglement	



Renyi	entropy	via	copies	

ρρ

Given	n	identical	copies,	can	measure	Sn	via	joint	measurements	

ρ

…....	

Experiment:	2	ions,	2	copies,	Yb+	ion	trap.	Linke	et	al,	arXiv:1712.08581	(2017)	

Experiment	with	atoms	in	optical	lattice,	by	Greiner	group.			

Islam	et	al,	Nature	528	(2017)		4	atoms,	2-copies.	
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To initialize two independent and identical copies of a state with 
fixed particle number N, we start with a low-entropy two-dimensional 
Mott insulator with unity filling in the atomic limit28 and determin-
istically retain a plaquette of 2 ×  N atoms while removing all others  
(Supplementary Information). This is illustrated in Fig. 3a. The 
plaquette of 2 ×  N atoms contains two copies (along the y direction) 
of an N-atom one-dimensional system (along the x direction), with 
N =  4 in this figure. The desired quantum state is prepared by manip-
ulating the depth of the optical lattice along x, varying the parameter 
U/Jx, where Jx is the tunnelling rate along x. A box potential created by 
the spatial light modulator is superimposed onto this optical lattice to 
constrain the dynamics to the sites within each copy. During the state 
preparation, a deep lattice barrier separates the two copies and makes 
them independent of each other.

The beam splitter operation required for the many-body interference 
is realized in a double-well potential along y. The dynamics of atoms 
in the double well is likewise described by the Bose–Hubbard 
Hamiltonian, equation (4). A single atom, initially localized in one well, 
coherently oscillates between the wells with a Rabi frequency of J =  Jy 
(oscillation frequency in the amplitude). At discrete times during this 
evolution, = =( ) −t t n n

JBS
2 1

8 y
, with n =  1, 2, ..., the atom is delocalized 

equally over the two wells with a fixed phase relationship. Each of these 
times realizes a beam splitter operation, for which the same two wells 
serve as the input ports at time t =  0 and output ports at time = ( )t t n

BS . 
Two indistinguishable atoms with negligible interaction strength 
(U/Jy ≪ 1) in this double well will interfere as they tunnel. The dynam-
ics of two atoms in the double well is demonstrated in Fig. 3b in terms 
of the joint probability P(1, 1) of finding them in separate wells versus 
the normalized time Jyt. The joint probability P(1, 1) oscillates at a 
frequency of 772(16) Hz =  4Jy, with a contrast of 95(3)%. At  
the beam splitter times, = ( )t t n

BS , P(1, 1) ≈  0. The first beam splitter  
time, ≡ =( )t t JBS BS

1 1
8 y

 is used for all the following experiments, with  

P(1, 1) =  0.05(2). This is a signature of bosonic interference of two 
indistinguishable particles37,38, akin to the photonic HOM interfer-
ence36. This high interference contrast indicates the near-perfect sup-
pression of classical noise and fluctuations and includes an expected 
0.6% reduction due to finite interaction strength (U/Jy ≈  0.3). The 
results from this interference can be interpreted as a measurement of 
the quantum purity of the initial Fock state as measured from the aver-
age parity (equation (3)), 〈 Pi〉  =  1 −  2 ×  P(1, 1) =  0.90(4), where i =  1, 2 
are the two copies.

Entanglement in the ground state
The Bose–Hubbard model provides an interesting system in which to 
investigate entanglement. In optical lattice systems, a lower bound of 
the spatial entanglement has been previously estimated from time-of-
flight measurements39 and entanglement dynamics in spin degrees of 
freedom has been investigated with partial state reconstruction40. Here, 
we directly measure entanglement in real space occupational particle 
number in a site-resolved way. In the strongly interacting atomic limit 
of U/Jx ≫ 1, the ground state is a Mott insulator corresponding to a Fock 
state of one atom at each lattice site. The quantum state has no spatial 
entanglement with respect to any partitioning in this phase—it is in a 
product state of the Fock states. As the interaction strength is reduced 
adiabatically, atoms begin to tunnel across the lattice sites, and ultimately 
the Mott insulator melts into a superfluid with a fixed atom number. The 
delocalization of atoms creates entanglement between spatial subsystems. 
This entanglement originates41,42 from correlated fluctuations in the 
number of particles between the subsystems due to the super-selection 
rule that the total particle number in the full system is fixed, as well as 
coherence between various configurations without any such fluctuation.

