Algorithmic Knowledge Discovery with Concept

 Lattices2.Formal Concept Analysis and FCA-based Knowledge Discovery

Sergei O. Kuznetsov

School of Applied Mathematics and Information Science
National Research University Higher School of Economics, Moscow, Russia

International Summer School "Information and Uncertainty"
Palacky University, Olomouc, June 4, 2012

FCA. Short (pre)history.

- Logique de Port-Royal (1662)
- G. Birkhoff, starting from 1930s
- O. Øre, starting from 1930x
- M. Barbut, B. Monjardet, Ordre et classification, Hachette, Paris, 1970
- R. Wille, Restructuring lattice theory: An approach based on hierarchies of concepts, 1982
- B. Ganter, R. Wille, Formale Begriffsanalyse, Springer, 1996
- B. Ganter, R. Wille, Formal Concept Analysis, Springer, 1999
- Chapter in B. Davey, H. Priestly, Introduction to Order and Lattices, 1990.
- Chapter in G. Grätzer (Ed.), General Lattice Theory.
- Concept Data Analysis, C.Carpineto, G. Romano, 2004.

FCA. Main conferences

- International Conference on Conceptual Structures (ICCS), FCA participation starting from 1996 (Proceedings in LNAI, Springer)

- International Conference on Formal Concept Analysis (ICFCA), from 2003 года (Proceedings in LNAI, Springer)

- International Conference on Concept Lattices and Their Applications (CLA), from 2006, special issues

FCA-based Knowledge Discovery: An Outline

1. An Introduction to FCA
2. Attribute Exploration
3. Learning JSM-hypotheses
4. Relational Learning with Pattern Structures
5. FCA in Data Mining: Learning Association Rules
6. Algorithms and Complexity of FCA-based Knowledge Discovery

Formal Concept Analysis. 1

[Wille 1982], [Ganter, Wille 1996]

Let two sets G and M be given. Elements of G are called objects, elements of M are called attributes.
Let $I \subseteq G \times M$ be a binary relation. If $(g, m) \in I$, one says that object g has attribute m. Triple $\mathbb{K}:=(G, M, I)$ is called a (formal) context.

Formal Concept Analysis. 3

[Wille 1982], [Ganter, Wille 1996]

Let $\mathbb{K}:=(G, M, I)$ be a context. In FCA, instead of two notations φ and ψ, a unified notation $(\cdot)^{\prime}$ is used, so for arbitrary $A \subseteq G, B \subseteq M$
$A^{\prime} \stackrel{\text { def }}{=}\{m \in M \mid g / m$ for all $g \in A\}, \quad B^{\prime} \stackrel{\text { def }}{=}\{g \in G \mid g / m$ for all $m \in B\}$.
(Formal) concept is a pair (A, B) :

$$
A \subseteq G, B \subseteq M, A^{\prime}=B, \text { and } B^{\prime}=A
$$

A is called a (formal) extent, and B is called a (formal) intent of a concept (A, B).
Concepts are partially ordered by relation

$$
\left(A_{1}, B_{1}\right) \geq\left(A_{2}, B_{2}\right) \Longleftrightarrow A_{1} \supseteq A_{2} \quad\left(B_{2} \supseteq B_{1}\right)
$$

Example. Context

	$\mathrm{G} \backslash \mathrm{M}$	a	b	c	d
$\mathbf{1}$	\searrow	\times			\times
2	\searrow	\times		\times	
3				\times	\times
4	\square		\times	\times	\times

Objects:
1 - equilateral triangle,
2 - rectangle triangle,
3 - rectangle,
4 - square

Attributes:

a - has 3 vertices,
b - has 4 vertices,
c - has a direct angle,
d - equilateral

Example. Diagram of the ordered set of concepts

	$\mathrm{G} \backslash \mathrm{M}$	a	b	c	d
1	\searrow	\times			\times
2	\searrow	\times		\times	
3				\times	\times
4	\square		\times	\times	\times

a - has 3 vertices,
b - has 4 vertices,
c - has a direct angle,
d - equilateral

Properties of operation $(\cdot)^{\prime}$

Let (G, M, I) be a formal context, $A, A_{1}, A_{2} \subseteq G$ be subsets of objects, $B \subseteq M$ be subsets of attributes, then

1. If $A_{1} \subseteq A_{2}$, then $A_{2}^{\prime} \subseteq A_{1}^{\prime}$;
2. If $A_{1} \subseteq A_{2}$, then $A_{1}^{\prime \prime} \subseteq A_{2}^{\prime \prime}$
3. $A \subseteq A^{\prime \prime}$
4. $A^{\prime \prime \prime}=A^{\prime}$ (hence, $A^{\prime \prime \prime \prime}=A^{\prime \prime}$);
5. $\left(A_{1} \cup A_{2}\right)^{\prime}=A_{1}^{\prime} \cap A_{2}^{\prime}$;
6. $A \subseteq B^{\prime} \Leftrightarrow B \subseteq A^{\prime} \Leftrightarrow A \times B \subseteq I$.

