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FCA. Short (pre)history.

I Logique de Port-Royal (1662)
I G. Birkhoff, starting from 1930s
I O. Øre, starting from 1930х
I M. Barbut, B. Monjardet, Ordre et classification, Hachette, Paris, 1970
I R. Wille, Restructuring lattice theory: An approach based on hierarchies of

concepts, 1982
I B. Ganter, R. Wille, Formale Begriffsanalyse, Springer, 1996
I B. Ganter, R. Wille, Formal Concept Analysis, Springer, 1999
I Chapter in B. Davey, H. Priestly, Introduction to Order and Lattices, 1990.
I Chapter in G. Grätzer (Ed.), General Lattice Theory.
I Concept Data Analysis, C.Carpineto, G. Romano, 2004.



FCA. Main conferences
I International Conference on Conceptual Structures (ICCS), FCA participation

starting from 1996 (Proceedings in LNAI, Springer)

I International Conference on Formal Concept Analysis (ICFCA), from 2003 года
(Proceedings in LNAI, Springer)

I International Conference on Concept Lattices and Their Applications (CLA),
from 2006, special issues
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Formal Concept Analysis. 1
[Wille 1982], [Ganter, Wille 1996]

Let two sets G and M be given. Elements of G are called objects, elements of
M are called attributes.
Let I ⊆ G × M be a binary relation. If (g ,m) ∈ I , one says that object g has
attribute m. Triple K := (G ,M, I ) is called a (formal) context.



Formal Concept Analysis. 3
[Wille 1982], [Ganter, Wille 1996]

Let K := (G ,M, I ) be a context. In FCA, instead of two notations 𝜙 and 𝜓, a
unified notation (·)′ is used, so for arbitrary A ⊆ G , B ⊆ M

A′ def
= {m ∈ M | gIm for all g ∈ A}, B ′ def

= {g ∈ G | gIm for all m ∈ B}.

(Formal) concept is a pair (A,B):

A ⊆ G , B ⊆ M, A′ = B, and B ′ = A.

A is called a (formal) extent, and B is called a (formal) intent of a
concept (A,B).

Concepts are partially ordered by relation
(A1,B1) ≥ (A2,B2) ⇐⇒ A1 ⊇ A2 (B2 ⊇ B1).



Example. Context

G ∖ M a b c d

1 × ×

2 × ×

3 × ×

4 × × ×

Objects:
1 – equilateral triangle,

2 – rectangle triangle,

3 – rectangle,

4 – square

Attributes:
a – has 3 vertices,

b – has 4 vertices,

c – has a direct angle,

d – equilateral



Example. Diagram of the ordered set of concepts

({1,2,3,4},∅)

({1,4},{d}) ({2,3,4},{c}) ({1,2},{a})

({3,4},{b,c})

({1},{1}′)

(∅,M)

({4},{4}′) ({2},{2}′)

G ∖ M a b c d

1 × ×

2 × ×

3 × ×

4 × × ×

a – has 3 vertices,

b – has 4 vertices,

c – has a direct angle,

d – equilateral



Properties of operation (·)′

Let (G ,M, I ) be a formal context, A,A1,A2 ⊆ G be subsets of objects, B ⊆ M
be subsets of attributes, then

1. If A1 ⊆ A2, then A′
2 ⊆ A′

1;

2. If A1 ⊆ A2, then A
′′
1 ⊆ A

′′
2

3. A ⊆ A′′

4. A′′′ = A′ (hence, A′′′′ = A′′);

5. (A1 ∪ A2)
′ = A′

1 ∩ A′
2;

6. A ⊆ B ′ ⇔ B ⊆ A′ ⇔ A × B ⊆ I .

Similar properties hold for subsets of attributes.



Closure operator on a set

A closure operator on set G is a mapping 𝜙 : 𝒫(G) → 𝒫(G) with the following
properties:

1. 𝜙𝜙X = 𝜙X (idempotency)

2. X ⊆ 𝜙X (extensity)

3. X ⊆ Y ⇒ 𝜙X ⊆ 𝜙Y (monotonicity)

For a closure operator 𝜙 the set 𝜙X is called closure of X .
A subset X ⊆ G is called closed if 𝜙X = X .
Example. Let (G ,M, I ) be a context, then operators
(·)′′ : 2G → 2G , (·)′′ : 2M → 2M are closure operators.