To probe the emergence of entanglement, we first prepare the ground 
state of equation (4) in both copies by adiabatically lowering the optical 

Figure 3 | Many-body interference to probe entanglement in optical 
lattices. a, A high-resolution microscope is used to directly image the 
number parity of ultracold bosonic atoms on each lattice site (in the raw 
images, green represents odd and black represents even). Two adjacent 
one-dimensional lattices are created by combining an optical lattice  
and potentials created by a spatial light modulator. We initialize two 
identical many-body states by filling the potentials from a low-entropy 
two-dimensional Mott insulator. The tunnelling rates Jx and Jy can be 
tuned independently by changing the depth of the potential. b, The 
atomic beam splitter operation is realized in a tunnel-coupled  
double-well potential. An atom, initially localized in one of the wells, 
delocalizes with equal probability into both the wells by this beam splitter. 
Here, we show the atomic analogue of the HOM interference of two states. 
The joint probability P(1, 1) measures the probability of coincidence 
detection of the atoms in separate wells as a function of normalized 
tunnel time Jyt, with the single particle tunnelling Jy =  193(4) Hz.  
At the beam splitter duration (Jyt = 1/8) bosonic interference leads 
to a nearly vanishing P(1, 1), corresponding to an even parity in the 
output states. This can be interpreted as a measurement of the purity 
of the initial Fock state, here measured to be 0.90(4). The data shown 
here are averaged over two independent double wells. The blue curve 
is a maximum-likelihood fit to the data, and the error bars reflect 1σ  
statistical error. c, When two copies of a product state, such as the Mott 
insulator in the atomic limit, are interfered on the beam splitter, the 
output states contain even particle numbers globally (full system) as well 
as locally (subsystem), indicating pure states in both. d, On the other 
hand, for two copies of an entangled state, such as a superfluid state, the 
output states contain even particle numbers globally (pure state) but a 
mixture of odd and even outcomes locally (mixed state). This directly 
demonstrates entanglement.
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lattice potential along x. Then we freeze the tunnelling along x without 
destroying the coherence in the many-body state and apply the beam 
splitter along y. Finally, we rapidly turn on a very deep two-dimensional 
lattice to suppress all tunnelling and detect the atom number parity 
(even =   1, odd =   − 1) at each site. We construct the parity of a spatial 
region by multiplying the parities of all the sites within that region. 
The average parity over repeated realizations measures the quantum 
purity, both globally and locally, according to equation (3), enabling 
us to determine the second-order Rényi entropy globally and for all 
possible subsystems.

In the atomic Mott insulator limit (Fig. 3c), the state is separable. 
Hence, the interference signal between two copies should show even 
parity in all subsystems, indicating a pure state with zero entangle-
ment entropy. Towards the superfluid regime (Fig. 3d), the build-up 
of entanglement between various lattice sites leads to mixed states in 
subsystems, corresponding to a finite entanglement entropy. Hence, 
the measurement outcomes do not have a pre-determined parity. 
Remarkably, the outcomes should still retain even global parity, indi-
cating a pure global state. Higher entropy in the subsystems than the 
global system cannot be explained classically and demonstrates bipar-
tite entanglement.

Experimentally, we find exactly this behaviour for our two 4-site 
Bose–Hubbard systems (Fig. 4). We observe the emergence of spatial 
entanglement as the initial atomic Mott insulator melts into a super-
fluid. The measured quantum purity of the full system is about 0.6 
across the Mott insulator to superfluid crossover, corresponding to a 
Rényi entropy of S2(AB) ≈  0.5. The measured purity deep in the super-
fluid phase is slightly reduced, probably owing to the reduced beam 
splitter fidelity in the presence of increased single-site occupation 
number, and any residual heating. The nearly constant global purity 
indicates a high level of coherence throughout the crossover. For lower 
interaction strength U/Jx (superfluid regime), we observe that the sub-
system Rényi entropy is higher than the full system: S2(A) >   S2(AB). 
This demonstrates the presence of spatial entanglement in the super-
fluid state. In the Mott insulator regime (U/Jx ≫ 1), S2(A) is lower 
than S2(AB) and proportional to the subsystem size, consistent with a  
product state.