Similar properties hold for subsets of attributes.

Closure operator on a set

A closure operator on set G is a mapping $\varphi: \mathcal{P}(G) \rightarrow \mathcal{P}(G)$ with the following properties:

1. $\varphi \varphi X=\varphi X$ (idempotency)
2. $X \subseteq \varphi X$ (extensity)
3. $X \subseteq Y \Rightarrow \varphi X \subseteq \varphi Y$ (monotonicity)

For a closure operator φ the set φX is called closure of X.
A subset $X \subseteq G$ is called closed if $\varphi X=X$.
Example. Let (G, M, I) be a context, then operators
$(\cdot)^{\prime \prime}: 2^{G} \rightarrow 2^{G},(\cdot)^{\prime \prime}: 2^{M} \rightarrow 2^{M}$ are closure operators.

Basic Theorem of Formal Concept Analysis

[Wille 1982], [Ganter, Wille 1996]

Concept lattice $\underline{\mathfrak{B}}(G, M, I)$ is a complete lattice. For arbitrary sets of formal concepts

$$
\left\{\left(A_{j}, B_{j}\right) \mid j \in J\right\} \subseteq \underline{\mathfrak{B}}(G, M, I)
$$

infimums and supremums are given in the following way:

$$
\begin{aligned}
& \bigwedge_{j \in J}\left(A_{j}, B_{j}\right)=\left(\bigcap_{j \in J} A_{j},\left(\bigcup_{j \in J} B_{j}\right)^{\prime \prime}\right), \\
& \bigvee_{j \in J}\left(A_{j}, B_{j}\right)=\left(\left(\bigcup_{j \in J} A_{j}\right)^{\prime \prime}, \bigcap_{j \in J} B_{j}\right) .
\end{aligned}
$$

A complete lattice V is isomorphic to a lattice $\mathfrak{B}(G, M, I)$ iff there are mappings $\gamma: G \rightarrow V$ and $\mu: M \rightarrow V$ such that $\gamma(G)$ is supremum-dense in $V, \mu(M)$ is infimum-dense in V, and $g / m \Leftrightarrow \gamma g \leq \mu m$ for all $g \in G$ and all $m \in M$. In particular, $V \cong \underline{\mathfrak{B}}(V, V, \leq)$.

*Reducing attributes

Attribute $m \in M, \mathbb{K}=(G, M, I)$ is reducible if

$$
m^{\prime}=G \text { or } m^{\prime}=\bigcap\left\{n^{\prime} \mid n \in M \& n^{\prime} \supset m^{\prime}\right\} .
$$

If m is reducible, then $\underline{\mathfrak{B}}(G, M, I) \cong \underline{\mathfrak{B}}(G, M \backslash\{m\}, I \cap(G \times(M \backslash\{m\})))$
Dually for objects. An irreducible attribute corresponds to a meet-irreducible lattice element, an irreducible object corresponds to a join-irreducible lattice element.

Example. Attribute m_{k} is reducible, since $m_{k}^{\prime}=m_{i}^{\prime} \cap m_{j}^{\prime}$

$G \backslash M$	\ldots	m_{i}	\ldots	m_{j}	\ldots	m_{k}	\ldots
g_{1}	\ldots	\times	\ldots		\ldots		\ldots
g_{2}	\ldots	\times	\ldots	\times	\ldots	\times	\ldots
g_{3}	\ldots	\times	\ldots	\times	\ldots	\times	\ldots
g_{4}	\ldots		\ldots	\times	\ldots		\ldots

Implications on subsets of attributes

Implication $A \rightarrow B$, where $A, B \subseteq M$ holds in context (G, M, I) if $A^{\prime} \subseteq B^{\prime}$, i.e., each object having all attributes from A also has all attributes from B.
Implications and concept lattice: If $A \rightarrow B$, then meet of all attribute concepts for attributes from A in the lattice diagram lies below the meet of all attribute concepts of attributes in B.
Implications satisfy Armstrong rules:

$$
\overline{X \rightarrow X} \quad, \quad \frac{X \rightarrow Y}{X \cup Z \rightarrow Y} \quad, \quad \frac{X \rightarrow Y, Y \cup Z \rightarrow W}{X \cup Z \rightarrow W}
$$

An implication cover is a subset of implications from which all other implications can be derived by means of Armstrong rules.
An implication base is a minimal (by inclusion) implication cover.