Basic Theorem of Formal Concept Analysis
[Wille 1982], [Ganter, Wille 1996]

Concept lattice B(G ,M, I ) is a complete lattice. For arbitrary sets of formal concepts

{(Aj ,Bj ) | j ∈ J} ⊆ B(G ,M, I )

infimums and supremums are given in the following way:⋀︁
j∈J

(Aj ,Bj ) = (
⋂︁
j∈J

Aj , (
⋃︁
j∈J

Bj )
′′),

⋁︁
j∈J

(Aj ,Bj ) = ((
⋃︁
j∈J

Aj )
′′,

⋂︁
j∈J

Bj ).

A complete lattice V is isomorphic to a lattice B(G ,M, I ) iff there are mappings
𝛾 : G → V and 𝜇 : M → V such that 𝛾(G) is supremum-dense in V , 𝜇(M) is
infimum-dense in V , and gIm⇔ 𝛾g ≤ 𝜇m for all g ∈ G and all m ∈ M.
In particular, V ∼= B(V ,V ,≤).



*Reducing attributes

Attribute m ∈ M, K = (G ,M, I ) is reducible if

m′ = G or m′ =
⋂︁
{n′ | n ∈ M & n′ ⊃ m′}.

If m is reducible, then B(G ,M, I ) ∼= B(G ,M ∖ {m}, I ∩ (G × (M ∖ {m})))

Dually for objects. An irreducible attribute corresponds to a meet-irreducible lattice
element, an irreducible object corresponds to a join-irreducible lattice element.

Example. Attribute mk is reducible, since m′
k = m′

i ∩m′
j

G ∖M . . . mi . . . mj . . . mk . . .
g1 . . . × . . . . . . . . .
g2 . . . × . . . × . . . × . . .
g3 . . . × . . . × . . . × . . .
g4 . . . . . . × . . . . . .



Implications on subsets of attributes

Implication A→ B, where A,B ⊆ M holds in context (G ,M, I ) if A′ ⊆ B′, i.e., each
object having all attributes from A also has all attributes from B.

Implications and concept lattice: If A→ B, then meet of all attribute concepts for
attributes from A in the lattice diagram lies below the meet of all attribute concepts
of attributes in B.

Implications satisfy Armstrong rules:

X → X
,

X → Y
X ∪ Z → Y

,
X → Y ,Y ∪ Z →W

X ∪ Z →W
,

An implication cover is a subset of implications from which all other implications can
be derived by means of Armstrong rules.
An implication base is a minimal (by inclusion) implication cover.



Concept lattice and implications

({1,2,3,4},∅)

({1,4},{d}) ({2,3,4},{c}) ({1,2},{a})

({3,4},{b,c})

({1},{1}′)

(∅,M)

({4},{4}′) ({2},{2}′)

G ∖ M a b c d

1 × ×

2 × ×

3 × ×

4 × × ×

a – exactly 3 vertices,

b – exactly 4 vertices,

c – has a direct angle,

d – equilateral

Implications:
abc → d

b → c

cd → b



Generator-based implication cover

A subset of attributes D ⊆ M is a generator of a closed subset of attributes B ⊆ M,
B′′ = B if D ⊆ B, D′′ = B = B′′.
A subset D ⊆ M is a minimal generator if for any E ⊂ D one has E ′′ ̸= D′′ = B′′.
Generator D ⊆ M is called nontrivial if D ̸= D′′ = B′′.
Denote the set of all nontrivial minimal generators of B by nmingen(B).

Generator implication cover looks as follows:
{F → (F ′′ ∖ F ) | F ⊆ M,F ∈ nmingen (F ′′)}.



Minimum implication basis

Duquenne-Guigues base is an implication base where each implication is a
pseudo-intent.
A subset of attributes P ⊆ M is called a pseudo-intent if P ̸= P′′ and for any
pseudo-intent Q such that Q ⊂ P one has Q′′ ⊂ P.

Duquenne-Guigues base looks as follows:
{P → (P′′ ∖ P) | P - pseudo-intent }.
Duquenne-Guigues base is a minimum (cardinality minimal) implication base.