In these measurements, we post-select outcomes of the experiment 
for which the total number of atoms detected in both copies is even. 
This constitutes about 60% of all the data, and excludes realizations 
with preparation errors, atom loss during the sequence, or detection 
errors (Supplementary Information). The measured purity is consist-
ent with an imperfect beam splitter operation alone, suggesting much 
higher purity for the many-body state. The measured entropy is thus 
a sum of an extensive classical entropy due to the imperfections of the 
beam splitter and any entanglement entropy.

Our site-resolved measurement simultaneously provides informa-
tion about all possible spatial partitionings of the system. Comparing 
the purity of all subsystems with that of the full system enables us to 
determine whether a quantum state has genuine spatial multipar-
tite entanglement, in which every site is entangled with each other. 
Experimentally, we find that this is indeed the case for small U/Jx  
(Fig. 4b). In the superfluid phase, all possible subsystems have more 
entropy than the full system, demonstrating full spatial multipartite 
entanglement between all four sites27 ,43. In the Mott phase (U/Jx ≫ 1), 
the measured entropy is dominated by extensive classical entropy, 
showing a lack of entanglement.

By measuring the second-order Rényi entropy we can calculate other 
useful quantities, such as the associated mutual information IAB =    
S2(A) +   S2(B) −  S2(AB). Mutual information exhibits interesting 
scaling properties with respect to the subsystem size, which can be 
key to studying area laws in interacting quantum systems44. In some 
cases, such as in ‘data hiding states’45, mutual information is more 
informative than the more conventional two-point correlators, 
which might take arbitrarily small values in presence of strong cor-
relations. Mutual information is also immune to extensive classical 
entropy, and hence has practical utility in the experimental study 
of larger systems. In our experiments (Fig. 5a), we find that for the 
Mott insulator state (U/Jx ≫ 1), the entropy of the full system is the 
sum of the entropies for the subsystems. The mutual information is 
IAB ≈  0 for this state, consistent with a product state in the presence 
of extensive classical entropy. At U/Jx ≈  10, correlations between the 
subsystems begin to grow as the system adiabatically melts into a  
superfluid, resulting in non-zero mutual information, IAB >   0.

Figure 4 | Entanglement in the ground state of the Bose–Hubbard 
model. We study the transition from Mott insulator to superfluid with four 
atoms on four lattice sites in the ground state of the Bose–Hubbard model, 
equation (4). a. As the interaction strength U/Jx is adiabatically reduced, 
the purity of the subsystem A (green and blue, inset), Tr(ρA

2), becomes less 
than that of the full system (red). This demonstrates entanglement in the 
superfluid phase, generated by coherent tunnelling of bosons across  
lattice sites. In terms of the second-order Rényi entanglement entropy, 

ρ( ) = − ( )S A log Tr2 A
2 , the full system has less entropy than its subsystems in 

this state. In the Mott insulator phase (U/Jx ≫ 1) the full system has more 
Rényi entropy (and less purity) than the subsystems, owing to the lack of 
sufficient entanglement and a contribution of classical entropy.  
The circles are data points and the solid lines are theoretical, calculated 

from exact diagonalization. The only free parameter is an added offset, 
assumed to be proportional to the system size and consistent with the 
average measured entropy (about 0.5) in the full system. The vertical error 
bars in this figure and in Figs 5 and 6 indicate 1σ  in combined statistical 
and systematic errors (Supplementary Information). b, Second-order 
Rényi entropy of all possible bi-partitioning of the system. For small U/Jx, 
all subsystems (data points connected by green and blue lines) have more 
entropy than the full system (red circles), indicating full multipartite 
entanglement43 between the four lattice sites. The residual entropy in the 
Mott insulating regime is from classical entropy in the experiment, and 
extensive in the subsystem size. The right-hand panel in b shows the values 
of all Renyi entropies of the particular case of U/Jx ≈  1, to demonstrate 
spatial multipartite entanglement in this superfluid.
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Ekert	et	al,	PRL	88	217901	(2002)	



