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Conjunctive aggregation functions

In this section we restrict our considerations to the interval I = [0,1]
only. The conjunctive aggregation functions are bounded from above
by Min, and from below by the weakest extended aggregation
function Aw :

⋃
n∈N

[0,1]n → [0,1] given by

Aw (x1, . . . , xn) =

 1 if
n∏

i=1
xi = 1,

0 otherwise,

is also the weakest conjunctive extended aggregation function, and,
obviously, Min is the strongest one.
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For any (conjunctive) extended aggregation function A it holds
i) Aw ≤ A ≤ Min;

ii) A is idempotent if and only if A = Min.
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Definition 1

Let A : [0,1]2 → [0,1] be an aggregation function.
(i) A is a boundary weak triangular norm (bwt-norm for short) if it is

an associative symmetric conjunctive aggregation function.
(ii) If A is an aggregation function with neutral element e = 1 then it

is called a conjunctor.
(iii) A bwt-norm A which is also a conjunctor is called a triangular

norm (t-norm in short).
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Definition 1

(iv) A conjunctor A satisfying the Lipschitz condition with constant 1,
i.e., such that for all x , y ,u, v ,∈ [0,1] we have

|A(x , y)− A(u, v)| ≤ |x − u|+ |y − v |,

is called a quasi-copula.
(v) A conjunctor A fulfilling the moderate growth property, i.e., such

that for all x , y ,u, v ∈ [0,1] , with x ≤ u, y ≤ v , we have

A(x , y) + A(u, v) ≥ A(x , v) + A(u, y),

is called a copula.
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Bwt-norms and t-norms are associative and thus their extension to
extended aggregation functions is trivial, hence we will keep the
same name and notation for the binary and the extended bwt-norms
and t-norms. An extended conjunctor is an extended aggregation
function on [0,1] with neutral element e = 1. Similarly, a 1-Lipschitz
conjunctive extended aggregation function is called a (extended)
quasi-copula.
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An aggregation function A : [0,1]n → R is conjunctive if and only if, for
each n > 1, for any i , j ∈ [n], with i 6= j , and any x ∈ [0,1[ it holds
A(a1, . . . ,an) ≤ x , where ai = x and aj = 1 whenever j 6= i .
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Let A be an (extended) conjunctive aggregation function. Then 0 is
annihilator of A.
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Proposition 1

Let A be an extended aggregation function with neutral element e.
Then the following are equivalent:

(i) e = 1;

(ii) A is a conjunctive extended aggregation function.
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Remark

Conjunctive aggregation functions on interval [a,b] have necessarily
a as annihilator and if they have neutral element e, then e = b.
However, if I =]a,b[, then a conjunctive A cannot possess neither
annihilator nor neutral element.
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Proposition 2

Let A be an idempotent extended aggregation function and let for
m ∈ N,A1, . . . ,Am be conjunctive extended aggregation functions.
Then the composed extended aggregation function
B :
⋃

[0,1]n → [0,1] given by

B(x) = A(A1(x), . . . ,Am(x))

is a conjunctive extended aggregation function.

Proposition 2 remains true also if we restrict the functions A1, . . . ,Am
to be conjunctors (and then also B is a conjunctor).
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Proposition 3

Let ϕ be an increasing bijection from [0,1] onto [0,1] and let A be a
conjunctive extended aggregation function. Then
Aϕ :

⋃
[0,1]n → [0,1] given by

Aϕ(x) = ϕ−1(A(ϕ(x1), . . . , ϕ(xn))),

is a conjunctive extended aggregation function.

Proposition 3 remains true if we replace conjunctive extended
aggregation function by bwt-norms, t-norms or conjunctors. However,
it fails for quasi-copulas and copulas, in general.
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Definition 2

Let I be a given real interval and let a family

F = {(gn, f1,n, . . . , fn,n) | n ∈ N}

be given so that fi,n : I→ [−∞,∞], i = 1, . . . ,n, are nondecreasing
(nonincreasing) functions,

gn :

{
n∑

i=1

ui | ui ∈ ran (fi,n)

}
→ I

are nondecreasing (nonincreasing) surjective functions, for all n ∈ N,
and g1 = f−1

1,1 (i.e., f1,1 is strictly monotone).
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Definition 2

Then F is called an extended generating system (EGS for short) on I,
and the extended function A : ∪nIn → I given by

A(x) = gn

(
n∑

i=1

fi,n(xi )

)

is called a generated extended aggregation function. All involved
one-place functions are called additive generators of A.
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A generated extended aggregation function A : ∪n[0,1]n → [0,1] is
conjunctive if and only if for all n > 1, i ∈ {1, . . . ,n} and x ∈ [0,1[ it
holds

gn

 n∑
j 6=i

fj (1) + fi (x)

 6 x .
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Definition 3

Let [a,b] and [c,d ] be two closed subintervals of the extended interval
[−∞,∞], and let f : [a,b]→ [c,d ] be a monotone and nonconstant
function. Then the pseudo-inverse f (−1) : [c,d ]→ [a,b] is defined by

f (−1)(y) := sup{x ∈ [a,b] | (f (x)− y)(f (b)− f (a)) < 0} (y ∈ [c,d ]).
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f continuous strictly increasing (decreasing) and f (a) = c (f (b) = c),
then

f (−1)(y) = f−1 (min {f (b), y})
(
f−1 (min {f (a), y})

)
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on [0,1]
f (x) = 1− x [0,∞]

g(x) = x − 1 [−∞,0]

f (−1)

(
n∑

i=1

f (xi )

)
= g(−1)

(
n∑

i=1

g(xi )

)
= max

{
0,

n∑
i=1

xi − (n − 1)

}
Lukasiewicz t–norm
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Definition 4:
An extended aggregation function A is a conjunctor if it has as a
neutral element e = 1.