Concept lattice and implications

	$G \backslash M$	a	b	c	d
1	\searrow	\times			\times
2	\searrow	\times		\times	
3				\times	\times
4				\times	\times

a - exactly 3 vertices,
b - exactly 4 vertices, $\quad a b c \rightarrow d$
c - has a direct angle,
$b \rightarrow c$
d - equilateral
$c d \rightarrow b$

Generator-based implication cover

A subset of attributes $D \subseteq M$ is a generator of a closed subset of attributes $B \subseteq M$, $B^{\prime \prime}=B$ if $D \subseteq B, D^{\prime \prime}=B=B^{\prime \prime}$.
A subset $D \subseteq M$ is a minimal generator if for any $E \subset D$ one has $E^{\prime \prime} \neq D^{\prime \prime}=B^{\prime \prime}$. Generator $D \subseteq M$ is called nontrivial if $D \neq D^{\prime \prime}=B^{\prime \prime}$.
Denote the set of all nontrivial minimal generators of B by ningen (B).
Generator implication cover looks as follows:
$\left\{F \rightarrow\left(F^{\prime \prime} \backslash F\right) \mid F \subseteq M, F \in\right.$ nmingen $\left.\left(F^{\prime \prime}\right)\right\}$.

Minimum implication basis

Duquenne-Guigues base is an implication base where each implication is a pseudo-intent.
A subset of attributes $P \subseteq M$ is called a pseudo-intent if $P \neq P^{\prime \prime}$ and for any pseudo-intent Q such that $Q \subset P$ one has $Q^{\prime \prime} \subset P$.

Duquenne-Guigues base looks as follows:
$\left\{P \rightarrow\left(P^{\prime \prime} \backslash P\right) \mid P\right.$ - pseudo-intent $\}$.
Duquenne-Guigues base is a minimum (cardinality minimal) implication base.

Implications and functional dependencies. 1

Functional dependency (e.g., Meier 1983) in terms of FCA:
$X \rightarrow Y$ is a functional dependency in a complete many-valued context (G, M, W, I) if the following holds for every pair of objects $g, h \in G$:

$$
(\forall m \in X m(g)=m(h)) \Rightarrow(\forall n \in Y n(g)=n(h))
$$

The reduction of functional dependencies to implications:
Proposition A. For a many-valued context (G, M, W, I), one defines the context $K_{N}:=\left(\mathcal{P}_{2}(G), M, I_{N}\right)$, where $\mathcal{P}_{2}(G)$ is the set of all pairs of different objects from G and I_{N} is defined by

$$
\{g, h\} I_{N} m: \Leftrightarrow m(g)=m(h)
$$

Then a set $Y \subseteq M$ is functionally dependent on the set $X \subseteq M$ if and only if the implication $X \rightarrow Y$ holds in the context K_{N}.

Implications and functional dependencies. 2

There is an inverse reduction:
Proposition B. For a context $K=(G, M, I)$ one can construct a many-valued context K_{W} such that an implication $X \rightarrow Y$ holds if and only if Y is functionally dependent on X in K_{W}.

FCA-based Knowledge Discovery: An Outline

1. An Introduction to FCA
2. Attribute Exploration
3. Learning JSM-hypotheses
4. Relational Learning with Pattern Structures
5. FCA in Data Mining: Learning Association Rules
6. Algorithms and Complexity of FCA-based Knowledge Discovery

Attribute exploration

- Start with any (possibly empty) set of objects.
- Generate an implication valid in the current subcontext.
- If the implication is not valid in the entire context, provide an object that violates it.
- Go to the next implication, etc.

Follow the Duquenne-Guigues basis to ask no more questions than is strictly necessary.

Attribute exploration

- Start with any (possibly empty) set of objects.
- Generate an implication valid in the current subcontext.
- If the implication is not valid in the entire context, provide an object that violates it.
- Go to the next implication, etc.

Follow the Duquenne-Guigues basis to ask no more questions than is strictly necessary.

Attribute exploration

European states

Question Is every European monarchy in NATO?

	$\stackrel{\rightharpoonup}{\square}$	을		$\stackrel{\bigcirc}{\stackrel{1}{2}}$	
Sweden	\times		\times		\times

Attribute exploration

European states

Question Is every European
monarchy in
NATO?
Answer No: Sweden is not.

Attribute exploration

European states

Question Is every Eurozone country in EU, Schengen, and NATO?

Attribute exploration

European states

Question Is every Eurozone country in EU, Schengen, and NATO?

Answer No: Ireland is not.

Attribute exploration

European states

Question Is every Eurozone country in EU?

Attribute exploration

European states

Question Is every Eurozone country in EU?

Answer No: Montenegro is not. .