Renyi	entropy	via	randomized	measurements	on	one	copy	

Sn obtained	via	nth	order	moments	of	local	

outcome	probabilities	P,	when	
averaged	over	many	random	instances	

S2 = fn P2!" #$

S3 = fn P3!" #$

Entropy	information	lies	in	statistical	fluctuations	of	

measurement	outcomes	

Experimental	effort	scales	exponentially	in	qubit	number	(as	expected),	but	seems	

feasible	to	apply	to	at	least	20-qubit	partitions	

	

Works	for	all	states,	no	assumptions,	no	need	for	identical	copies	

Key	insight:		

A.	Elben,	et	al,	Rényi	Entropies	from	Random	Quenches	in	Atomic	Hubbard	and	

Spin	Models	Phys.	Rev.	Lett.	120,	50406	(2018)	
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Experimental	results:	evolution	of	entropies	in	10	qubit	ion-trap	simulator	dynamics	

global	purity	remains	high	
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7500	copies	used	for	each	point	(consisting	of	500	different	random	Us,	250	runs	each)	

1x109	copies	would	be	required	for	state	tomography	

	

Allowed	us,	for	the	first	time,	to	determine	the	purity	of	our	quantum	dynamics	for	10	spins					

(20	spins	feasible	given	technical	improvements)	

	

Future	application:	study	thermalization	and	localisation	effects	in	long-time	Q.	dynamics	

Time	=	0	ms	

Time	=	2	ms	

From	3	ms	of	interaction	time	onwards,	

all	shown	bi-partitions	are	entangled	

	

Time	=	3	ms	
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MPS	tomography	(certain	states)	

Entropy	measurements	(all	states)	Entropy	measurements	(all	states)	 Entropy	measurements	(all	states)	

Application	of	verification	tools	



Light-matter	interfaces	and	
networking	of	trapped	ions	

Innsbruck	ion-trap	quantum	network	

SciNet

Photonic	frequency	converter	

Ion	
Photon	

START	



A	three-node	network	

Node A 

Existing	cavity	experiment	

Fiber	cavity	experiment	

Node B

New	cavity	experiment	

Node C

10	m	

400	m	fiber	link	

Innsbruck theory

Basel theory

400	km	

Stanford

9523	km	

Innsbruck	ion-trap	quantum	network	



Light-matter	interface:	cavity-mediated	Raman	transition	

ion	in	S	state,	

no	photon	in	cavity	 ion	in	D	state,	

photon	in	cavity	
D	

S	

P	

40Ca+	

cavity	decay	cavity		

854	nm	

laser	

393	nm	

optical	qubit	

729	nm	

spontaneous		

emission	 �

Tunable ion–photon entanglement
A.	Stute	et	al.,	Nature	485,	482	(2012)	

Quantum state transfer
A.	Stute	et	al.,	Nature	Photon.	7,	219	(2013)	

•  Bad	cavity	regime	

•  100	kHz	bandwidth	photons		
•  854nm	photons	(3	dB/km	loss)	



Quantum	networking	team	at	IQOQI	

A	

B	

C	

Broad	goals:	

•  Develop	an	remote	ion-trap	node,	

optimised	for	quantum	networking	

•  Develop	techniques	to	frequency-
convert	networking	photons	to	telecom	

•  Entangle	ions	between	the	buildings	

	