Proposition 4:
The smallest conjunctor is the drastic product TD (also notation Z is
commonly used) which is associative, symmetric (and thus a
triangular norm), and it is given by

TD(x) :=

{
min(x1, . . . , xn) if |{i | xi < 1}| < 2
0 else,

and the greatest conjunctor is Min, i.e., for any conjunctor A,

TD ≤ A ≤ Min.

Moreover, a binary aggregation function A is a conjunctor if and only
if TD ≤ A ≤ Min.
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Example 1

Let an extended aggregation function A on [0,1] be given by

A(x) :=

(
n∏

i=1

xi

)
·

(
1 +

n∏
i=1

((xi )
i · (1− xi ))

)
.

Then A is a continuous conjunctor which is not symmetric.
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Definition 5:
A triangular norm T :

⋃
n∈N

[0,1]n → [0,1] is an associative symmetric

aggregation function with neutral element 1.

Proposition 5:

(i) Each t-norm T is an aggregation function with annihilator 0, i.e.,
T (x) = 0 for all x ∈ [0,1]n such that 0 ∈ {x1, . . . , xn}.

(ii) The smallest t-norm is the drastic product TD. The greatest (and
the only idempotent) t-norm is the standard Min, i.e., for any
t-norm T,

TD ≤ T ≤ Min
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Figure: Two basic t-norms TD (left) and Min (right)
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Example 2

(i) The third basic t-norm is the product

Π(x) = x1 · x2 · · · xn−1 · xn,

(ii) The fourth basic t-norm is the Łukasiewicz t-norm
TL :

⋃
n∈N

[0,1]n → [0,1],

TL(x) := max

(
0,

n∑
i=1

xi − (n − 1)

)

R. Mesiar, STU Bratislava, Faculty of Civil Engineering, Dept. of Mathematics



Conjunctive aggregation functions Disjunctive aggregation functions Uninorms Nullnorms Other aggregation functions related to t-norms

Example 2

(i) The third basic t-norm is the product

Π(x) = x1 · x2 · · · xn−1 · xn,

(ii) The fourth basic t-norm is the Łukasiewicz t-norm
TL :

⋃
n∈N

[0,1]n → [0,1],

TL(x) := max

(
0,

n∑
i=1

xi − (n − 1)

)

R. Mesiar, STU Bratislava, Faculty of Civil Engineering, Dept. of Mathematics



Conjunctive aggregation functions Disjunctive aggregation functions Uninorms Nullnorms Other aggregation functions related to t-norms

Figure: Two basic t-norms Π (left) and TL (right)
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Frank t-norms family

We list some important families of t-norms.
The family (TF

λ)λ∈[0,∞] of Frank t-norms is given by

TF
λ(x , y) =


Min(x , y) if λ = 0,
Π(x , y) if λ = 1,
TL(x , y) if λ =∞,

logλ

(
1 +

(λx − 1)(λy − 1)

λ− 1

)
otherwise.
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Yager t-norms family

The family (TY
λ)λ∈[0,∞] of Yager t-norms is given by

TY
λ(x , y) =


TD(x , y) if λ = 0,
Min(x , y) if λ =∞,
max

(
0,1−

(
(1− x)λ + (1− y)λ

) 1
λ

)
otherwise.
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Sugeno–Weber t-norms family

The family (TSW
λ )λ∈[−1,∞] of Sugeno–Weber t-norms is given by

TSW
λ (x , y) =


TD(x , y) if λ = −1,
Π(x , y) if λ =∞,

max
(

0,
x + y − 1 + λxy

1 + λ

)
otherwise.
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Hamacher t-norms family

The family (TH
λ)λ∈[0,∞] of Hamacher t-norms is given by

TH
λ(x , y) =


TD(x , y) if λ =∞,
0 if λ = x = y = 0,

xy
λ+ (1− λ)(x + y − xy)

if λ ∈ [0,∞[ and (λ, x , y) 6= (0,0,0).
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Schweizer-Sklar t-norms family

The family (TSS
λ )λ∈[−∞,∞] of Schweizer-Sklar t-norms is given by

TSS
λ (x , y) =


Min(x , y) if λ = −∞,
Π(x , y) if λ = 0,
TD(x , y) if λ =∞,(
max

(
0, (xλ + yλ − 1

)) 1
λ if λ ∈]−∞,0[∪]0,∞[.
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Examples 3

The drastic product TD is an example of a non-continuous but
right-continuous (upper semi-continuous) t-norm.
An important example of a left-continuous (lower semi-continuous)
non-continuous t-norm is the nilpotent minimum
TnM :

⋃
n∈N

[0,1]n → [0,1],

TnM(x) :=

{
0 if x(1) + x(2) 6 1,
x(1) else,

where (x(1), . . . , x(n)) is a non-decreasing permutation of (x1, . . . , xn).
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Proposition 6

Let
x (n)

T := T(n)(x , . . . , x).

For a t-norm T the following are equivalent:
(i) T is Archimedean, if for each x , y ∈ ]0,1[ there is an n ∈ N such

that
x (n)

T < y .

