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Quantitative weights

How to introduce weights (importances) into aggregation? For an
input vector x = (x1, . . . , xn), the corresponding weights w1, . . . ,wn
can be understood as cardinalities of single inputs x1, . . . , xn,
respectively. We will deal with weighting vectors w = (w1, . . . ,wn),

wi ∈ [0,∞[ , i ∈ {1, . . . ,n}, and
n∑

i=1
wi > 0. If

n∑
i=1

wi = 1, w will be

called a normal weighting vector.
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Weighted aggregation function

For an extended aggregation function A :
⋃

n∈N
In → I, and a weighting

vector w = (w1, . . . ,wn) (for some n ∈ N), we will discuss an n–ary
aggregation function Aw : In → I, which will be called a weighted
aggregation function.
For a weighting triangle ∆ = (wi,n|n ∈ N, i ∈ {1, . . . ,n}) for each n,
(w1,n, . . . ,wn,n) is a weighting vector,

A∆ :
⋃
n∈N

In → I

is extended weighted aggregation function.

R. Mesiar, STU Bratislava, Faculty of Civil Engineering, Dept. of Mathematics



Weighted Aggregation Functions Concluding remarks

Quantitative weights

Weighted aggregation function

For an extended aggregation function A :
⋃

n∈N
In → I, and a weighting

vector w = (w1, . . . ,wn) (for some n ∈ N), we will discuss an n–ary
aggregation function Aw : In → I, which will be called a weighted
aggregation function.
For a weighting triangle ∆ = (wi,n|n ∈ N, i ∈ {1, . . . ,n}) for each n,
(w1,n, . . . ,wn,n) is a weighting vector,

A∆ :
⋃
n∈N

In → I

is extended weighted aggregation function.

R. Mesiar, STU Bratislava, Faculty of Civil Engineering, Dept. of Mathematics



Weighted Aggregation Functions Concluding remarks

Quantitative weights

We expect the next quite natural properties of weighted aggregation
functions.

(W1) If w = (1, . . . ,1) = 1 then

A1(x1, . . . , xn) = A(x1, . . . , xn)

for all (x1, . . . , xn) ∈ In.

(W2) For any (x1, . . . , xn) ∈ In and any w = (w1, . . . ,wn),

Aw(x1, . . . , xn) = Aw∗(xm1 , . . . , xmk ),

where {m1, . . . ,mk} = {i ∈ {1, . . . ,n} | wi > 0}, m1 < . . . < mk ,
w∗ = (wm1 , . . . ,wmk ).

(W3) If w is a normal weighting vector then Aw is an idempotent
aggregation function.
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Quantitative weights

Observe that (W1) simply embeds the aggregation function A into
weighted aggregation functions. Further, due to (W2), a zero weight
wi in a weighting vector w means that we can omit the corresponding
score xi (and the weight wi = 0) from aggregation. Finally, the
property (W3) expresses the standard boundary condition for
extended aggregation functions, namely, that the aggregation of a
unique input x results in x , A(x) = x . Then Aw(x1, . . . , xn) with

n∑
i=1

wi = 1 can be seen as the aggregation of x with cardinality

n∑
i=1

wi = 1, i.e., Aw(x , . . . , x) = A(x) = x , which is exactly the

idempotency of the function Aw.
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Weighted sum

The standard summation on [0,+∞] can be understood as a typical
aggregation on [0,+∞]. For a given weighting vector

w = (w1, . . . ,wn), the weighted sum
n∑

i=1
wi xi is simply the sum of

inputs xi transformed by means of weights wi into new inputs
yi = wi xi . Note that the common multiplication of reals applied in the
next transformation can be straightforwardly deduced from the
original summation (and the standard order of real numbers), i.e., for
w ≥ 0, x ∈ [0,+∞]

w ·x = sup
(

y ∈ [0,+∞] | ∃ i , j ∈ N,
i
j
< w and u ∈ [0,+∞] such that

j∑
k=1

u < x and y =
i∑

k=1

u

)
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The weighted sum
n∑

i=1
wi xi for weights wi such that

n∑
i=1

wi = 1 is just

the weighted arithmetic mean. The above discussed approach can
be applied to any continuous symmetric associative aggregation
function defined on I = [0, c] with neutral element 0, as, for example,
to any continuous t–conorm S.
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Weighted t–conorm

The weighted t–conorm Sw : [0,1]n → [0,1], where n = dim w, is
simply defined as

Sw(x1, . . . , xn) = S(w1 � x1, . . . ,wn � xn)

where the transformed input data wi � xi are obtained from the
weights wi and the original inputs xi by means of a binary operation
� : [0,+∞[×[0,1]→ [0,1],

w � x = sup
(

y ∈ [0,1] | ∃ i , j ∈ N,
i
j
< w and u ∈ [0,1] such that

S(u, . . . ,u︸ ︷︷ ︸
j−times

) < x and y = S(u, . . . ,u︸ ︷︷ ︸
i−times

)

 .
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Quantitative weights

Note that 0� x = 0 and 1� x = x for all x ∈ [0,1]. In the case when
S has unit multipliers, i.e., S(x , y) = 1 for some x , y ∈ [0,1[ we

should require
n∑

i=1
wi ≥ 1 to keep the boundary condition

Sw(1, . . . ,1) = 1. Obviously, the weighted t–conorm Sw for any
continuous t–conorm S fulfills axioms (W1), (W2), (W3).
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Quantitative weights