Implications and functional dependencies. 1

Functional dependency (e.g., Meier 1983) in terms of FCA:
X → Y is a functional dependency in a complete many-valued context (G ,M,W , I )
if the following holds for every pair of objects g , h ∈ G :

(∀m ∈ X m(g) = m(h))⇒ (∀n ∈ Y n(g) = n(h)).

The reduction of functional dependencies to implications:
Proposition A. For a many-valued context (G ,M,W , I ), one defines the context
KN := (𝒫2(G),M, IN), where 𝒫2(G) is the set of all pairs of different objects from G
and IN is defined by

{g , h}INm :⇔ m(g) = m(h).

Then a set Y ⊆ M is functionally dependent on the set X ⊆ M if and only if the
implication X → Y holds in the context KN .



Implications and functional dependencies. 2

There is an inverse reduction:

Proposition B. For a context K = (G ,M, I ) one can construct a many-valued context
KW such that an implication X → Y holds if and only if Y is functionally dependent
on X in KW .
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Attribute exploration

I Start with any (possibly empty) set of objects.
I Generate an implication valid in the current subcontext.
I If the implication is not valid in the entire context, provide an

object that violates it.
I Go to the next implication, etc.

Follow the Duquenne-Guigues basis to ask no more questions than
is strictly necessary.



Attribute exploration

I Start with any (possibly empty) set of objects.
I Generate an implication valid in the current subcontext.
I If the implication is not valid in the entire context, provide an

object that violates it.
I Go to the next implication, etc.

Follow the Duquenne-Guigues basis to ask no more questions than
is strictly necessary.



Attribute exploration
European states

Question Is every European
monarchy in
NATO?

Answer No: Sweden is not.
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Sweden × × ×



Attribute exploration
European states
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Answer No: Sweden is not.
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Attribute exploration
European states

Question Is every Eurozone
country in EU,
Schengen, and
NATO?

Answer No: Ireland is not.

EU Eu
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Ireland × ×



Attribute exploration
European states

Question Is every Eurozone
country in EU,
Schengen, and
NATO?

Answer No: Ireland is not.

EU Eu
ro

Sc
he

ng
en
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y

Ireland × ×



Attribute exploration
European states

Question Is every Eurozone
country in EU?

Answer No: Montenegro is
not. . .



Attribute exploration
European states

Question Is every Eurozone
country in EU?

Answer No: Montenegro is
not. . .
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JSM-method of hypothesis generation

A target attribute w /∈ M,

I positive examples: Set G+ ⊆ G of objects known to have w ,
I negative examples: Set G− ⊆ G of objects known not to have w ,
I undetermined examples: Set G𝜏 ⊆ G of objects for which it is unknown

whether they have the target attribute or do not have it.

Three subcontexts of K = (G ,M, I ): K𝜀 := (G𝜀,M, I𝜀), 𝜀 ∈ {−,+, 𝜏} with respective
derivation operators (·)+, (·)−, and (·)𝜏 .

A positive hypothesis H ⊆ M is an intent of K+ not contained in the intent g− of
any negative example g ∈ G−: ∀g ∈ G− H ̸⊆ g−. Equivalently,

H++ = H, H′ ⊆ G+ ∪ G𝜏 .



Example of a learning context

G ∖ M color firm smooth form fruit
1 apple yellow no yes round +
2 grapefruit yellow no no round +
3 kiwi green no no oval +
4 plum blue no yes oval +
5 toy cube green yes yes cubic −
6 egg white yes yes oval −
7 tennis ball white no no round −
8 mango green no yes oval 𝜏



Natural scaling of the context

G ∖ M w y g b f f s s r r fruit
1 apple × × × × +
2 grapefruit × × × × +
3 kiwi × × × × +
4 plum × × × × +
5 toy cube × × × × −
6 egg × × × × −
7 tennis ball × × × × −
8 mango × × × × 𝜏

Abbreviations:
“g” for green, “y” for yellow, “w” for white, “f” for firm, “f” for nonfirm,
“s” for smooth, “s” for nonsmooth, “r” for round,
“r” for nonround.



Positive Concept Lattice
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Hypotheses vs. implications

A positive hypothesis h corresponds to an implication h→ {w} in the context
K+ = (G+,M ∪ {w}, I+ ∪ G+ × {w}).
A negative hypothesis h corresponds to an implication h→ {w̄} in the context
K− = (G−,M ∪ {w̄}, I− ∪ G− × {w̄}).
Hypotheses are special implications: their premises are closed (in K+ or in K−).