(ii) For every x ∈ ]0,1[

lim
n→∞

x (n)
T = 0.
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Proposition 7

If a t-norm T is continuous, then it is Archimedean if and only if we
have

T(x , x) < x for each x ∈ ]0,1[ .
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Theorem 1

Representation theorem of Ling:

An aggregation function T :
⋃

n∈N
[0,1]n → [0,1] is a continuous

Archimedean t-norm if and only if there is a continuous strictly
decreasing mapping t : [0,1]→ [0,∞], t(1) = 0, which is uniquely
determined up to a positive multiplicative constant, such that

T(x1, . . . , xn) = t−1

(
min

(
t(0),

n∑
i=1

t(xi )

))
.
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Definition 6

A continuous Archimedean t-norm with unbounded additive generator
is called a strict t-norm. Non-strict continuous Archimedean t-norms
are called nilpotent.
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Theorem 2

The following holds.
(i) A strict t-norm is strictly monotone on

⋃
n∈N

]0,1]n. All strict t-norms

are mutually isomorphic, i.e., if T1,T2 are strict t-norms, then
there exists a bijection ϕ : [0,1]→ [0,1] such that

ϕ−1(T1(ϕ(x), ϕ(y))) = T2.

A function T : [0,1]2 → [0,1] is a strict t-norm if and only if it is
isomorphic to the product Π.
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Theorem 2

(ii) All nilpotent t-norms are mutually isomorphic, i.e., if T1,T2 are
nilpotent t-norms, then there exists a bijection ϕ : [0,1]→ [0,1]
such that

ϕ−1(T1(ϕ(x), ϕ(y))) = T2.

A function T : [0,1]2 → [0,1] is a nilpotent t-norm if and only if it
is isomorphic to the Łukasiewicz t-norm TL.

R. Mesiar, STU Bratislava, Faculty of Civil Engineering, Dept. of Mathematics



Conjunctive aggregation functions Disjunctive aggregation functions Uninorms Nullnorms Other aggregation functions related to t-norms

Example 4

(i) A family of additive generators (tF
λ : [0,1]→ [0,∞])λ∈[0,∞] for the

family (TF
λ)λ∈[0,∞] of Frank t-norms is given by

tF
λ(x) =


− log x if λ = 1,
1− x if λ =∞,

− log
λx − 1
λ− 1

otherwise.
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Example 4

(ii) A family of additive generators (tY
λ : [0,1]→ [0,1])λ∈]0,∞[ for the

family (TY
λ)λ∈]0,∞[ of continuous Yager t-norms is given by

tY
λ (x) = (1− x)λ.

For λ = 0, an additive generator tY
0 : [0,1]→ [0,2] for

Archimedean (noncontinuous) t-norm TY
0 = TD is given by

tD(x) =

{
2− x if x ∈ [0,1[ ,
0 if x = 1.
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Example 4

(iii) For the family of continuous Sugeno–Weber’s t-norms
(TSW
λ )λ∈]−1,∞], the corresponding additive generators are given

by

tSW
λ (x) =


1− x if λ = 0,
− log x if λ =∞

1− log(1 + λx)

log(1 + λ)
if λ ∈ ]−1,∞[ \ {0}.
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Example 4

(iv) For the family of continuous Hamacher’s t-norms (TH
λ)λ∈[0,∞[, the

corresponding additive generators are given by

tH
λ (x) =


1− x

x
if λ = 0,

log
(
λ+ (1− λ)x

x

)
if λ ∈ ]0,∞[ .
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Example 4

(v) For the family of Schweizer-Sklar’s t-norms (TSS
λ )λ∈]−∞,∞[, the

corresponding additive generators (tSS
λ : [0,1]→ [0,∞])λ∈]−∞,∞]

are given by

tSS
λ (x) =

 − log x if λ = 0,
1− xλ

λ
if λ ∈ ]−∞,∞[ \ {0}.
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Proposition 8

Let t : [0,1]→ [0,∞] be an additive generator of some continuous
Archimedean t–norm T. Then for all λ ∈ ]0,∞[, also tλ generates a
continuous Archimedean t-norm T(λ). The family

(
T(λ)

)
λ∈]0,∞[

is
increasing and

lim
λ→∞

T(λ) = T(∞) = Min

uniformly,
lim
λ→0+

T(λ) = T(0) = TD

pointwisely.

R. Mesiar, STU Bratislava, Faculty of Civil Engineering, Dept. of Mathematics



Conjunctive aggregation functions Disjunctive aggregation functions Uninorms Nullnorms Other aggregation functions related to t-norms

Definition 7

Let (Tk )k∈K be a family of t-norms and (]ak ,bk [)k∈K be a family of
non-empty, pairwise disjoint open subintervals of [0,1]. The extended
function T : ∪n∈N[0,1]n → [0,1] defined by

T(x) =



ak + (bk − ak )Tk

(
min(x1,bk )− ak

bk − ak
, . . . ,

min(xn,bk )− ak

bk − ak

)
,

if min
16i6n

xi ∈ ]ak ,bk [ ,

Min(x1, . . . , xn),
else

is called the (t-norm) ordinal sum of summands < ak ,bk ,Tk >, k ∈ K ,
and we denote it by

T = (< ak ,bk ,Tk >)k∈K .
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Theorem 3

A function T :
⋃

n∈N
[0,1]n → [0,1] is a continuous t-norm if and only if it

is an ordinal sum of continuous Archimedean t-norms, i.e., there
exists a family (Tk )k∈K of continuous Archimedean t-norms such that

T = (< ak ,bk ,Tk >)k∈K .
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General copulas

Let for x,y ∈ [0,1]nsuch that xi 6 yi , i = 1, . . . ,n, [x,y], be an n-box,
and let z = (z1, . . . , zn) be a vertex of [x,y]. Then we define
sign[x,y](z) in the following way

sign[x,y](z) =

{
1 if zm = ym for an even number of m′s,
−1 if zm = ym for an odd number of m′s.