Pout ~ 0.80

	854	nm		
Pump	

Nonlinear		

	

crystal	

1550	nm		

400	m	fiber	link	

Trapped	Ca+	with	optical	cavity	 Photon	conversion	via	DFG	

H.	Hainzer	 V.	Krcmarsky	 V.	Krutianskii	 M.	Meraner	 J.	Schupp	 B.	Lanyon	



Network	node	design	

Xyz	stages	

imaging	&	addressing	

ablation	target	

shear	piezos	

collimating	lenses	

cavity	mirrors	

ion	trap	

Ca	&	Ba	mixed-species	oven	



Manufacturer,	testing	and	assembly	last	year	

Obtained	&	aligned	final	cavity	mirrors	 Manufacture,	assembly	&						

bake-out	of		ion	trap	system	

Ions	trapped	in	new	Node	C	 Integration	of	optical	cavity	(xmas	2017)	

•  Stable	ion	strings	

•  Doppler	cooling	

•  Low	Micromotion	

•  Qubit	Rabi	flops	

ü  		

Stable	near-concentric,	g	~		2pi	x	1.55	MHz	

100	ppm	2	ppm	

20	ppm	

losses	

Photon-out	probability	~	0.80	

ü  		

ü  		

ü  		



Node	C:	Results	to	date	(Jan	2018)		

Cavity	field	probed	by	single-ion	
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Hopefully	in	position	to	generate	on-demand	

854	nm	photons	soon!		

Ion-cavity	system,	January	this	year	



Ion	
Photon	

Other	quantum	systems	

Low	transmission	loss	

854nm	

1550nm	

First	experimental	goal:		

•  Observe	entanglement	between	ion	and	50	km	photon	

f1 f2

400	 600	 800	 1000	 1400	1200	200	

Frequency	shift	is	big:	

A	photonic	adapter	

Goal:	develop	a	photonic	quantum	interface	for	trapped	ions:	



Wavelength	 Loss	in	
optical	fiber	
dB/km	

400	m	transmission	
probability	

50	km	transmission	
probability	

854	nm	 3	 0.5	 1	x	10	-15	

1550	nm	 0.2	 0.96	 0.1	

Several	other	examples	of	other	quantum	matter	have	been	or	will	be	coupled	to	telecom:	

•  Q.	Dots	

•  Rb	atomic	ensembles	

•  Solid-state	ensembles	

•  Solid-state	Defect	centers	

	



Photon	conversion	via	DFG	(SFG)	

•  Frequency	reduced	by	that	of	a	strong	pump	

•  Waveguide-integrated	nonlinear	material	

Nonlinear	material	

Pump	 Ridge	waveguides	

f1 f1�fpump

photon	source	

Photon	source	

			Trap	

Cavity	

Ion	

•  High	rate	&	efficiency	

•  On	demand	

Basic	Methods	&	Challenges	

Key	challenges:	 	 	 		

•  Noise	filtering	below	the	single	photon	level		

•  Preserving	classical	and	quantum	photon	properties	(correlations	with	matter	qubit)	

•  Efficiency	

	

Note	1:	Not	just	any	ion	or	any	photon	transition		

Note	2:	C.	Becher,	C.	Silberhorn,	K.	Kim,	M.	Lobino,	Q.	Quraishi,	M.Keller	



Results	with	laser	light	attenuated	to	single-photon	level:	

•  45% total efficiency for fixed polarisation

•  30 Hz added telecom photon noise

•  250 MHz bandwidth

•  Time bin photonic qubits
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•  50 mm PPLN ridge waveguides 
•  200 mW 1900nm pump laser

Efficiency	vs	pump	power	results	

•  Volume-holographic Bragg grating filters
•  Cavity filtering
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Results	2:	Polarisation-independent	conversion	

•  30% total efficiency for any polarisation

•  > 0.93 fidelity polarisation preservation

•  50 Hz added telecom photon noise

•  Polarisation qubits

	

	

	

	854	nm		 1550	nm		

input	

fiber	

output	

fiber	

Photon	

Converter	2	

•  Two-converters in series

•  Intrinsically-stable multi-wavelength 
polarization interferometer

Krutianski	et	al,	Appl.	Phys.	B	123	(2017)



•  We have pieces to allow 50 km+ light-matter entanglement distribution (84 km) 
•  Next step: photons from ion

•  Practical distances to start building large-scale light-matter q.networks, with full 
quantum logic capability. 