FCA-based Knowledge Discovery: An Outline

1. An Introduction to FCA
2. Attribute Exploration
3. Learning JSM-hypotheses
4. Relational learning with pattern structures
5. FCA in Data Mining: Learning Association Rules
6. Algorithms and Complexity of FCA-based Knowledge Discovery

JSM-method of hypothesis generation

A target attribute $w \notin M$,

- positive examples: Set $G_{+} \subseteq G$ of objects known to have w,
- negative examples: Set $G_{-} \subseteq G$ of objects known not to have w,
- undetermined examples: Set $G_{\tau} \subseteq G$ of objects for which it is unknown whether they have the target attribute or do not have it.

Three subcontexts of $\mathbb{K}=(G, M, I): \mathbb{K}_{\varepsilon}:=\left(G_{\varepsilon}, M, I_{\varepsilon}\right), \varepsilon \in\{-,+, \tau\}$ with respective derivation operators $(\cdot)^{+},(\cdot)^{-}$, and $(\cdot)^{\tau}$.
A positive hypothesis $H \subseteq M$ is an intent of \mathbb{K}_{+}not contained in the intent g^{-}of any negative example $g \in G_{-}: \forall g \in G_{-} H \nsubseteq g^{-}$. Equivalently,

$$
H^{++}=H, \quad H^{\prime} \subseteq G_{+} \cup G_{\tau} .
$$

Example of a learning context

	G \M	color	firm	smooth	form	fruit
1	apple	yellow	no	yes	round	+
2	grapefruit	yellow	no	no	round	+
3	kiwi	green	no	no	oval	+
4	plum	blue	no	yes	oval	+
5	toy cube	green	yes	yes	cubic	-
6	egg	white	yes	yes	oval	-
7	tennis ball	white	no	no	round	-
8	mango	green	no	yes	oval	τ

Natural scaling of the context

	G $\backslash \mathrm{M}$	w	y	g	b	f	$\overline{\mathrm{f}}$	s	$\overline{\mathrm{s}}$	r	$\overline{\mathrm{r}}$	fruit
1	apple		\times				\times	\times		\times		+
2	grapefruit		\times				\times		\times	\times		+
3	kiwi			\times			\times		\times		\times	+
4	plum				\times		\times	\times			\times	+
5	toy cube			\times		\times		\times			\times	-
6	egg	\times				\times		\times			\times	-
7	tennis ball	\times					\times		\times	\times		-
8	mango			\times		\times	\times			\times	τ	

Abbreviations:
" g " for green, " y " for yellow, " w " for white, " f " for firm, " f " for nonfirm,
" s " for smooth, " s " for nonsmooth, " r " for round,
" r " for nonround.

Positive Concept Lattice

Hypotheses vs. implications

A positive hypothesis h corresponds to an implication $h \rightarrow\{w\}$ in the context $K_{+}=\left(G_{+}, M \cup\{w\}, I_{+} \cup G_{+} \times\{w\}\right)$.
A negative hypothesis h corresponds to an implication $h \rightarrow\{\bar{w}\}$ in the context $K_{-}=\left(G_{-}, M \cup\{\bar{w}\}, I_{-} \cup G_{-} \times\{\bar{w}\}\right)$.
Hypotheses are special implications: their premises are closed (in K_{+}or in K_{-}).

	$\mathrm{G} \backslash \mathrm{M}$	w	y	g	b	f	$\overline{\mathrm{f}}$	s	$\overline{\mathrm{s}}$	r	$\overline{\mathrm{r}}$	fruit	nonfruit
1	apple		\times				\times	\times		\times		\times	
2	grapefruit		\times				\times		\times	\times		\times	
3	kiwi			\times			\times		\times		\times	\times	
4	plum				\times		\times	\times			\times	\times	
5	toy cube			\times		\times		\times			\times		\times
6	egg	\times				\times		\times			\times		\times
7	tennis ball	\times					\times		\times	\times			\times

FCA-based Knowledge Discovery: An Outline

1. An Introduction to FCA
2. Attribute Exploration
3. Learning JSM-hypotheses
4. Relational Learning with Pattern Structures
5. FCA in Data Mining: Learning Association Rules
6. Algorithms and Complexity of FCA-based Knowledge Discovery

Learning with labeled graphs: A motivation

- Structure-Activity Relationship problems for chemicals given by molecular graphs
- Learning semantics from graph-based (XML, syntactic tree) text representation

Starting point

To proceed with graphs like it was done for objects described by binary sets of attributes (i.e., for contexts), one should define for graphs an operation Γ similar to that of set-theoretic \cap (since then a closure operator " can be defined).

The first natural attempt to do this, like introducing an operation "take the largest common subgraph of two graphs" fails, since there can be several subgraphs of this type.

Perhaps operation should be defined not for graphs, but for sets of graphs?
The attempt even fails if we take all largest (in the number of vertices) common subgraphs of two graphs.