If the vertices of n-box [x,y] are not all distinct then sign[x,y](z) = 0.
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Definition 8

For a fixed n ≥ 2, let C : [0,1]n → [0,1] be an n-ary aggregation
function with a neutral element e = 1 such that for all
x,y ∈ [0,1]n ,x 6 y, the following inequality (n-increasingness,
moderate growth) is fulfilled:∑

sign[x,y](z)C(z) > 0,

where the sum is taken over all vertices z of [x,y]. Then C is called an
n-copula.
An extended aggregation function C : ∪n∈N[0,1]n → [0,1] such that
for each n > 2 the corresponding n-ary aggregation function C(n) is
an n-copula is called a general copula.
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Remark 1

(i) The condition of n-increasingness can be also written in the
following form

∑
d

n∏
i=1

di C(u(d1)
1 , . . . ,u(dn)

n ) > 0,

where the sum is taken over all n-tuples
d = (d1, . . . ,dn) ∈ {−1,1}n and where u(−1)

i = xi , u(1)
i = yi .

(ii) Recall that in the case of 2-copulas C : [0,1]2 → [0,1], the
moderate growth, 2-increasingness, whenever 0 6 x1 6 y1 6 1
and 0 6 x2 6 y2 6 1 (i.e., for 2-box [(x1, x2), (y1, y2)]) can be
rewritten into

C(y1, y2) + C(x1, x2) > C(x1, y2) + C(x2, y1).
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Example 5

(i) The product Πn is a general copula. The product Π produces the
joint distribution in the case of independent marginal random
variables.

(ii) Min as an extended aggregation function is a general copula
positive total dependence

(iii) TL is an n-copula only for n = 2
negative total dependence

R. Mesiar, STU Bratislava, Faculty of Civil Engineering, Dept. of Mathematics



Conjunctive aggregation functions Disjunctive aggregation functions Uninorms Nullnorms Other aggregation functions related to t-norms

Example 5

(i) The product Πn is a general copula. The product Π produces the
joint distribution in the case of independent marginal random
variables.

(ii) Min as an extended aggregation function is a general copula
positive total dependence

(iii) TL is an n-copula only for n = 2
negative total dependence

R. Mesiar, STU Bratislava, Faculty of Civil Engineering, Dept. of Mathematics



Conjunctive aggregation functions Disjunctive aggregation functions Uninorms Nullnorms Other aggregation functions related to t-norms

Example 5

(i) The product Πn is a general copula. The product Π produces the
joint distribution in the case of independent marginal random
variables.

(ii) Min as an extended aggregation function is a general copula
positive total dependence

(iii) TL is an n-copula only for n = 2
negative total dependence

R. Mesiar, STU Bratislava, Faculty of Civil Engineering, Dept. of Mathematics



Conjunctive aggregation functions Disjunctive aggregation functions Uninorms Nullnorms Other aggregation functions related to t-norms

Theorem 4 - Sklar theorem

(i) If H : [−∞,∞]n → [0,1] is an n-dimensional distribution function
with one dimensional marginal distribution functions
F1, . . . ,Fn : [−∞,∞]→ [0,1] then there is an n-copula C such
that

H(x1, . . . , xn) = C(F1(x1), . . . ,Fn(xn))

for all (x1, . . . , xn) ∈ R. If F1, . . . ,Fn, are continuous then C is
unique; otherwise C is uniquely determined on
ran(F1)× · · · × ran(Fn).

(ii) For any one-dimensional distribution functions F1, . . . ,Fn, and
any n-copula C, the function H is an n-dimensional distribution
function with one dimensional margins F1, . . . ,Fn.
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A nice probabilistic characterization of the three basic continuous
t-norms is the next one: for events E1, . . . ,En, let P(E1), . . . ,P(En) be
their respective probabilities.

What can we say about the probability x of the intersection
n⋂

i=1
Ei?

Then the probability P(E1 ∩ · · · ∩ En) can be computed by means of a
(in most cases unknown) copula C,

P(E1 ∩ · · · ∩ En) = C(P(E1), . . . ,P(En)).

Due to the fact that
TL 6 C 6 Min

for any copula C we have the (best) estimation

TL(P(E1), . . . ,P(En)) 6 P(E1 ∩ · · · ∩ En) 6 Min(P(E1), . . . ,P(En)).

If the events E1, . . . ,En are jointly independent, then C = Π and
P(E1 ∩ · · · ∩ En) = Π(P(E1), . . . ,P(En)).

R. Mesiar, STU Bratislava, Faculty of Civil Engineering, Dept. of Mathematics



Conjunctive aggregation functions Disjunctive aggregation functions Uninorms Nullnorms Other aggregation functions related to t-norms

A nice probabilistic characterization of the three basic continuous
t-norms is the next one: for events E1, . . . ,En, let P(E1), . . . ,P(En) be
their respective probabilities.

What can we say about the probability x of the intersection
n⋂

i=1
Ei?

Then the probability P(E1 ∩ · · · ∩ En) can be computed by means of a
(in most cases unknown) copula C,

P(E1 ∩ · · · ∩ En) = C(P(E1), . . . ,P(En)).

Due to the fact that
TL 6 C 6 Min

for any copula C we have the (best) estimation

TL(P(E1), . . . ,P(En)) 6 P(E1 ∩ · · · ∩ En) 6 Min(P(E1), . . . ,P(En)).

If the events E1, . . . ,En are jointly independent, then C = Π and
P(E1 ∩ · · · ∩ En) = Π(P(E1), . . . ,P(En)).

R. Mesiar, STU Bratislava, Faculty of Civil Engineering, Dept. of Mathematics



Conjunctive aggregation functions Disjunctive aggregation functions Uninorms Nullnorms Other aggregation functions related to t-norms

A nice probabilistic characterization of the three basic continuous
t-norms is the next one: for events E1, . . . ,En, let P(E1), . . . ,P(En) be
their respective probabilities.

