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Basic notions

I = [a,b] ⊆ [−∞,∞]

x = (x1, . . . , xn)
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Definition 1

(i) An n–ary aggregation function is a function A(n) : In → I that is
non–decreasing in each place and fulfills the following boundary
conditions

inf
x∈In

A(n)(x) = inf I and sup
x∈In

A(n)(x) = sup I.

(ii) An extended aggregation function is a function A :
⋃

n∈N
In → I

such that for all n > 1, A(n) = A|In is an n–ary aggregation
function and A(1) is the identity on I.
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Examples

The sum Σ,

Σ(x1, . . . , xn) =
n∑

i=1

xi ,

in the case of an interval I with the left–end point −∞ or 0, the
right–end point 0 or∞, and with the convention
(−∞) +∞ = −∞ if necessary.
The product Π,

Π(x1, . . . , xn) =
n∏

i=1

xi ,

if I is an interval with the left–end point 0 or 1, the right–end point
1 or∞ and with the convention 0 .∞ = 0 if necessary.
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Examples

The arithmetic mean M,

M(x1, . . . , xn) =
1
n

n∑
i=1

xi ,

on an arbitrary interval I, and if I = [−∞,∞], the convention
(−∞) +∞ = −∞ is adopted.
The geometric mean G,

G(x1, . . . , xn) =

(
n∏

i=1

xi

)1/n

,

where I ⊆ [0,∞], and 0 .∞ = 0 by convention.
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Examples

The minimum Min,

Min(x1, . . . , xn) = min{x1, . . . , xn} =
n∧

i=1

xi .

The maximum Max ,

Max(x1, . . . , xn) = max{x1, . . . , xn} =
n∨

i=1

xi .
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Properties

Properties of n–ary aggregation functions

⇓

Properties of extended aggregation functions
Strong properties concern extended aggregation functions only
Formally, weak properties concern n–ary aggregation functions only
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Definition 2

For a fixed n ∈ N \ {1}, let A(n) : In → I be an n–ary aggregation
function on I. Then A(n) is called:

(i) symmetric (anonymous) if for each permutation
σ : {1, . . . ,n} → {1, . . . ,n} and each x ∈ In

A(n)(x) = A(n)(xσ(1), . . . , xσ(n)) ;

(ii) idempotent (unanimous) if for each c ∈ I

A(n)(c, . . . , c) = c ;

(iii) strictly monotone if for all xi , yi ∈ I, i ∈ {1, . . . ,n} such that
xi ≤ yi and (x1, . . . , xn) 6= (y1, . . . , yn) it follows that

A(n)(x1, . . . , xn) < A(n)(y1, . . . , yn) ;
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Definition 2

(iv) continuous if for each x0 ∈ In,

lim
x→x0

A(n)(x) = A(n)(x0),

i.e., if A(n) is a continuous function of n variables in the usual
sense;

(v) 1–Lipschitz, if for all (x1, . . . , xn), (y1, . . . , yn) ∈ In,

|A(n)(x1, . . . , xn)− A(n)(y1, . . . , yn)| ≤
n∑

i=1

|xi − yi |;
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Definition 2

(vi) bisymmetric if for all n× n matrices X = (xij ), with entries xij ∈ I
for all i , j ∈ {1, . . . ,n},

A(n)
(

A(n)(x11, . . . , x1n), . . . ,A(n)(xn1, . . . , xnn)
)

= A(n)
(

A(n)(x11, . . . , xn1), . . . ,A(n)(x1n, . . . , xnn)
)
.
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We can equivalently say that, for example, an n–ary aggregation
function A(n) is symmetric if and only if for all x ∈ In it holds

A(n)(x) = A(n)(x2, x1, x3, . . . , xn) = A(n)(x2, . . . , xn, x1).

Similarly, the idempotency of A(n) is equivalent to the property

Min(n) ≤ A(n) ≤ Max (n).
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Definition 3

For a fixed n ∈ N \ {1}, let A(n) : In → I be an n–ary aggregation
function on I.

(i) An element e ∈ I is called neutral element of A(n) if for each
i ∈ {1, . . . ,n} and each xi ∈ I it holds that

A(n)(e, . . . ,e, xi ,e, . . . ,e) = xi .