Order on labeled graphs

Let (\mathcal{L}, \preceq) be an ordered set of vertex labels.
$\Gamma_{1}:=\left(\left(V_{1}, l_{1}\right), E_{1}\right)$ dominates $\Gamma_{2}:=\left(\left(V_{2}, l_{2}\right), E_{2}\right)$ or $\Gamma_{2} \leq \Gamma_{1}$ if there exists a one-to-one mapping $\varphi: V_{2} \rightarrow V_{1}$ such that

- respects edges: $(v, w) \in E_{2} \Rightarrow(\varphi(v), \varphi(w)) \in E_{1}$,
- fits under labels: $I_{2}(v) \preceq I_{1}(\varphi(v))$.

Example: $\mathcal{L}=\left\{x, \mathrm{NH}_{2}, \mathrm{Cl}, \mathrm{CH}_{3}, \mathrm{C}, \mathrm{OH}\right\}$

vertex labels are unordered

$x \preceq A$ for any vertex label $A \in \mathcal{L}$

Semilattice on graph sets

$$
\begin{aligned}
& \{X\} \sqcap\{Y\}:=\left\{Z \mid Z \leq X, Y, \quad \forall Z_{*} \leq X, Y \quad Z_{*} \nless Z\right\} \\
& =\text { The set of all maximal common subgraphs of } X \text { and } Y .
\end{aligned}
$$

Example:

Meet of graph sets

For sets of graphs

$$
\begin{aligned}
& \mathcal{X}=\left\{X_{1}, \ldots, X_{k}\right\} \text { and } \mathcal{Y}=\left\{Y_{1}, \ldots, Y_{n}\right\} \\
& \mathcal{X} \sqcap \mathcal{Y}:=\operatorname{MAX}_{\leq}\left(\bigcup_{i, j}\left(\left\{X_{i}\right\} \sqcap\left\{Y_{j}\right\}\right)\right)
\end{aligned}
$$

Π is idempotent, commutative, and associative.

Example:

Examples

Positive examples:

Negative examples:

Positive lattice

*Pattern Structures

[Ganter, Kuznetsov 2001]
$(G, \underline{D}, \delta)$ is a pattern structure if

- G is a set ("set of objects");
- $\underline{D}=(D, \sqcap)$ is a meet-semilattice;
- $\delta: G \rightarrow D$ is a mapping;
- the set $\delta(G):=\{\delta(g) \mid g \in G\}$ generates a complete subsemilattice $\left(D_{\delta}, \sqcap\right)$ of (D, \sqcap).

Possible origin of \sqcap operation:

- A set of objects G, each with description from P;
- Partially ordered set (P, \leq) of "descriptions" (\leq is a "more general than" relation);
- The (distributive) lattice of order ideals of the ordered set (P, \leq).

FCA-based Knowledge Discovery: An Outline

1. An Introduction to FCA
2. Attribute Exploration
3. Learning JSM-hypotheses
4. Relational Learning with Pattern Structures
5. FCA in Data Mining: Learning Association Rules
6. Algorithms and Complexity of FCA-based Knowledge Discovery

Lattices in Data Mining. Association rules

In mid 1990s in papers of R. Agrawal et al. on association rules "partial implications" from FCA were rediscovered.

A partial implication (association rule) of context (G, M, I) is an expression $A \rightarrow_{c, s} B$, where

- $c, s \in[0,1]$;
- $c=\frac{\left|(A \cup B)^{\prime}\right|}{\left|A^{\prime}\right|}$, called confidence, $\operatorname{conf}(A \rightarrow B)$;
- $s=\frac{\left|(A \cup B)^{\prime}\right|}{|G|}$, called support, $\operatorname{supp}(A \rightarrow B)$.

Covers of association rules

What is a minimal representation of the set of association rules, from which one can obtain all association rules of a context using "admissible transformations"?
Consider an association rule $A \rightarrow_{c, s} B$. Under fixed confidence $c=\frac{\left|(A \cup B)^{\prime}\right|}{\left|A^{\prime}\right|}$ and support $s=\frac{\left|(A \cup B)^{\prime}\right|}{|G|}$ we try to reduce its premise and increase its conclusion.

1. Decreasing premise. For fixed c and s one can decrease premise from A to a certain subset $D \subseteq A$ such that $(D \cup B)^{\prime}=(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}=D^{\prime} \cap B^{\prime}$, that is $D^{\prime}=A^{\prime}=A^{\prime \prime \prime}$. Thus, minimal D is by definition a minimal generator of $A^{\prime \prime}$, i.e. $D \in$ mingen $\left(A^{\prime \prime}\right)$.

Recall that a subset of attributes $D \subseteq M$ is a generator of a closed subset of attributes $B \subseteq M, B^{\prime \prime}=B$ if $D \subseteq B, D^{\prime \prime}=B=B^{\prime \prime}$. A subset $D \subseteq M$ is a minimal generator if for any $E \subset D$ one has $E^{\prime \prime} \neq D^{\prime \prime}=B^{\prime \prime}$.