G ∖ M w y g b f f s s r r fruit nonfruit
1 apple × × × × ×
2 grapefruit × × × × ×
3 kiwi × × × × ×
4 plum × × × × ×
5 toy cube × × × × ×
6 egg × × × × ×
7 tennis ball × × × × ×
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Learning with labeled graphs: A motivation

I Structure-Activity Relationship problems for chemicals given by molecular
graphs

I Learning semantics from graph-based (XML, syntactic tree) text
representation



Starting point

To proceed with graphs like it was done for objects described by binary sets of
attributes (i.e., for contexts), one should define for graphs an operation ⊓
similar to that of set-theoretic ∩ (since then a closure operator ′′ can be
defined).

The first natural attempt to do this, like introducing an operation “take the
largest common subgraph of two graphs” fails, since there can be several
subgraphs of this type.

Perhaps operation should be defined not for graphs, but for sets of graphs?
The attempt even fails if we take all largest (in the number of vertices)
common subgraphs of two graphs.



Order on labeled graphs

Let (ℒ,⪯) be an ordered set of vertex labels.
Γ1 := ((V1, l1),E1) dominates Γ2 := ((V2, l2),E2) or Γ2 ≤ Γ1
if there exists a one-to-one mapping 𝜙 : V2 → V1 such that

I respects edges: (v ,w) ∈ E2 ⇒ (𝜙(v), 𝜙(w)) ∈ E1,
I fits under labels: l2(v) ⪯ l1(𝜙(v)).

Example: ℒ = {x ,NH2,Cl ,CH3,C ,OH}
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Semilattice on graph sets

{X} ⊓ {Y } := {Z | Z ≤ X ,Y , ∀Z* ≤ X ,Y Z* ̸< Z}

= The set of all maximal common subgraphs of X and Y .

Example:
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Meet of graph sets

For sets of graphs
𝒳 = {X1, . . . ,Xk} and 𝒴 = {Y1, . . . ,Yn}

𝒳 ⊓ 𝒴 := MAX ≤(
⋃︀

i,j ({Xi} ⊓ {Yj}))

⊓ is idempotent, commutative, and associative.

Example:

� � � � � � � � � � � �

� - * 3 ) ; 3 - / ' * 9 � ( 3
�  - � � � � � � �

� � 4 9 1 = �  - � � � � � � �
�
�

4

� � � �  C 5 � � �
	


�
� - � 	 4 � - � � 4 � �

� & 3 & = ) 2 � - ; ) 1 ; 4 , - 2 2 8 ; 9 ; & � )4 9 1 = 9 3 3 - , &9 ; & � )	

% & ' ( ) * + ,

5 6 7 5 9 6

5

= 6 >

�
������
�������

�
�������
�������

5 6 7 5 5 8

5

9 6

�

5 5 6 7

5

5 8

�
������
�������

�
�������
�������

5

5

9 6

�

5 5 6 7

5

�
������
�������

�
�������
�������

E F F G H I J � L



Examples
� � � � �

� � �

� � � � � � 	 + + & ' ( ) * + � 


5 6 7 5 9 6

5

= 6 > = 6 >

� � �

5 6 7 5 9 6

5

= 6 > 9 6

� � �

5 6 7 5 9 6

5

5 8 5 6 7

�  �

5 6 7 5 5 8

5

9 6 5 8

� � �

� + � ' � � 	 + + & ' ( ) * + � 


5 6 7 5 = 6 >

5

= 6 > = 6 >

� � �

= 6 > 5 9 6

5

5 6 7 5 8

� � �

= 6 > 5 9 6

5

= 6 > 5 8

E F F G H I J � L

� � � � �

� � �

� � � � � � 	 + + & ' ( ) * + � 


5 6 7 5 9 6

5

= 6 > = 6 >

� � �

5 6 7 5 9 6

5

= 6 > 9 6

� � �

5 6 7 5 9 6

5

5 8 5 6 7

�  �

5 6 7 5 5 8

5

9 6 5 8

� � �

� + � ' � � 	 + + & ' ( ) * + � 


5 6 7 5 = 6 >

5

= 6 > = 6 >

� � �

= 6 > 5 9 6

5

5 6 7 5 8

� � �

= 6 > 5 9 6

5

= 6 > 5 8

E F F G H I J � L



Positive lattice {1,2,3,4}{1,2,3} {2,3,4}{1,2} {2,3} {3,4}{1} {2} {3} {4}
∅
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*Pattern Structures
[Ganter, Kuznetsov 2001]

(G ,D, 𝛿) is a pattern structure if
I G is a set (“set of objects”);
I D = (D,⊓) is a meet-semilattice;
I 𝛿 : G → D is a mapping;
I the set 𝛿(G) := {𝛿(g) | g ∈ G} generates a complete subsemilattice (D𝛿,⊓) of

(D,⊓).