•  Possibility of new ion-hybrid systems

Ion	
1550nm	

50	-	100	km	optic	fiber	
Photon	

Entanglement	

Next	steps	



Summary	and	outlook	

1.  Now	possible	to	engineer	and	precisely-probe	quantum	states	of	systems	of	20	

individually	addressable	quantum	particles	(trapped	ions).	

2.  Some	new	methods	to	characterize	and	build-confidence	in	engineered	quantum	

systems	

•  MPS	tomography:	scalable	for	broad	class	of	quantum	states	

•  	Witnesses	for	direct	access	to	high-order	correlations	

•  	Method	to	measure	entropy	via	randomized	measurements	

	

3.  Our	plans	to	realise	a	three-node	light-matter	q.	network	in	Innsbruck	(photons	

between	buildings	this	year)	

4.  Using	photon	conversion,	seems	soon	feasible	to	distribute	long-lived	entanglement	

over	large	distances	between	small	quantum	processors	(~50	qubits)	and	between	new	

ion-hybrid	systems	

	

	



SPARE	SLIDES	



The	854nm	

transition	in	Ca+	is	

special	

!



Light-matter	interface:	cavity-mediated	Raman	transition	

ion	in	S	state,	

no	photon	in	cavity	 ion	in	D	state,	

photon	in	cavity	
D	

S	

P	

40Ca+	

cavity	decay	

coherent	ion–cavity	coupling	 detuning	

We	operate	in	the	“bad	cavity”	regime	

which	is	well	suited	for	quantum	networks.	

cavity		

854	nm	

laser	

393	nm	

optical	qubit	

729	nm	

spontaneous		

emission	 �

(g,, �) = 2⇡ ⇥ (1.4, 0.05, 11.5) MHz

(ge↵,, �e↵) = 2⇡ ⇥ (18, 50, 6) kHz

Tunable ion–photon entanglement
A.	Stute	et	al.,	Nature	485,	482	(2012)	

Quantum state transfer
A.	Stute	et	al.,	Nature	Photon.	7,	219	(2013)	



Certificate	

But	is	the	MPS	estimate	close	to	the	state	in	the	lab?	

Suppose		 is	the	unique	ground	state	of	a	gapped	local	Hamiltonian	H		
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•  Hamiltonian	acts	as	witness	for	its	own	ground	state	

•  Since	H	is	local,	Tr(H	p)	efficient	to	measure	

h est
mps|⇢lab| est

mpsi

| est
mpsi

So	what?	
Generic	MPS	states	are	the	unique	ground	states	of	gapped	local……..	
Can	determine	overlap	of	MPS	estimate,	with	state	in	lab,	in	straightforward	way:	

	

1.  Get	MPS	estimate	

2.  Find	parent	H	
3.  Use	local	measurements	to	estimate	Tr(Hp)	

4.  Calculate	‘certified’	fidelity	lower	bound		

Fid � 1� Tr(H⇢)

�E

| est
mpsi

mps	 mps	



•  We have pieces to allow 50 km+ light-matter entanglement distribution (84 km) 
•  Next step: photons from ion

•  Practical distances to start building large-scale light-matter q.networks, with full 
quantum logic capability. 

•  Possibility of new ion-hybrid systems

Ion	
1550nm	

50	-	100	km	optic	fiber	
Photon	

Entanglement	

Next	steps	

Q.	What	are	the	applications	of	distributed	quantum	information	and	entanglement?	

•  Unconditionally	secure	communication	(lots	of	papers	on	topic..)	

•  Enhanced	precision	time-keeping	(Q.	networks	of	clocks,	Komar	et	al,	Nat.	Phys.10,	(2014))	
•  Scalable	quantum	information	processing	(Hucul	et	al,	Nat.	Phys.	11,	(2015))	
•  Enhanced	long-baseline	imaging	of	faint	stellar	objects	(M.	Lukin	group,	in	preparation)	

•  …….?	