What can we say about the probability x of the intersection
n⋂

i=1
Ei?

Then the probability P(E1 ∩ · · · ∩ En) can be computed by means of a
(in most cases unknown) copula C,

P(E1 ∩ · · · ∩ En) = C(P(E1), . . . ,P(En)).

Due to the fact that
TL 6 C 6 Min

for any copula C we have the (best) estimation

TL(P(E1), . . . ,P(En)) 6 P(E1 ∩ · · · ∩ En) 6 Min(P(E1), . . . ,P(En)).

If the events E1, . . . ,En are jointly independent, then C = Π and
P(E1 ∩ · · · ∩ En) = Π(P(E1), . . . ,P(En)).

R. Mesiar, STU Bratislava, Faculty of Civil Engineering, Dept. of Mathematics



Conjunctive aggregation functions Disjunctive aggregation functions Uninorms Nullnorms Other aggregation functions related to t-norms

A nice probabilistic characterization of the three basic continuous
t-norms is the next one: for events E1, . . . ,En, let P(E1), . . . ,P(En) be
their respective probabilities.

What can we say about the probability x of the intersection
n⋂

i=1
Ei?

Then the probability P(E1 ∩ · · · ∩ En) can be computed by means of a
(in most cases unknown) copula C,

P(E1 ∩ · · · ∩ En) = C(P(E1), . . . ,P(En)).

Due to the fact that
TL 6 C 6 Min

for any copula C we have the (best) estimation

TL(P(E1), . . . ,P(En)) 6 P(E1 ∩ · · · ∩ En) 6 Min(P(E1), . . . ,P(En)).

If the events E1, . . . ,En are jointly independent, then C = Π and
P(E1 ∩ · · · ∩ En) = Π(P(E1), . . . ,P(En)).

R. Mesiar, STU Bratislava, Faculty of Civil Engineering, Dept. of Mathematics



Conjunctive aggregation functions Disjunctive aggregation functions Uninorms Nullnorms Other aggregation functions related to t-norms

For any x,y ∈ [0,1] we have

|C(x1, . . . , xn)− C(y1, . . . , yn)| 6
n∑

i=1

|xi − yi |,
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Proposition 9

A mapping C : [0,1]2 → [0,1] is an Archimedean copula if and only if
there is a convex strictly decreasing continuous function
t : [0,1]→ [0,∞] with t(1) = 0 such that

C(x , y) = t−1(min(t(x) + t(y), t(0)).

C is a strict copula if and only if t(0) =∞.
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Proposition 10

Let T be a continuous Archimedean t-norm with an additive generator
t such that its pseudo-inverse t (−1) : [0,∞]→ [0,1] given by
t (−1)(u) = t−1(min(u, t(0)). t (−1) is a completely monotone function
on ]0,∞[, i.e., it has all derivatives on ]0,∞[ and these derivatives
alter their signs, if and only if T is a general copula, i.e., for each
n > 1 it is an n-copula.
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Example 6

(i) A typical example of a general Archimedean copula is the
product Π with an additive generator t : [0,1]→ [0,∞] given by
t(x) = − log x .

(ii) Hamacher product (or Ali-Mikhail-Haq copula with parameter 0,)
CH is a general Archimedean copula generated by an additive
generator t : [0,1]→ [0,∞] , given by t(x) = 1−x

x .

R. Mesiar, STU Bratislava, Faculty of Civil Engineering, Dept. of Mathematics



Conjunctive aggregation functions Disjunctive aggregation functions Uninorms Nullnorms Other aggregation functions related to t-norms

Example 7

(i) The Farlie-Gumbel-Morgenstern family of copulas (symmetric but
non-associative for λ 6= 0) is given by

Cλ(x , y) = xy + λxy(1− x)(1− y) for λ ∈ [−1,1] .

(ii) The family of cubic 2-copulas (non-associative and
asymmetric)is given by

Cα,β,γ,δ(x , y) =

= xy+xy(1−x)(1−y)(αxy+βx(1−y)+γy(1−x)+δ(1−x)(1−y)).
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Example 7

(iii) A linear combination C = p · Π + (1− p) ·Min is an example of a
general non-associative symmetric copula (whenever p ∈ ]0,1[).
In its binary form C is given by

C(x , y) = pxy + (1− p) min(x , y) = x ′(1− p(1− y ′)).
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Proposition 11

Let t : [0,1]→ [0,∞] be a convex strictly decreasing function such
that t(1) = 0 (i.e., t is an additive generator of some 2-copula Ct ) and
let D : [0,1]→ [0,1] be a convex function bounded from below by
max(x ,1− x) (D is so-called dependence function). Then the
mapping Ct,D : [0,1]2 → [0,1] given by

Ct,D(x , y) = t−1
(

min
(

t(0), (t(x) + t(y)) · D
(

t(x)

t(x) + t(y)

)))
is a 2-copula. This copula is called an Archimax copula.
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Quasi-copulas

In order to generalize the notion of n-copulas, quasi-copulas of
dimension n were introduced as special n-ary functions Q defined on
[0,1]n such that for any continuous random variables X1, . . . ,Xn with
support on [0,1] there is a copula C such that

Q(FX1 (t), . . . ,FXn (t)) = C(FX1 (t), . . . ,FXn (t))

for all t ∈ [0,1] . In particular, if the random variables X1, . . . ,Xn have
the same distribution function, we obtain that for each quasi-copula Q
there is a copula C (with the same diagonal section), i.e.,
Q(u, . . . ,u) = C(u, . . . ,u) for all u ∈ [0,1] .
Some of properties of copulas (1 is neutral element and they are
non-decreasing 1-Lipschitz functions) are herited by quasi-copulas,
but for example not the n-increasingness.
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Theorem 5