(ii) An element a ∈ I is called annihilator of A(n) if for all
(x1, . . . , xn) ∈ In it holds that
if xi = a for some i ∈ {1, . . . ,n} then A(n)(x1, . . . , xn) = a.
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Definition 4

Let A :
⋃

n∈N
In → I be an extended aggregation function. Then

(i) A is strongly idempotent whenever

A(x, . . . ,x︸ ︷︷ ︸
k−times

) = A(x)

for all k ∈ N and x ∈
⋃

n∈N
In.

(ii) An element e ∈ I is said to be a strong neutral element of A if
for each n ∈ N, each x ∈

⋃
n∈N

In and i ∈ {1, . . . ,n + 1} it holds

A(x) = A(x1, . . . , xi−1,e, xi , . . . , xn).
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Definition 4

(iii) A is strongly bisymmetric if for any n ×m matrix X = (x ij ) with
all entries xij ∈ I, it holds

A(n)(A(m)(x 1.), . . . ,A(m)(x n.)) = A(m)(A(n)(x .1), . . . ,A(n)(x .m)),

where for all i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m},

x i. = (x i1, . . . , x im) and x .j = (x 1j , . . . , x nj ).
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Classical properties linking different input arities of extended
aggregation functions are:

associativity, that is, for each n, m ∈ N, x ∈ In, y ∈ Im

A(n+m)(x,y) = A(2)(A(n)(x),A(m)(y)) ;

decomposability, that is, for all integers 0 ≤ k ≤ n, n ∈ N, and
all x ∈ In

A(n)(x1, . . . , xk , xk+1, . . . , xn)

= A(n)(A(k)(x1, . . . , xk )︸ ︷︷ ︸
k−times

,A(n−k)(xk+1, . . . , xn)︸ ︷︷ ︸
(n−k)−times

).
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The associativity of an extended aggregation function A is equivalent
to the standard associativity of the corresponding binary aggregation
function A(2),

A(2)(x ,A(2)(y , z)) = A(2)(A(2)(x , y), z)

for all x , y , z ∈ I, and A(n) for n > 2, being the genuine n–ary
extension of A(2) given by

A(n)(x1, . . . , xn) = A(2)
(

A(n−1)(x1, . . . , xn−1), xn

)
defined by induction.
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Consider a system A = (A(2)
n )n∈N of binary aggregation functions by

induction. We define AA = A as follows:
A(1)(x1) = x1,

A(2)(x1, x2) = A(2)
1 (x1, x2),

...
A(n)(x1, . . . , xn) = A(2)

n−1

(
A(n−1)(x1, . . . , xn−1), xn

)
...
Extended aggregation functions AA = A are called recursive.
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Examples

The sum Σ is symmetric, associative and bisymmetric. If 0 ∈ I, then 0
is the strong neutral element of Σ, if −∞ ∈ I then this element is the
annihilator of Σ, and if +∞ ∈ I and −∞ /∈ I then +∞ is the annihilator
of Σ. The extended aggregation function Σ is 1–Lipschitz and strictly
monotone if I ⊂ R, continuous if I 6= [−∞,∞].
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Examples

The arithmetic mean M is recursive, symmetric, strongly idempotent
and bisymmetric on any interval I. It is 1–Lipschitz and strictly
monotone if I ⊂ R and continuous if I 6= [−∞,∞]. It has an annihilator
a only if I is an unbounded interval, namely, a = −∞ if −∞ ∈ I;
a =∞, if∞ ∈ I and −∞ /∈ I.
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Let the extended aggregation function A :
⋃

n∈N
In → I be given by

A(x1, . . . , xn) = min

(
x1,

n∏
i=2

xi

)

whenever n > 1. Evidently, e = 1 is the neutral element of A, but it is
not a strong neutral element. Indeed, if we take (x1, x2) = (0.5,0.5)
then, for i = 1 we have A(1, x1, x2) = 0.25, for i = 2 and i = 3 we
have A(x1,1, x2) = A(x1, x2,1) = 0.5. Observe that A is 1-Lipschitz.
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Basic classification

