Optical Hybrid Quantum Teleportation and Its Application to Large-Scale Quantum Computing

Shuntaro Takeda

The University of Tokyo, Japan JST PRESTO Optical Hybrid Quantum Teleportation and Its Application to Large-Scale Quantum Computing

1. Introduction

- 2. Hybrid quantum teleportation
- 3. Teleportation-based quantum gates
- 4. Toward large-scale quantum computing

Our group at the Univ. of Tokyo

Optical continuous-variable QIP

- Quantum teleportation
- Quantum gates
- Cluster-state generation
- Single-photon source

15 students Professor Secretary A. Furusawa Y. Yoshikawa Assist. Prof. Lecturer F J. Yoshikawa S. Takeda

Our group at the Univ. of Tokyo

R. Filip

P. Marek P. van Loock

Collaborators

15 students

Professor A. Furusawa Y. Yoshikawa

Assist. Prof. S. Takeda

Lecturer J. Yoshikawa

Various physical systems for quantum computing

Atom/Ion

0000000

Advantages of optical QC

- No need for vacuum/cooling system
- Suitable for quantum communication

Obstacles for large-scale optical QC

- Probabilistic operations on qubits

Obstacles for large-scale optical QC

- Probabilistic operations on qubits

Obstacles for large-scale optical QC

- Probabilistic operations on qubits
- Not scalable, not programmable

This talk: Our strategy for large-scale optical QC ✓ Deterministic operation via hybrid approach

- CV quantum teleportation of qubits/qutrits
- CV quantum gates for qubits
- Loop-based architecture for QC

Optical Hybrid Quantum Teleportation and Its Application to Large-Scale Quantum Computing

- 1. Introduction
- 2. Hybrid quantum teleportation
- 3. Teleportation-based quantum gates
- 4. Toward large-scale quantum computing

Qubit vs CV: Physical encoding

Qubit

Continuous variables

Qubit vs CV: Physical encoding

Qubit

Qubit vs CV: Tool box

Continuous variables

Squeezed light source

Qubit vs CV: Quantum Teleportation

Qubit

Bouwmeester et al., Nature 390, 5751 (1997)

Continuous variables

Quadrature entangled

Input state

 $\left|\psi\right\rangle_{1} = \int_{-\infty}^{+\infty} \psi(x) \left|x\right\rangle_{1} dx$

x-squeezed

p-squeezed 🔁

Furusawa et al., Science 282, 706 (1998)

DeterministicAdds noise

Output state

 $|\psi\rangle_3 = \int_{-\infty}^{+\infty} \psi(x) |x\rangle_3 dx$

Qubit vs CV: Quantum Teleportation

Qubit

Bouwmeester et al., Nature 390, 5751 (1997)

Output state

 $|\psi\rangle_3 = \int_{-\infty}^{+\infty} \psi(x) |x\rangle_3 dx$

Quadrature entangled

Hybrid TeleportationTakeda et al., Nature 500, 315 (2013)Input qubit
 $a|1,0\rangle+b|0,1\rangle$ \hat{x} Deterministic \hat{y} \hat{y} \hat{y} \hat{y} Quadrature entangledEOMOutput qubit
 $a|1,0\rangle+b|0,1\rangle$

Hybrid TeleportationTakeda et al., Nature 500, 315 (2013)Input qubit
 $a|1,0\rangle+b|0,1\rangle$ \hat{x} Deterministic \hat{p} \hat{g} </

Hybrid TeleportationTakeda et al., Nature 500, 315 (2013)Input qubit
 $a|1,0\rangle+b|0,1\rangle$ 1
 \hat{x} Deterministic
Noise free \hat{y} \hat{y} Gain: g=tanh rSqueezing: rPRA 64, 040301 (2001)Only photon
loss error

First deterministic teleportation of photonic qubits Takeda et al., Nature **500**, 315 (2013)

How can we overcome the photon loss error?

