

MAX PLANCK INSTITUTE

for the science of light

Photon triplet generation in photonic crystal fibres

Andrea Cavanna, C. Okoth, M. Frosz, G. Leuchs, M.V. Chekhova, N. Y. Joly, and Philip St.J. Russell

MPL Erlangen, Germany

- Photon triplet generation
- Tapered fibre
 - Motivation
- Hybrid solid core fibre
- Structure ollow core fibre
 - Strugture monic generation Hold Y Conclusions Photon triplet phase matching

 - Third-harmonic generation -
 - Photon triplet phase matching -

Energy and momentum conservation:

$$\Delta k = k_p - k_s - k_i - k_r = 0$$
$$\omega_p = \omega_s + \omega_i + \omega_r$$

- Novel effect
- Non-Gaussian squeezed state
- Wigner function negativity
- Quantum information
 - Heralded two photon source
 - Three-party quantum secure direct communication

Wigner function

Two photon state:

$$|\psi\rangle = c_0 |0,0\rangle + c_1 |1,1\rangle + \dots$$

Equations of motion:

$$\frac{dq}{dt} = 2\Gamma q$$
$$\frac{dp}{dt} = -2\Gamma p$$

 Γ : parametric gain

Wigner function

Three photon state:

$$\psi\rangle = c_0 |0,0,0\rangle + c_1 |1,1,1\rangle + \dots$$

Equations of motion:

$$\frac{du}{d\tau} = 3u^2 \cos(3\theta)$$
$$\frac{d\theta}{d\tau} = -3u\sin(3\theta)$$

K. Banaszek, and P. L. Knight, PRA 55, 2368-2375 (1997)

Spontaneous generation in microwaves

P. Poole, G. Weihs, and H. Majedi, Nat. Comm. 8, 15716 (2017).

- Quantum dots
- Seeded triplet generation
- SPDC + up-conversion

 $P_{\omega} \propto (\chi^{(3)} J_3)^2 L^2 P_{3\omega} \operatorname{sinc}^2 (\Delta k L / 2)$

- χ⁽³⁾: high values of nonlinearity also correspond to high absorption and luminescence
- J_3 : can be strongly reduced in case of intermodal phase-matching

Inter-modal phase-matching

• Tapered fibre

- High overlap integral and 'tuneable' phase-matching.
- Hybrid fibre High overlap integral
 between Gaussian-like modes.
- Hollow core fibre
 Tuneable phase-matching
 and high damage
 threshold.

Tapered fibre

J. Hammer, A. C., R. Pennetta, M. V. Chekhova, P. St.J. Russell, and N. Y. Joly, Opt. Lett. (2018) accepted.

Tapered fibre

J. Hammer, A. C., R. Pennetta, M. V. Chekhova, P. St.J. Russell, and N. Y. Joly, Opt. Lett. (2018) accepted.

Hybrid Fibre

(9) 952-955 (2016).

Third-harmonic generation

A. C., F. Just, X. Jiang, G. Leuchs, M. V. Chekhova, P. St.J. Russell, and N. Y. Joly, Optica **3** (9) 952-955 (2016).

Photon triplet generation

M. Corona, K. G. Palmett, and A. B. U'Ren, PRA 84, 033823 (2011)

Hollow core fibres

Features:

- Pressure controlled phasematching.
- Filled with noble gas as nonlinear material.
- Very high damage threshold.
- Almost no luminescence

Hollow core fibre

Xenon nonlinearity

Single-ring fibre

 $\begin{array}{c} 1.0 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.0 \\ 450 \\ 532 \text{ nm} \\ 0.2 \\ 0.0 \\ 450 \\ 500 \\ 53200 \\ 1596 \\ 1596 \\ 1650 \\ Wavelength [nm] \\ \end{array}$

P = 9.2bar

Photon triplet generation

M. Corona, K. Garay-Palmett, and A. B. U'Ren, PRA 84, 033823 (2011)

Future prospects

- Smaller core
- nt Higher overlap
 - Higher pressure ($\chi^{(3)}$)

- Higher $\chi^{(3)}$
- Phase-matching between fundamental modes

• Higher confinement

• Alkali vapour + Xe

Summary

	Hybrid fibre	Single-ring fibre
Overlap integral	0.003 μm ⁻²	8.4•10 ⁻⁶ μm ⁻²
Nonlinearity	6•10 ⁻²⁰ m ² /W	4•10 ⁻²² m ² /W
Phase matching	fixed	tuneable
Damage threshold	low	high
Length	limited by construction	limited by gas cell
Confinement losses	high for visible	high
Absorption losses	high above 1.6nm	very low