The basic classification of aggregation functions takes into account
the main fields of applications. Following Dubois and Prade, we will
distinguish four classes of (n–ary/extended) aggregation functions:

conjunctive aggregation functions: aggregation functions
A ≤ Min;
averaging aggregation functions: aggregation functions A,
Min ≤ A ≤ Max , or, equivalently, idempotent aggregation
functions;
disjunctive aggregation functions: aggregation functions
A ≥ Max ;
mixed aggregation functions: aggregation functions which do not
belong to any of other three classes.
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There are refined approaches to the classification of aggregation
functions (on POSETS) due to Komorníková & Mesiar, see also
Marichal for CHAINS;
A(n) : In → I:

k–disjunctive (k–tolerant): if card {i |A(x) ≥ xi} ≥ k ;
k–conjunctive (k–intolerant): if card {i |A(x) ≤ xi} ≥ k ;

and equality is attained for some x.

conjunctive ≡ n–intolerant
disjunctive ≡ n–tolerant
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Observe that the interval I may be crucial for the classification of a
discussed aggregation function. For example, the product Π is a
conjunctive aggregation function on [0,1], disjunctive on [1,∞] and
mixed on [0,∞].
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For any decreasing one–to–one mapping ϕ : I → I, A :
⋃

n∈N
In → I is a

conjunctive (disjunctive) extended aggregation function if and only if
the function Aϕ :

⋃
n∈N

In → I given by

Aϕ(x1, . . . , xn) = ϕ−1 (A(ϕ(x1), . . . , ϕ(xn))

is a disjunctive (conjunctive) extended aggregation function. This
duality allows to investigate, construct and discuss conjunctive
aggregation functions only, and to transfer all the results by this
duality to the disjunctive aggregation functions.
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Averaging aggregation functions

The arithmetic mean M,

M(x1, . . . , xn) =
1
n

n∑
i=1

xi .

Quasi–arithmetic means Mf , where f : I → [−∞,∞] is a
continuous strictly monotone function and

Mf (x1, . . . , xn) = f−1(M(f (x1), . . . , f (xn)),

as, for example, the geometric, harmonic and quadratic means.
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Averaging aggregation functions

Weighted arithmetic means Mw, where w = (w1, . . . ,wn), wi ≥ 0,
n∑

i=1
wi = 1 and

Mw(x1, . . . , xn) =
n∑

i=1

wi xi ,

Weighted quasi–arithmetic means Mf ,w,

Mf ,w(x1, . . . , xn) = f−1

(
n∑

i=1

wi f (xi )

)
.
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Averaging aggregation functions

OWA (ordered weighted average) operator M ′w,

M ′w(x1, . . . , xn) = Mw(x ′1, . . . , x
′
n) =

n∑
i=1

wi x ′i ,

where x ′i is the i–th order statistics from the sample (x1, . . . , xn).
OWQA (ordered weighted quasi–arithmetic) operator M ′f ,w,

M ′f ,w(x1, . . . , xn) = Mf ,w(x ′1, . . . , x
′
n) = f−1

(
n∑

i=1

wi f (x ′i )

)
.
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Averaging aggregation functions

Idempotent uninorms,
Idempotent nullnorms, i.e., a–medians, given for a fixed a ∈ I by

Meda(x1, . . . , xn) = med(x1,a, x2,a, x3,a, . . . ,a, xn).
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Fuzzy integrals

Recall that for any 2–copula C : [0,1]2 → [0,1] (for the definition of a
copula see the next section) and for any fuzzy measure
m : P({1, . . . ,n})→ [0,1], i.e., a non–decreasing set function such
that m(∅) = 0 and m({1, . . . ,n}) = 1, we can define a fuzzy integral
FC,m : [0,1]n → [0,1] by

FC,m(x1, . . . , xn) =
n∑

i=1

(
C (x ′i ,m({j | xj ≥ x ′i }))− C

(
x ′i−1,m({j | xj ≥ x ′i })

))
,

with the convention x ′0 = 0, where x ′i is the i–th order statistics from
the sample (x1, . . . , xn).
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Then FΠ,m is the Choquet integral and FMin,m is the Sugeno integral.
Also observe that if m is additive then FΠ,m = Mw is the weighted
arithmetic mean with the weights given by wi = m({i}). Similarly, if m
is symmetric, i.e., m(A) = h