Our qubit: $|\psi\rangle = a|1,0\rangle + b|0,1\rangle$

Increase # of photons
Error-correction code against photon loss

- Bosonic code: $|\psi\rangle = \alpha (|0,4\rangle + |4,0\rangle)/\sqrt{2} + \beta |2,2\rangle$
- PRA **56**, 1114 (1997) - NOON code: $|\psi\rangle = \alpha (|0,2\rangle + |2,0\rangle) \otimes (|0,2\rangle + |2,0\rangle)/2 + \beta |1,1\rangle \otimes |1,1\rangle$ PRA **94**, 012311 (2016)

Hybrid Teleportation

Before teleportation

After teleportation

Hybrid Teleportation

Before teleportation

After teleportation

Fidelity in 3x3 subspace: 0.71 > 0.5 (classical limit)
➡ Successful teleportation of qutrits
Okada et al., CLEO Europe EB-4.3 (2017)

Summary of our hybrid QT experiments

- Teleportation of time-bin qubit & qutrit <u>Takeda</u> et al., Nature 500, 315 (2013); Okada et al., CLEO Europe EB-4.3 (2017)

 $a|1,0\rangle+b|0,1\rangle$

 $a|2,0\rangle+b|1,1\rangle+c|0,2\rangle$

- Teleportation of single-photon entanglement Takeda et al., PRL 114, 100501 (2015)

CV teleporter

- Conditional teleportation of single photon Fuwa *et al.* PRL **113**, 223602 (2014)

Conditioning at Bell meas.

Basic hybrid qubit-CV technologies are ready

Optical Hybrid Quantum Teleportation and Its Application to Large-Scale Quantum Computing

- 1. Introduction
- 2. Hybrid quantum teleportation
- 3. Teleportation-based quantum gates
- 4. Toward large-scale quantum computing

Quantum Teleportation

"Teleportation-based quantum gate"

"Teleportation-based quantum gate"

- Only linear optics required & ancillae give nonlinearity

$$\begin{array}{c} \bigstar \\ \mathsf{Input} | \psi \rangle & \longrightarrow \\ \mathsf{Nonlinear crystal} \end{array} \\ \end{array}$$

"Teleportation-based quantum gate"

- Only linear optics required & ancillae give nonlinearity
- Deterministic gate once ancillae are prepared Out Q-memory experiments: PRX **3**, 041028 (2013); Sci. Adv. **2**, e1501772 (2016)

Quantum Teleportation

Quantum Teleportation

Quantum Teleportation

Universal quantum gate set

 \blacksquare Higher order \widehat{H} can be created

Universal quantum gate set

Universal gate set for CVs PRL 82, 1784 (1999)

Universal gate set for qubits is also available

Universal quantum gate set

Universal gate set for CVs PRL 82, 1784 (1999)

Universal gate set for qubits is also available

Summary of this section

Teleportation-based quantum gates

- Only linear optics required & ancillae give nonlinearity
- Deterministic gate once ancillae are prepared

Examples $\left\{ \begin{array}{l} - \text{Squeezing gate} \Rightarrow \text{already demonstrated} \\ - \text{Cubic phase gate} \Rightarrow \text{to be demonstrated} \\ - \text{Arbitrary-order phase gate} \Rightarrow \text{possible} \end{array} \right\}$

Universal gate set

Ultimate goal: deterministic qubit quantum computation

Optical Hybrid Quantum Teleportation and Its Application to Large-Scale Quantum Computing

- 1. Introduction
- 2. Hybrid quantum teleportation
- 3. Teleportation-based quantum gates

4. Toward large-scale quantum computing

Large-scale quantum computing

Problems for large-scale optical QC

XNot Scalable

Much more resources & space needed

XNot Programmable

Different optical circuit for different calculation

Typical optical QC

Large-scale quantum computing

 θ_{2}

utput

 θ

Input

How to implement CV gates

Are 5 elementary gates implementable? ⇒ Yes!

Are 5 elementary gates implementable? ⇒ Yes!

Are 5 elementary gates implementable? ⇒ Yes!

Are 5 elementary gates implementable? ⇒ Yes!

Universal quantum computation is possible

Universal QC for both CV and qubits
 Scalable (minimum resources required)
 Programmable

Optical Hybrid Quantum Teleportation and Its Application to Large-Scale Quantum Computing

- 1. Introduction
- 2. Hybrid quantum teleportation
- 3. Large-scale quantum computing4. Summary

This talk: Our strategy for large-scale optical QC ✓ Deterministic operation via hybrid approach

- CV quantum teleportation of qubits/qutrits
- CV quantum gates for qubits
- Loop-based architecture for QC