A function Q : [0,1]n → [0,1], n ≥ 2, is a quasi-copula if and only if it
is a 1-Lipschitz conjunctive aggregation function.
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Disjunctive aggregation functions

Dual functions to conjunctive aggregation functions are called
disjunctive aggregation functions. Disjunctive aggregation functions
are those which are stronger than Max (i.e., than the strongest
idempotent aggregation function). Though also disjunctive
aggregation functions can be discussed on an arbitrary real interval I,
we will restrict our considerations to the case I = [0,1], similarly as in
the case of conjunctive aggregation functions. There is a genuine
connection between these two classes of aggregation functions.
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Lemma 1

Let ϕ : [0,1]→ [0,1] be a decreasing bijection. Then the (extended)
aggregation function A is disjunctive if and only if its transform Aϕ is
conjunctive.
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Remark 2

(i) In fuzzy logic, an involutive decreasing bijection
neg : [0,1]→ [0,1] (i.e., neg(neg(x)) = x for all x ∈ [0,1]) plays
the role of negation. For any aggregation function A it holds
(Aneg)neg = A, i.e., neg-transformation brings a kind of duality
into the class of aggregation functions. Due to Lemma 1, this
duality also connects the class of disjunctive aggregation
functions and the class of conjunctive aggregation functions.
Moreover, if a t-norm T models the conjunction in fuzzy logic and
neg models the negation, then the triplet (T,Tneg,neg) is called
a de Morgan triplet.

R. Mesiar, STU Bratislava, Faculty of Civil Engineering, Dept. of Mathematics



Conjunctive aggregation functions Disjunctive aggregation functions Uninorms Nullnorms Other aggregation functions related to t-norms

Remark 2

(ii) For N : [0,1]→ [0,1] given by N(x) = 1− x , the dual
aggregation function Ad can be introduced as Ad = AN . Thus
disjunctive aggregation functions are just dual functions to
conjunctive aggregation functions, and therefore we can derive
all their properties from the corresponding properties of
conjunctive aggregation functions. So, for example, the smallest
and the only idempotent disjunctive aggregation function is Max.
In fuzzy logic N is called the standard negation.
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(i) An extended aggregation function A is disjunctive if and only if

As > A > Max.

(ii) Each disjunctive aggregation function has 1 as its annihilator and
if a disjunctive aggregation function has a neutral element e, then
necessarily e = 0.

(iii) Disjunctors are aggregation functions on [0,1] with neutral
element 0. Additively generated disjunctors are defined by
means of strictly increasing functions
g : [0,1]→ [0,∞], g(0) = 0 as follows:

Ag(x1, . . . , xn) = g(−1)

(
n∑

i=1

g(xi )

)
,
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Definition 9

The dual aggregation function to a t-norm T :
⋃

n∈N
[0,1]n → [0,1], i. e.,

an associative symmetric aggregation function S :
⋃

n∈N
[0,1]n → [0,1]

with neutral element 0 is called a triangular conorm.

By duality, t-conorms have annihilator a = 1. For each t-conorm S,
we have

Max 6 S 6 SD,

where

SD(x1, . . . , xn) =

{
xi if for all j 6= i , xj = 0,
1 else.
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Figure: Figures of two basic t-conorms SD (left) and Max (right)
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The dual operator to the product Π is called the probabilistic sum and
it is denoted by SP,

SP(x1, . . . , xn) = 1−
n∏

i=1

(1− xi ).

The Łukasiewicz t-conorm SL is often called the bounded sum
because of

SL(x1, . . . , xn) = min

(
1,

n∑
i=1

xi

)
.
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Figure: Figures of two basic t-conorms SP (left) and SL (right)
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The family (SY
λ)λ∈[0,∞] of Yager t-conorms is given by

SY
λ(x , y) =


SD(x , y) if λ = 0,
Max(x , y) if λ =∞,

min
(

1,
(
xλ + yλ

) 1
λ

)
otherwise.

The family (SSW
λ )λ∈[−1,∞] of Sugeno–Weber t-conorms is given by

SSW
λ (x , y) =

 SP(x , y) if λ = −1,
SD if λ =∞,
min (1, x + y + λxy) otherwise.
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
SD(x , y) if λ = 0,
Max(x , y) if λ =∞,

min
(

1,
(
xλ + yλ

) 1
λ

)
otherwise.

The family (SSW
λ )λ∈[−1,∞] of Sugeno–Weber t-conorms is given by

SSW
λ (x , y) =

 SP(x , y) if λ = −1,
SD if λ =∞,
min (1, x + y + λxy) otherwise.
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A continuous Archimedean t-conorm S is characterized by the
diagonal inequality S(x , x) > x for all x ∈ ]0,1[, and it is always
related to some continuous strictly increasing additive generator
s : [0,1]→ [0,∞], s(0) = 0

S(x1, . . . , xn) = s−1

(
min

(
s(1),

n∑
i=1

s(xi )

))
.
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Representation of continuous t-norms is reflected by the dual
representation of continuous t-conorms,

S(x1, . . . , xn) =


s−1

k

(
min

(
sk (bk ),

n∑
i=1

sk (max(xi ,ak ))

))
if max xi ∈ ]ak ,bk [ ,

max(x1, . . . , xn) else,

where (]ak ,bk [)k∈K is a system of pairwise disjoint subintervals of
[0,1], and sk : [ak ,bk ]→ [0,∞], sk (ak ) = 0
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Uninorms

One of the prominent aggregation functions on [0,∞] is the product
Π, which is symmetric, associative, and its neutral element e = 1 is
an inner point of the domain [0,∞]. This operator is not continuous,
independently of the choice of the convention 0 · ∞ (0 or∞). Further,
restriction of the product to [0,1] is a triangular norm, while its
restriction to [1,∞] acts as a t-conorm (i.e., neutral element is the
lowest domain element). On [0,1], operators of the above mentioned
nature have been introduced under the name uninorms by Yager and
Rybalov.
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Definition 10:
An aggregation function U :

⋃
n∈N

[0,1]n → [0,1] which is symmetric,

associative and possesses a neutral element e ∈ ]0,1[ is called a
uninorm.