Covers of association rules

2. Increasing conclusion. Conclusion B can be increased by a set Δ such that $(A \cup B)^{\prime}=(A \cup B \cup \Delta)^{\prime}=(A \cup B)^{\prime} \cap \Delta^{\prime}$, which is possible only when $(A \cup B)^{\prime} \subseteq \Delta^{\prime}$, which is equivalent to $A \cup B \rightarrow \Delta$ and to $\Delta \subseteq(A \cup B)^{\prime \prime}$. Thus, conclusion of the association rule can be increased up to $(A \cup B)^{\prime \prime}$.
Thus, the rules from the set

$$
C P(K)=\left\{D \rightarrow(A \cup B)^{\prime \prime} \mid D \in \text { mingen }\left(A^{\prime \prime}\right)\right\}
$$

make a cover of the set of all association rules. We can obtain all other rules by admissible transformations - increasing premises and decreasing conclusions (these operations do not decrease confidence and support) - of rules from $C P(K)$. In terms of these admissible transformations, $C P(K)$ makes a cover of association rules.

Base of association rules

Consider an association rule of the form $D \rightarrow(A \cup B)^{\prime \prime}$, where $D \in \operatorname{mingen}\left(A^{\prime \prime}\right)$. In the concept lattice diagram this rule corresponds to a path from the concept $\left(A^{\prime}, A^{\prime \prime}\right)$ to the concept $\left((A \cup B)^{\prime},(A \cup B)^{\prime \prime}\right)$. If $\left(A^{\prime}, A^{\prime \prime}\right) \nsucc\left((A \cup B)^{\prime},(A \cup B)^{\prime \prime}\right)$, i.e., if the vertex of the diagram corresponding to the concept $\left(A^{\prime}, A^{\prime \prime}\right)$ is not an upper neighbor of the vertex corresponding to $\left((A \cup B)^{\prime},(A \cup B)^{\prime \prime}\right)$, then there is a concept $\left(E^{\prime}, E^{\prime \prime}\right)$ such that $\left(A^{\prime}, A^{\prime \prime}\right) \succ\left(E^{\prime}, E^{\prime \prime}\right)>\left((A \cup B)^{\prime},(A \cup B)^{\prime \prime}\right)$.
Consider $D \rightarrow E^{\prime \prime}$, where $D \in \operatorname{mingen}\left(A^{\prime \prime}\right)$ and $F \rightarrow(A \cup B)^{\prime \prime}$, where $F \in$ $\operatorname{mingen}\left(E^{\prime \prime}\right)$. The confidence of the first rule is $c_{1}=\frac{\left|E^{\prime}\right|}{\left|A^{\prime}\right|}$, and the confidence of the second rule is $c_{2}=\frac{\left|(A \cup B)^{\prime}\right|}{\left|E^{\prime}\right|}$. The confidence of the rule $D \rightarrow(A \cup B)^{\prime \prime}$, where $D \in$ mingen $\left(A^{\prime \prime}\right)$ is

$$
c=\frac{\left|(A \cup B)^{\prime}\right|}{\left|A^{\prime}\right|}=\frac{\left|E^{\prime}\right|}{\left|A^{\prime}\right|} \cdot \frac{\left|(A \cup B)^{\prime}\right|}{\left|E^{\prime}\right|}=c_{1} \cdot c_{2} .
$$

Base of association rules

Hence, the cover of the set of association rules can be made even smaller by restricting to the set of rules

$$
\left\{F \rightarrow\left({ }^{\prime \prime} \backslash F^{\prime \prime}\right) \mid F \subseteq M, F \in \text { mingen }\left(F^{\prime \prime}\right),\left(F^{\prime}, F^{\prime \prime}\right) \succ\left(E^{\prime}, E^{\prime \prime}\right)\right\}
$$

which correspond to the arcs of the diagram. Supports and confidence of other rules from the cover can be obtained by multiplying supports along the respective paths in the diagram.

To minimize the cover of association rules, making it a basis, one can retain only those rules from $C P(K)$ that correspond to edges from a spanning tree of the lattice diagram.

General task of finding association rules

Find all "frequent" (with support greater than a threshold) association rules with confidence greater than a threshold.

Solution stages

- Find all frequent "closed itemsets" (frequent intents)
- For each frequent intent B find all its maximal subintents A_{1}, \ldots, A_{n}
- Retain only those A_{i} for which $\operatorname{conf}\left(A_{i} \rightarrow B\right) \geq \theta$, where θ is confidence threshold
- Find minimal generators of the remaining A_{i}, compose rules of the form $\operatorname{mingen}\left(A_{i}\right) \rightarrow B$.

