

FAKULTÄT

M. V. Lomonosov Moscow State University

Palacký University Olomouc

Extreme events and enhanced nonlinear effects due to ultrafast photon-number fluctuations

<u>Kirill Spasibko</u>, Mathieu Manceau, Denis Kopylov, Victor Krutyanskiy, Tatiana Murzina, Radim Filip, Gerd Leuchs, and Maria Chekhova

Photons Beyond Qubits

25.04.2018

Outline

- Ultrafast fluctuations via bright squeezed vacuum
- Efficiency enhancement
 - SH, TH and FH generation
- Enhancement of rogue-wave behavior
 - Harmonics generation
 - Supercontinuum generation
- Summary

Outline

- Ultrafast fluctuations via bright squeezed vacuum
- Efficiency enhancement
 - SH, TH and FH generation
- Enhancement of rogue-wave behavior
 - Harmonics generation
 - Supercontinuum generation
- Summary

Jedrkiewicz, O. et al. PRL. 93, 243601 (2004). Iskhakov, T.Sh. et. al. PRL. 102, 183602 (2009).

Jedrkiewicz, O. et al. PRL. 93, 243601 (2004). Iskhakov, T.Sh. et. al. PRL. 102, 183602 (2009).

Jedrkiewicz, O. et al. PRL. 93, 243601 (2004). Iskhakov, T.Sh. et. al. PRL. 102, 183602 (2009).

Pérez, A.M. et.al., Nat. Commun. 6, 7707 (2015). KS et.al., Opt. Lett. 41, 2827 (2016).

Extremely bright: up to hundreds mW

Bright Squeezed Vacuum

Slusher, R.E. et. al. PRL 59, 2566 (1987). Iskhakov, T.Sh. et. al. PRL 102, 183602 (2009). Rosołek, K. et. al. PRL 114, 100402 (2015).

Bright Squeezed Vacuum

Slusher, R.E. et. al. PRL 59, 2566 (1987). Iskhakov, T.Sh. et. al. PRL 102, 183602 (2009). Rosołek, K. et. al. PRL 114, 100402 (2015).

Thermal BSV

$$P_{th}(n) = \frac{\langle N \rangle^n}{(\langle N \rangle + 1)^{n+1}}$$

Klyshko, D.N. Phys.-Usp. 39, 573 (1996).

Thermal BSV

$$P_{th}(n) = \frac{\langle N \rangle^n}{(\langle N \rangle + 1)^{n+1}}$$

Superbunched BSV

Thermal BSV

Superbunched BSV

Ultrafast fluctuations

Ultrafast fluctuations

Outline

Ultrafast fluctuations via bright squeezed vacuum

- Efficiency enhancement
 - SH, TH and FH generation
- Enhancement of rogue-wave behavior
 - Harmonics generation
 - Supercontinuum generation
- Summary

N-photon effects

Agarwal, G.S. PRA 1 1445 (1970). Lecompte, C. et. al. PRA 11 1009 (1975). Jechow, A. et al. Nat. Phot. 7, 973 (2013).

N-photon effects

Agarwal, G.S. PRA 1 1445 (1970). Lecompte, C. et. al. PRA 11 1009 (1975). Jechow, A. et al. Nat. Phot. 7, 973 (2013).

N-photon effects

Janszky, J. et. al. PRA 36, 1288 (1987). Iskhakov, T.Sh. et al. Opt. Lett. 37, 1919 (2012).

$$R^{(n)} \sim g^{(n)} (F_{\omega})^n$$

Janszky, J. et. al. PRA 36, 1288 (1987). Iskhakov, T.Sh. et al. Opt. Lett. 37, 1919 (2012).

$$R^{(n)} \sim g^{(n)} (F_{\omega})^n$$

Coherent light
$$g^{(n)} = 1$$

Janszky, J. et. al. PRA 36, 1288 (1987). Iskhakov, T.Sh. et al. Opt. Lett. 37, 1919 (2012).

Iskhakov, T.Sh. et al. Opt. Lett. 37, 1919 (2012).

300 fs fluctuations in CW max power 1 mW

Lecompte, C. et. al. PRA 11, 1009 (1975).

Jechow, A. et al. Nat. Phot. 7, 973 (2013). 28

Experiment: SH, TH, FH generation

Experiment: SH, TH, FH generation

HG from narrowband BSV

HG from narrowband BSV: post-selection

HG from narrowband BSV

$$F_{n\omega} \sim g^{(n)} (F_{\omega})^n$$

Statistical efficiency $\xi^{(n)} \equiv \frac{F_{n\omega}}{(F_{\omega})^{n}} \sim g^{(n)}$

n	$\xi_{BSV}^{(n)}/\xi_{qc}^{(n)}$	$g_{BSV}^{(n)}/g_{qc}^{(n)}$
2	2.86	2.94
3	13.6	14.5
4	71	63

HG from narrowband BSV

BSV statistics

BSV statistics

HG from broadband BSV

HG from broadband BSV

Outline

- Ultrafast fluctuations via bright squeezed vacuum
- Efficiency enhancement • SH, TH and FH generation
- Enhancement of rogue-wave behavior
 - Harmonics generation
 - Supercontinuum generation
- Summary

Extreme events and rogue waves

S. Haver, Statoil Tech. Rep. (2003).

Extreme events and rogue waves

Filter

Definition?

A *rogue wave* is a *wave* that is much higher than others around it, and which has a habit of appearing unpredictably.

N. Akhmediev and E. Pelinovsky, Eur. Phys. J. ST 185, 1 (2010).

43

N. Akhmediev and E. Pelinovsky, Eur. Phys. J. ST 185, 1 (2010).

KS et. al. PRL 119, 223603 (2017).

KS et. al. PRL 119, 223603 (2017).

KS et. al. PRL 119, 223603 (2017).

Number of photons per pulse

Summary

- Efficiency and rogue-wave behavior dramatically increases if nonlinear effects are pumped by fluctuating light. BSV is very useful, because it has strong and fast fluctuations.
- Certain rate of 4-photon effect is achieved with BSV with the mean power about 3 times less than with coherent light important for fragile structures.
- We observed a record 'bunching' (g⁽²⁾>100) and pulses with I exceeding <I> by 675 times. For thermal light the probability of such events is less than 10⁻²⁹⁰.
- The supercontinuum has power law probability distribution $P(I) \sim I^{-1.3}$. For it all moments diverge.

Summary

- Efficiency and rogue-wave behavior dramatically increases if nonlinear effects are pumped by fluctuating light. BSV is very useful, because it has strong and fast fluctuations.
- Certain rate of 4-photon effect is achieved with BSV with the mean power about 3 times less than with coherent light important for fragile structures.
- We observed a record 'bunching' (g⁽²⁾>100) and pulses with I exceeding <I> by 675 times. For thermal light the probability of such events is less than 10⁻²⁹⁰.
- The supercontinuum has power law probability distribution $P(I) \sim I^{-1.3}$. For it all moments diverge.