Possible origin of ⊓ operation:
I A set of objects G , each with description from P;
I Partially ordered set (P,≤) of “descriptions” (≤ is a “more general than”

relation);
I The (distributive) lattice of order ideals of the ordered set (P,≤).
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Lattices in Data Mining. Association rules

In mid 1990s in papers of R. Agrawal et al. on association rules "partial implications"
from FCA were rediscovered.

A partial implication (association rule) of context (G ,M, I ) is an expression A→c,s B,
where

I c, s ∈ [0, 1];

I c = |(A∪B)′|
|A′| , called confidence, conf(A→ B);

I s = |(A∪B)′|
|G | , called support, supp(A→ B).



Covers of association rules

What is a minimal representation of the set of association rules, from which one can
obtain all association rules of a context using "admissible transformations"?
Consider an association rule A→c,s B. Under fixed confidence c = |(A∪B)′|

|A′| and

support s = |(A∪B)′|
|G | we try to reduce its premise and increase its conclusion.

1. Decreasing premise. For fixed c and s one can decrease premise from A to a
certain subset D ⊆ A such that (D ∪ B)′ = (A ∪ B)′ = A′ ∩ B′ = D′ ∩ B′, that is
D′ = A′ = A′′′. Thus, minimal D is by definition a minimal generator of A′′, i.e. D ∈
mingen(A′′).

Recall that a subset of attributes D ⊆ M is a generator of a closed subset of
attributes B ⊆ M, B′′ = B if D ⊆ B, D′′ = B = B′′. A subset D ⊆ M is a minimal
generator if for any E ⊂ D one has E ′′ ̸= D′′ = B′′.



Covers of association rules

2. Increasing conclusion. Conclusion B can be increased by a set Δ such that
(A∪B)′ = (A∪B ∪Δ)′ = (A∪B)′ ∩Δ′, which is possible only when (A∪B)′ ⊆ Δ′,
which is equivalent to A ∪ B → Δ and to Δ ⊆ (A ∪ B)′′. Thus, conclusion of the
association rule can be increased up to (A ∪ B)′′.
Thus, the rules from the set

CP(K) = {D → (A ∪ B)′′ | D ∈ mingen (A′′)}

make a cover of the set of all association rules. We can obtain all other rules by
admissible transformations – increasing premises and decreasing conclusions (these
operations do not decrease confidence and support) – of rules from CP(K). In terms
of these admissible transformations, CP(K) makes a cover of association rules.



Base of association rules

Consider an association rule of the form D → (A ∪ B)′′, where D ∈ mingen(A′′). In
the concept lattice diagram this rule corresponds to a path from the concept (A′,A′′)
to the concept ((A ∪ B)′, (A ∪ B)′′). If (A′,A′′) ̸≻ ((A ∪ B)′, (A ∪ B)′′), i.e., if the
vertex of the diagram corresponding to the concept (A′,A′′) is not an upper neighbor
of the vertex corresponding to ((A ∪ B)′, (A ∪ B)′′), then there is a concept (E ′,E ′′)
such that (A′,A′′) ≻ (E ′,E ′′) > ((A ∪ B)′, (A ∪ B)′′).
Consider D → E ′′, where D ∈ mingen(A′′) and F → (A ∪ B)′′, where F ∈
mingen(E ′′). The confidence of the first rule is c1 = |E ′|

|A′| , and the confidence of the

second rule is c2 = |(A∪B)′|
|E ′| . The confidence of the rule D → (A ∪ B)′′, where D ∈

mingen(A′′) is

c =
|(A ∪ B)′|
|A′|

=
|E ′|
|A′|
·
|(A ∪ B)′|
|E ′|

= c1 · c2.