Luxenburger basis

- Spanning tree of the concept lattice diagram
- Duquenne-Guigues implication base

Example. Confidence of association rules

	$G \backslash M$	a	b	c	d
1	\searrow	\times			\times
2	\searrow	\times		\times	
3			\times	\times	
4	\square		\times	\times	\times

Good rules with supp $\geq 1 / 2$ and minconf $\geq 3 / 4$ 1. $\emptyset \rightarrow c, \quad \sup (\emptyset \rightarrow c)=\operatorname{conf}(\emptyset \rightarrow c)=3 / 4$; 2. $c \rightarrow b, \quad \sup (c \rightarrow b)=1 / 2, \operatorname{conf}(c \rightarrow b)=$ 2/3.

Example. Support of association rules

	$\mathrm{G} \backslash \mathrm{M}$	a	b	c	d
1	\searrow	\times			\times
2	\searrow	\times		\times	
3			\times	\times	
4	\square		\times	\times	\times

Good rules with supp $\geq 1 / 2$ and minconf $\geq 3 / 4$ 1. $\emptyset \rightarrow c, \quad \sup (\emptyset \rightarrow c)=\operatorname{conf}(\emptyset \rightarrow c)=3 / 4$; 2. $c \rightarrow b, \quad \sup (c \rightarrow b)=1 / 2, \operatorname{conf}(c \rightarrow b)=$ 2/3.

FCA-based Knowledge Discovery: An Outline

1. An Introduction to FCA
2. Attribute Exploration
3. Learning JSM-hypotheses
4. Relational Learning with Pattern Structures
5. FCA in Data Mining: Learning Association Rules
6. Algorithms and Complexity of FCA-based Knowledge Discovery

Concept lattice of size 2^{n}

Consider context $K=(G, G \neq)$ for an arbitrary finite set G. Then $\underline{\mathfrak{B}}(K)$ is isomorphic to the Boolean lattice 2^{G}.

D.-G. implication base of size 2^{n}

$G \backslash M$	m_{0}	$m_{1} \ldots m_{n}$	$m_{n+1} \ldots m_{2 n}$	
g_{1}				
\vdots		\neq		
g_{n}				
g_{n+1}	\times			
\vdots	\vdots			
\vdots	\vdots			
\vdots	\vdots			
$g_{3 n}$	\times			

The set $\left\{m_{1}, \ldots, m_{n}\right\}$ is a pseudo-intent. Replacing m_{i} with m_{n+i} independently for each i, one obtains all 2^{n} pseudo-intents.

An example: $K_{\text {exp,3 }}$

$G \backslash M$	m_{0}	m_{1}	m_{2}	m_{3}	m_{4}	m_{5}	m_{6}
g_{1}			\times	\times		\times	\times
g_{2}		\times		\times	\times		\times
g_{3}		\times	\times		\times	\times	
g_{4}	\times		\times	\times	\times	\times	\times
g_{5}	\times	\times		\times	\times	\times	\times
g_{6}	\times	\times	\times		\times	\times	\times
g_{7}	\times	\times	\times	\times		\times	\times
g_{8}	\times	\times	\times	\times	\times		\times
g_{9}	\times	\times	\times	\times	\times	\times	

Here, we have $2^{3}=8$ pseudo-intents: $\left\{m_{1}, m_{2}, m_{3}\right\},\left\{m_{1}, m_{2}, m_{6}\right\},\left\{m_{1}, m_{5}, m_{3}\right\}$,
$\left\{m_{1}, m_{5}, m_{6}\right\},\left\{m_{4}, m_{2}, m_{3}\right\},\left\{m_{4}, m_{2}, m_{6}\right\},\left\{m_{4}, m_{5}, m_{3}\right\},\left\{m_{4}, m_{5}, m_{6}\right\}$.

\# P and \#P-completeness

Definition: \#P is the class of counting problems associated with the decision problems in NP. More formally, a problem is in \#P if there is a non-deterministic, polynomial time Turing machine that, for each instance I of the problem, has a number of accepting computations that is exactly equal to the number of distinct solutions for instance I.
A problem is \#P-complete if it is in \#P and it is
A problem is \#P-hard, i.e., any problem in \#P can be reduced by Turing to it.
In particular, a problem in \#P is \#P-complete if a \#P-complete problem can be reduced to it. Obviously, \#P $=P \Longrightarrow N P=P$.

Examples of \#P-complete problems:

- Given a matrix, output its permanent
- Given a bipartite graph, output the number of its perfect matchings
- Given a CNF, output the number of its satisfying assignments
- Given a graph, output the number of its vertex covers
- Given a context, output the number of its concepts

\#P-hardness of counting pseudo-intents

Proposition 2. The following problem is \#P-hard.
INPUT A formal context $K=(G, M, I)$ OUTPUT The number of pseudo-intents of K

Proof: by reduction from the problem of counting all (inclusion) minimal covers proved to be $\# P$-complete in
L. G. Valiant, The Complexity of Enumeration and Reliability Problems, SIAM J. Comput. 8, 3 (1979), 410-421.