Proposition 12:
Let U : ∪n∈N[0,1]n → [0,1] be a uninorm with neutral
elemente ∈ ]0,1[ . Denote aU := U(0,1). Then the following hold:

(i) aU ∈ {0,1}.
(ii) aU ia an annihilator of U.
(iii) U is not continuous.
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Proposition 13

Let U : [0,1]2 → [0,1] be a (binary) uninorm with neutral element
e ∈ ]0,1[ . Then there are three binary aggregation functions
T,S,H : [0,1]2 → [0,1] such that T is a t-norm, S a t-conorm and H is
a symmetric mean aggregation function, and for any x ∈ [0,1]2 it
holds

U(x) =

 T(x) if x ∈ [0,e]2 ,

S(x) if x ∈ [e,1]2 ,
H(x) else.
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Figure: The representation of uninorm from Proposition 13
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Proposition 14:
Let e ∈ ]0,1[ be a given constant and let T = (< 0,e,TU >) and
S = (< e,1,SU >) be an ordinal sum t-norm and an ordinal sum
t-conorm, respectively. Then the following holds.

(i) For any uninorm U characterized by e,TU and SU , we have
T < Ue,T,S 6 U 6 UT,S,e < S, where

Ue,T,S(x , y) =


e · T

( x
e ,

y
e

)
if (x , y) ∈ [0,e]2 ,

e + (1− e) · S
(

x−e
1−e ,

y−e
1−e

)
if (x , y) ∈ [e,1]2 ,

min(x , y) else,

UT,S,e(x , y) =


e · T

( x
e ,

y
e

)
if (x , y) ∈ [0,e]2 ,

e + (1− e) · S
(

x−e
1−e ,

y−e
1−e

)
if (x , y) ∈ [e,1]2 ,

max(x , y) else.

(ii) Ue,T,S and UT,S,e are uninorms.
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The smallest uninorm Ue:

Ue(x , y) :=

 0 if (x , y) ∈ [0,e[2 ,

max(x , y) if (x , y) ∈ [e,1]2 ,
min(x , y) else .

The strongest uninorm Ue:

Ue(x , y) :=

 min(x , y) if (x , y) ∈ [0,e[2 ,

1 if (x , y) ∈ [e,1]2 ,
max(x , y) else .
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Two typical idempotent uninorms related to a given neutral element
e ∈ ]0,1[ are given by

Ue,Min,Max(x1, . . . , xn) =

{
Max(x1, . . . , xn) if min xi > e,
Min(x1, . . . , xn) else,

and

UMin,Max,e(x1, . . . , xn) =

{
min(x1, . . . , xn) if max xi 6 e,
max(x1, . . . , xn) else.
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Example 8

Let ϕ : [0,1]→ [0,1] be an increasing bijection and define
U(ϕ) : [0,1]2 → [0,1] by

U(ϕ)(x , y) :=

{
min(x , y) if ϕ(x) + ϕ(y) 6 1,
max(x , y) else.

Then U(ϕ) is a (left-continuous, conjunctive) uninorm with neutral
element e = ϕ−1(0.5).
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Theorem 6

A function U :
⋃

n∈N
[0,1]n → [0,1] is a uninorm continuous and

cancellative on
⋃

n∈N
]0,1[n if and only if there exists a monotone

bijection h : [0,1]→ [−∞,∞] such that

U(x1, . . . , xn) = h−1

(
n∑

i=1

h(xi )

)
,

with convention +∞+ (−∞) = −∞. The uninorm U is then called a
generated uninorm with additive generator h.
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Example 9

A typical example of a conjunctive generated uninorm is the
3-Π-operator E given by

E(x1, . . . , xn) =

n∏
i=1

xi

n∏
i=1

xi +
n∏

i=1
(1− xi )

, with convention
0
0

= 0.

Its additive generator h : [0,1]→ [−∞,∞] (necessarily unique up to a
positive multiplicative constant) is given by

h(x) = log
x

1− x
.
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Figure: The uninorm 3-Π
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Generated uninorms are always related to strict t–norms and strict
t-conorms. For corresponding additive generators h, t , s of U,T,S we
have the next relationships

h(x) =


−t
( x

e

)
if x ∈ [0,e],

s
(

x−e
1−e

)
if x ∈ ]e,1];
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The freedom in the choice of an additive generator of a given strict
t-norm T and a given strict t-conorm S allows to construct a
parameterized class of (conjunctive) generated uninorms related to T
and S.
Let t : [0,1]→ [0,∞] be an (unique) additive generator of a given
strict t-norm T such that t(0.5) = 1, and similarly, let
s : [0,1]→ [0,∞], s(0.5) = 1, be an additive generator of a given
strict t-conorm S. For a given parameter p ∈]0,∞[, define an additive
generator hp : [0,1]→ [−∞,∞] related to a generated uninorm Up,

hp(x) =

{
−t
( x

e

)
if x ∈ [0,e];

p · s
(

x−e
1−e

)
if x ∈ ]e,1].
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For each p ∈ ]0,∞[ , Up is related to T and S. Further, the family
(Up)p∈]0,∞[ is non-decreasing and its limit member is

U0 = lim
p→0+

Up = Ue,T,S.