Base of association rules

Hence, the cover of the set of association rules can be made even smaller by
restricting to the set of rules

{F → (′′ ∖ F ′′) | F ⊆ M,F ∈ mingen (F ′′), (F ′,F ′′) ≻ (E ′,E ′′)},

which correspond to the arcs of the diagram. Supports and confidence of other rules
from the cover can be obtained by multiplying supports along the respective paths in
the diagram.

To minimize the cover of association rules, making it a basis, one can retain only

those rules from CP(K) that correspond to edges from a spanning tree of the lattice

diagram.



General task of finding association rules

Find all “frequent” (with support greater than a threshold) association rules with
confidence greater than a threshold.
Solution stages

I Find all frequent "closed itemsets" (frequent intents)
I For each frequent intent B find all its maximal subintents A1, . . . ,An

I Retain only those Ai for which conf(Ai → B) ≥ 𝜃, where 𝜃 is confidence
threshold

I Find minimal generators of the remaining Ai , compose rules of the form
mingen(Ai )→ B.

Luxenburger basis

I Spanning tree of the concept lattice diagram
I Duquenne-Guigues implication base



Example. Confidence of association rules

({1,2,3,4},∅)

({1,4},{d}) ({2,3,4},{c}) ({1,2},{a})

({3,4},{b,c})

({1},{a,d})

(∅,M)

({4},{b,c,d}) ({2},{a,c})

1/2
3/4

1/2

2/3

1/2 1/2

0
0 0

1/2
1/2

1/2

1/3

G ∖ M a b c d

1 × ×

2 × ×

3 × ×

4 × × ×

Good rules with supp ≥ 1/2 and minconf ≥ 3/4
1. ∅ → c, sup(∅ → c) = conf(∅ → c) = 3/4;
2. c → b, sup(c → b)= 1/2, conf(c → b) =
2/3.



Example. Support of association rules

({1,2,3,4},∅)

({1,4},{d}) ({2,3,4},{c}) ({1,2},{a})

({3,4},{b,c})

({1},{a,d})

(∅,M)

({4},{b,c,d}) ({2},{a,c})

1/2
3/4

1/2

1/2

1/4 1/4

0
0 0

1/4
1/4

1/4

1/4

G ∖ M a b c d

1 × ×

2 × ×

3 × ×

4 × × ×

Good rules with supp ≥ 1/2 and minconf ≥ 3/4
1. ∅ → c, sup(∅ → c) = conf(∅ → c) = 3/4;
2. c → b, sup(c → b)= 1/2, conf(c → b) =
2/3.
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Concept lattice of size 2n

Consider context K = (G ,G ̸=) for an arbitrary finite set G . Then B(K) is isomorphic

to the Boolean lattice 2G .



D.-G. implication base of size 2n

G ∖M m0 m1 . . .mn mn+1 . . .m2n
g1
... ̸= ̸=

gn
gn+1 ×

...
...

...
... ̸=

...
...

g3n ×

The set {m1, . . . ,mn} is a pseudo-intent. Replacing mi with mn+i independently for
each i , one obtains all 2n pseudo-intents.



An example: Kexp,3

G ∖M m0 m1 m2 m3 m4 m5 m6
g1 × × × ×
g2 × × × ×
g3 × × × ×
g4 × × × × × ×
g5 × × × × × ×
g6 × × × × × ×
g7 × × × × × ×
g8 × × × × × ×
g9 × × × × × ×

Here, we have 23 = 8 pseudo-intents: {m1,m2,m3}, {m1,m2,m6}, {m1,m5,m3},
{m1,m5,m6}, {m4,m2,m3}, {m4,m2,m6}, {m4,m5,m3}, {m4,m5,m6}.



#P and #P-completeness

Definition: #P is the class of counting problems associated with the decision
problems in NP. More formally, a problem is in #P if there is a non-deterministic,
polynomial time Turing machine that, for each instance I of the problem, has a
number of accepting computations that is exactly equal to the number of distinct
solutions for instance I .

A problem is #P-complete if it is in #P and it is
A problem is #P-hard, i.e., any problem in #P can be reduced by Turing to it.
In particular, a problem in #P is #P-complete if a #P-complete problem can be
reduced to it. Obviously, #P = P =⇒ NP = P.