( cardA
n

)
for some increasing function

h : [0,1]→ [0,1], then FΠ,m is the OWA operator M ′w with the weights
wi = h

( i
n

)
− h

( i−1
n

)
.
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Averaging aggregation functions are closed under composition, i.e.,
for any averaging (extended) aggregation functions A, A1, . . . , An on
I, also the function D = A(A1, . . . ,An) :

⋃
n∈N

In → I, given by

D(x) = A(A1(x), . . . ,An(x)), is an averaging extended aggregation
function.
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An interesting class of averaging aggregation functions are the
internal aggregation functions characterized by
A(x1, . . . , xn) ∈ {x1, . . . , xn}. Continuous internal aggregation
functions are exactly lattice polynomials, whose prescription formula
contains inputs x1, . . . , xn, symbols for join ∨ and meet ∧, i.e., Max
and Min in infix form, and parentheses. Independently of the interval
I, they have the same formula, and on any open interval I they are the
only aggregation functions invariant under any increasing I → I
one–to–one transformation ϕ. On [0,1], they are in a one–to–one
correspondence with {0,1}– valued fuzzy measures (and then we
can apply any fuzzy integral based on a copula C, e.g., the Choquet
or Sugeno integrals). As an example we give all 18 ternary
aggregation functions which are internal and continuous on any
interval I:
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m(E) = A(3)(1E ), A(3)(x1, x2, x3) =

x1; x2; x3;
x1 ∧ x2; x1 ∧ x3; x2 ∧ x3;
x1 ∨ x2; x1 ∨ x3; x2 ∨ x3;
x1 ∧ (x2 ∨ x3); x2 ∧ (x1 ∨ x3); xx ∧ (x1 ∨ x2);
x1 ∨ (x2 ∧ x3); x2 ∨ (x1 ∧ x3); x3 ∨ (x1 ∧ x2);
x1 ∧ x2 ∧ x3 = x ′1; (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3) = x ′2; x1 ∨ x2 ∨ x3 = x ′3 .
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Another interesting and still not completely described family of
averaging extended aggregation functions are the mixture operators
Mg :

⋃
n∈N

In → I given by

Mg(x1, . . . , xn) =

n∑
i=1

g(xi ) xi

n∑
i=1

g(xi )

,

where g : I → ]0,∞[ is a given weighting function
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Evidently, mixture operators are idempotent and they generalize the
arithmetic mean M, since M = Mg for any constant weighting function
g. Mixture operators are extended aggregation functions if and only if
they are monotone, which is not a general case. For example, let
I = [0,b] and let g : I → ]0,∞[ be given by g(x) = x + 1. Then Mg is
an averaging extended aggregation function only if b ∈]0,1]. Till now,
only some sufficient conditions ensuring the monotonicity of mixture
operators Mg are known, as, for example, for a non–decreasing
differentiable function g the next two conditions:

R. Mesiar, STU Bratislava, Faculty of Civil Engineering, Dept. of Mathematics



Introduction Basic notions, notations and properties Averaging aggregation functions

(i) g(x) ≥ g′(x) l(I) for all x ∈ I, where l(I) is the length of the
interval I;

(ii) g(x) ≥ g′(x) (x − inf I) for all x ∈ I.

Example:

g(x) = x ,

I = [0,1], Mg(x , y) =
x2 + y2

x + y
,

Mg(0,1) = 1, Mg(
1
2
,1) =

5
6

x ≥ 1 is not true

BUT:
I = [1,2] x ≥ 1 is true!

Mg is aggregation functions!
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Also other generalizations of mixture operators are interesting, as, for
example, the quasi–mixture operators Mg

f , defined by

Mg
f (x1, . . . , xn) = f−1


n∑

i=1
g(xi ) f (xi )

n∑
i=1

g(xi )

 ,
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generalized mixture operators Mg, where g = (g1, . . . ,gn) is a vector
of weighting functions, defined by

Mg(x1, . . . , xn) =

n∑
i=1

gi (xi ) xi

n∑
i=1

gi (xi )

,

and ordered generalized mixture operators M ′g,

M ′g(x1, . . . , xn) = Mg(x ′1, . . . , x
′
n).
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Thanks for your attention!
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