The other limit member

U∞ = lim
p→∞

Up

coincides with UT,S,e on
⋃

n∈N
]0,1]n.
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The associativity of uninorms, t–norms and t-conorms allow to derive
for each uninorm U the n–ary operator U(n) from the binary operator
U(2). Let T and S be a t–norm and a t-conorm, respectively, which are
related to U. Then

U(n)(x1, . . . , xn) =

U(2) (T (min(x1,e), . . . ,min(xn,e)) ,S (max(x1,e), . . . ,max(xn,e))) .
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Definition 11 (Nullnorm)

A symmetric associative aggregation function V : [0,1]2 → [0,1] is
called a nullnorm if there is an element a ∈]0,1[ such that

V(x ,0) = x for all x 6 a, V(x ,1) = x for all x > a.
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V(x1, . . . , xn) =


a · SV

( x1
a , . . . ,

xn
a

)
if max xi 6 a,

a + (1− a) · TV

(
x1−a
1−a , . . . ,

xn−a
1−a

)
if min xi > a,

a else.
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Example 10

We define nullnorm V : [0,1]2 → [0,1] in the following way

V(x , y) =

 Max(x , y) if (x , y) ∈ [0,1/3]2 ,
3xy−x−y+1

2 if (x , y) ∈ [1/3,1]2 ,
1/3 otherwise.
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Figure: The nullnorm from Example 10
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For a given annihilator a ∈ ]0,1[, there is a unique idempotent
nullnorm (related to S = Max and T = Min), namely Meda (a-median)

Meda(x1, · · · , xn) = med(x1,a, x2,a, · · · , xn−1,a, xn).

These important operators were introduced by Fung and Fu and
further studied by J. Fodor.
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Proposition 15

An aggregation function V :
⋃

n∈N
[0,1]n → [0,1] is a nullnorm if and

only if there is a t–norm T, a t-conorm S and an element a ∈ ]0,1[
such that V is a composed aggregation function,

V = Meda(T,S),

that is,

V(x1, . . . , xn) = med (T(x1, . . . , xn),S(x1, . . . , xn),a) .
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Example 11

Applying Proposition 15 to the Łukasiewicz t–norm TL and t-conorm
SL, we can find an interesting nullnorm VL,a :

⋃
n∈N

[0,1]n → [0,1] given

by

VL,a(x1, . . . , xn) := med

(
n∑

i=1

xi ,
n∑

i=1

xi − (n − 1),a

)
.

This nullnorm is Archimedean as all nullnorms based on an
Archimedean t-norm T and an Archimedean t-conorm S. Moreover, it
is also continuous as all nullnorms based on a continuous t-norm T
and a continuous t–conorm S.
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Proposition 16

Let A :
⋃

n∈N
[0,1]n → [0,1] be a continuous associative aggregation

function and let A(0,1) = A(1,0) = a. Then:
(i) if a = 0, A is a t-norm;
(ii) if a = 1, A is a t-conorm;
(iii) if a ∈ ]0,1[ , A is a nullnorm with annihilator a.
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Gamma operators

The gamma operators

Γγ :
⋃
n∈N

[0,1]n → [0,1]

were introduced by Zimmermann and Zysno and applied in the car
control.

For a parameter γ ∈ [0,1], the gamma operator Γγ is given by
Γγ = Π1−γSγP , that is,

Γγ(x1, . . . , xn) =

(
n∏

i=1

xi

)1−γ (
1−

n∏
i=1

(1− xi )

)γ
.
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Exponential convex T-S-operators

Gamma operators are a special subclass of so called exponential
convex T-S-operators, that is, of weighted geometric means of a
t-norm T, and a t-conorm S (not necessarily a dual pair),
ET,S,γ :

⋃
n∈N

[0,1]n → [0,1],

ET,S,γ(x1, . . . , xn) = (T(x1, . . . , xn))1−γ (S(x1, . . . , xn))γ .
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Linear convex T-S-operators

Another composed aggregation approach based on t-norms and
t-conorms is related to the weighted arithmetic mean (as the outer
operator). A linear convex T-S-operator LT,S,γ :

⋃
n∈N

[0,1]n → [0,1] is

given by

LT,S,γ(x1, . . . , xn) = (1− γ) · T(x1, . . . , xn) + γ · S(x1, . . . , xn).
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We consider following linear convex operator

LTL,Max,0.3(x , y) = 0.7 · TL(x , y) + 0.3 ·Max(x , y)

Figure: Linear convex LTL,Max,0.3-operator
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Symmetric sums related to t-norms and t-conorms

Yager and Filev

The symmetric sum T]

T](x1, . . . , xn) =
T(x1, . . . , xn)

T(x1, . . . , xn) + T(1− x1, . . . ,1− xn)
,

where convention 0
0 = 1

2 (for symmetric sums) can be replaced by
some other convention, e. g., 0

0 = 0. Especially, if T = Π, we obtain
the 3− Π–operator E = Π]
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t-conorm-based symmetric sums can be introduced by

S](x1, . . . , xn) =
S(x1, . . . , xn)

S(x1, . . . , xn) + S(1− x1, . . . ,1− xn)
.

Min](x1, . . . , xn) =
x ′1

x ′1 + 1− x ′n
,

and
Max](x1, . . . , xn) =

x ′n
x ′n + 1− x ′1

,

where (x ′1, . . . , x
′
n) is a non-decreasing permutation of (x1, . . . , xn).
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Thanks for your attention!
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