Examples of #P-complete problems:
I Given a matrix, output its permanent
I Given a bipartite graph, output the number of its perfect matchings
I Given a CNF, output the number of its satisfying assignments
I Given a graph, output the number of its vertex covers
I Given a context, output the number of its concepts



#P-hardness of counting pseudo-intents

Proposition 2. The following problem is #P-hard.
INPUT A formal context K = (G ,M, I )
OUTPUT The number of pseudo-intents of K

Proof: by reduction from the problem of counting all (inclusion) minimal covers
proved to be #P-complete in

L. G. Valiant, The Complexity of Enumeration and Reliability Problems, SIAM J. Comput. 8, 3
(1979), 410–421.

For a graph (V ,E) a subset W ⊆ V is a vertex cover if every edge e ∈ E is incident
to some w ∈W .



Preprocessing. Reducing attributes

Attribute m ∈ M, K = (G ,M, I ) is reducible if

m′ = G or m′ =
⋂︁
{n′ | n ∈ M & n′ ⊃ m′}.

If m is reducible, then B(G ,M, I ) ∼= B(G ,M ∖ {m}, I ∩ (G × (M ∖ {m})))

Dually for objects. An irreducible attribute corresponds to a meet-irreducible lattice
element, an irreducible object corresponds to a join-irreducible lattice element.

Example. Attribute mk is reducible, since m′
k = m′

i ∩m′
j

G ∖M . . . mi . . . mj . . . mk . . .
g1 . . . × . . . . . . . . .
g2 . . . × . . . × . . . × . . .
g3 . . . × . . . × . . . × . . .
g4 . . . . . . × . . . . . .

Removing reducible attributes can be performed in time O(|G | · |M|2).



Close-by-One Algorithm. Notation

I min(X ) (max(X )) return elements of set X with the minimal (maximal) number
I (A, i) denotes (A ∪ {i})′′,
I suc(A) is the set of all heirs of set A: concepts of the form (A ∪ {i})′′ such that

min((A∪ {i})′′ ∖A) = i . The pairs (X , suc(X )) are edges of the tree, vertices of
which are concepts (extents).

I prev(A) returns the parent (in the tree) of a concept with extent A.
I nexti(A) returns number of the subsequent element i to check whether (A, i) is

a heir of A.



Close-by-One Algorithm (CbO)

0. A:=∅, nexti(A):=1, prev(A):=∅, suc(A):=∅.
1. until A = ∅ and nexti(A) > |G | do
2. begin until nexti(A) > |G | do
3. begin i : = nexti(A)
4. if min((A ∪ {i})′′ ∖ A) ≥ i then
5. begin suc(A) ← address(A, i)
6. prev(A, i):=A
7. nexti(A):= nexti(A) + 1
8. nexti((A, i)):= min ({j | i < j&j ̸∈ (A, i)})
9. A:= (A, i), output (A.A′)
10. end
11. else nexti(A):=nexti(A) + 1
12. end
13. A:=prev(A)
14. end



Canonical generations

Definition of canonical generation. ∅ is a canonically generated extent. (A∪ {i})′′ is
a canonically generated formal extent if A ⊆ G is a canonically generated extent,
i ∈ G ∖ A, and min((A ∪ {i})′′ ∖ A) = i .
In terms of bracket notation: extent generation is canonical if for any subsequence
. . . x]Y ) . . . of characters, x ∈ M,Y ⊆ M, the number of any y ∈ Y is greater than
the number of x .

Proposition. An arbitrary extent A has a unique canonical generation.

Proof. An algorithm for canonical generation of extent A.

0. C := ∅, i := 0
1. from C = ∅ until C = A do
2. begin
3. i :=min(A ∖ C), C := (C ∪ {i})′′
4. end



CbO in the strategy "bottom-up" (object-wise)

1]) 2]) 3]4) 4])

1])2])

1])2])3]4) 1])2])4]3])

?

1])3]2,4) 1])4]) 2])3]4) 2])4]3)

- неканоническое порождение объема



CbO in the strategy "top-down" (attribute-wise)

a]) b]c) c]) d])

..b]c,d)

?

..c]) ..d]) ..d]) ..d]b)

..d]b)



Modifications of CbO

I FCbO [J.Outrata, V.Vychodil, 2009]
I PCbO [J.Outrata, V.Vychodil, 2010]
I FPCbO