For a graph (V, E) a subset $W \subseteq V$ is a vertex cover if every edge $e \in E$ is incident to some $w \in W$.

Preprocessing. Reducing attributes

Attribute $m \in M, \mathbb{K}=(G, M, I)$ is reducible if

$$
m^{\prime}=G \text { or } m^{\prime}=\bigcap\left\{n^{\prime} \mid n \in M \& n^{\prime} \supset m^{\prime}\right\}
$$

If m is reducible, then $\underline{\mathfrak{B}}(G, M, I) \cong \underline{\mathfrak{B}}(G, M \backslash\{m\}, I \cap(G \times(M \backslash\{m\})))$
Dually for objects. An irreducible attribute corresponds to a meet-irreducible lattice element, an irreducible object corresponds to a join-irreducible lattice element.

Example. Attribute m_{k} is reducible, since $m_{k}^{\prime}=m_{i}^{\prime} \cap m_{j}^{\prime}$

$G \backslash M$	\ldots	m_{i}	\ldots	m_{j}	\ldots	m_{k}	\ldots
g_{1}	\ldots	\times	\ldots		\ldots		\ldots
g_{2}	\ldots	\times	\ldots	\times	\ldots	\times	\ldots
g_{3}	\ldots	\times	\ldots	\times	\ldots	\times	\ldots
g_{4}	\ldots		\ldots	\times	\ldots		\ldots

Removing reducible attributes can be performed in time $O\left(|G| \cdot|M|^{2}\right)$.

Close-by-One Algorithm. Notation

- $\min (X)(\max (X))$ return elements of set X with the minimal (maximal) number
- (A, i) denotes $(A \cup\{i\})^{\prime \prime}$,
- $\operatorname{suc}(A)$ is the set of all heirs of set A : concepts of the form $(A \cup\{i\})^{\prime \prime}$ such that $\min \left((A \cup\{i\})^{\prime \prime} \backslash A\right)=i$. The pairs $(X, \operatorname{suc}(X))$ are edges of the tree, vertices of which are concepts (extents).
- $\operatorname{prev}(A)$ returns the parent (in the tree) of a concept with extent A.
- nexti(A) returns number of the subsequent element i to check whether (A, i) is a heir of A.

Close-by-One Algorithm (CbO)

0 . $A:=\emptyset, \operatorname{nexti}(A):=1, \operatorname{prev}(A):=\emptyset, \operatorname{suc}(A):=\emptyset$.

1. until $A=\emptyset$ and $\operatorname{nexti}(A)>|G|$ do
2. begin until nexti $(A)>|G|$ do
3. begin $i:=\operatorname{nexti}(A)$
4. if $\min \left((A \cup\{i\})^{\prime \prime} \backslash A\right) \geq i$ then
5. begin $\operatorname{suc}(A) \leftarrow \operatorname{address}(A, i)$
6.
7.

$\operatorname{prev}(A, i):=A$
$\operatorname{nexti}(A):=\operatorname{nexti}(A)+1$
8.
$\operatorname{nexti}((A, i)):=\min (\{j \mid i<j \& j \notin(A, i)\})$
$A:=(A, i)$, output $\left(A . A^{\prime}\right)$
10.
end
11.
12. end
13. $A:=\operatorname{prev}(A)$
14. end

Canonical generations

Definition of canonical generation. \emptyset is a canonically generated extent. $(A \cup\{i\})^{\prime \prime}$ is a canonically generated formal extent if $A \subseteq G$ is a canonically generated extent, $i \in G \backslash A$, and $\min \left((A \cup\{i\})^{\prime \prime} \backslash A\right)=i$.
In terms of bracket notation: extent generation is canonical if for any subsequence $\ldots x] Y) \ldots$ of characters, $x \in M, Y \subseteq M$, the number of any $y \in Y$ is greater than the number of x.
Proposition. An arbitrary extent A has a unique canonical generation.
Proof. An algorithm for canonical generation of extent A.
0. $C:=\emptyset, i:=0$

1. from $C=\emptyset$ until $C=A$ do
2. begin
3. $i:=\min (A \backslash C), C:=(C \cup\{i\})^{\prime \prime}$
4. end

CbO in the strategy "bottom-up" (object-wise)

- неканоническое порождение объема

CbO in the strategy "top-down" (attribute-wise)

Modifications of CbO

- FCbO [J.Outrata, V.Vychodil, 2009]
- PCbO [J.Outrata, V.Vychodil, 2010]
- FPCbO