Maxw(x1, . . . , xn) = max(xi | wi > 0), (due to w � x = x if w > 0);
Sw is lower semi–continuous (left continuous);
Sw (with some nontrivial wi /∈ {0,1}) is continuous if and only if
either S = Max or S is a continuous Archimedean t–conorm;
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If S is continuous Archimedean t–conorm with an additive
generator g : [0,1]→ [0,+∞], and w is a normal weighting

vector, then Sw(x1, . . . , xn) = g−1
(

n∑
i=1

wig(xi )

)
, i.e., Sw is a

weighted quasi–arithmetic mean (because
w � x = g−1(w · g(x)) for w ∈ [0,1]). It is either cancelative (if S
is a nilpotent t–conorm; e.g., the Yager t–conorm for p = 2, leads
to the weighted quadratic mean) or it has annihilator a = 1 (if S is
a strict t–conorm).
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Weighted t–norms

Weighted t–norms can be defined by the duality, i.e.,

Tw(x1, . . . , xn) = 1− Sw(1− x1, . . . ,1− xn),

where T is an arbitrary continuous t–norm and S = T d is the
corresponding dual t–conorm. Note that axioms (W1), (W2) and (W3)
are also fulfilled for weighted t–norms. Similarly as in the case of
weighted t–conorms we have the following facts:
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Minw(x1, . . . , xn) = min(xi | wi > 0);
Tw is upper semi–continuous (right continuous);
Tw (with some nontrivial wi /∈ {0,1}) is continuous if and only if
either T = min or T is a continuous Archimedean t–norm;
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If T is a continuous Archimedean t–norm with an additive
generator f : [0,1]→ [0,+∞], and w is a normal weighting
vector, then

Tw(x1, . . . , xn) = f−1

(
n∑

i=1

wi f (xi )

)
,

i.e., Tw is a weighted quasi–arithmetic mean. It is cancelative
whenever T is nilpotent and it has annihilator 0 whenever T is a
strict t–norm.
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For example, for the product t–norm Π, the relevant normal weighted
function Πw is just the weighted geometric mean.

Observe that if
n∑

i=1
wi = n, then for a continuous Archimedean t–norm

T generated by an additive generator f the corresponding weighted

operator is given by Tw(x1, . . . , xn) = f (−1)

(
n∑

i=1
wi f (xi )

)
what is just a

weighted generated t–norm as proposed by Dubois and Prade in
1985.
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In statistics, starting with integer weights ni , which are simply
frequencies of observations xi , the weighted mean is

Mn(x1, . . . , xn) =

n∑
i=1

ni xi

n∑
i=1

ni

,

where n = (n1, . . . ,nn). Because of the strong idempotency of the
standard arithmetic mean, Mn can be easily generalized into the form

Mw(x1, . . . , xn) =
n∑

i=1

wi xi , wi ≥ 0,
n∑

i=1

wi = 1.
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The previous property of the standard arithmetic mean we can apply
on any symmetric strongly idempotent extended aggregation function
A. The strong idempotency of a symmetric extended aggregation
function A allows to introduce integer and rational quantitative
weights – simply looking at them as cardinalities. In fact, we repeat
the standard approach applied to the arithmetic mean as mentioned
above. Indeed, for inputs x1, . . . , xn ∈ I and integer weights
w = (w1, . . . ,wn) ∈ (N ∪ {0})n, we put

Aw(x1, . . . , xn) = A(x1, . . . , x1︸ ︷︷ ︸
w1−times

, x2, . . . , x2︸ ︷︷ ︸
w2−times

, . . . , xn, . . . , xn︸ ︷︷ ︸
wn−times

).
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If k = (k , . . . , k), k ∈ N, is a constant weighting vector, the symmetry
and the strong idempotency of A result in Ak(x) = A(x). This fact
allows to define consistently the weighted aggregation in the case of
rational weights wi ∈ Q+. In that case we find such an integer k ∈ N
that k wi ∈ N ∪ {0} for all i = 1, . . . ,n, and we put

Aw(x) = Akw(x).
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Aw = Apw for each positive rational p and each rational weighting
vector w ∈ (Q+)n, w 6= (0, . . . ,0). Therefore we can deal with normed
(rational) weighting vectors only, that is, we may suppose that∑

i
wi = 1. The last problem we need to solve, is the case when also

irrational weights wi are admitted.
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Definition 1

Let A :
⋃

n∈N
In → I be a symmetric strongly idempotent extended

aggregation function. For any non–zero weighting vector
w = (w1, . . . ,wn) ∈ [0,∞[ n, the corresponding n–ary weighted
function Aw : In → I is defined as follows:

(i) If all weights wi are rational, we apply previous formulas.
(ii) If there is some irrational weight wi , denote w∗ = (w∗1 , . . . ,w

∗
n )

the corresponding normed weighting vector, that is,

w =

(∑
i

wi

)
w∗.
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Definition 1

For any m ∈ N, i ∈ {1, . . . ,n}, let

w (m)
i = min

(
j

m !
| j ∈ N ∪ {0}, j

m !
≥ w∗i

)
,

and w(m) = (w (m)
1 , . . . ,w (m)

n ).
Then w (m)

i ∈ Q+ and
∑

i
w (m)

i ≥ 1 for all m ∈ N (and if already all

weights w∗i ∈ Q+, then also w (m)
i = w∗i for all i and all sufficiently

large m) and we define

Aw(x) = lim inf
m→∞

Aw(m) (x) for all x ∈ In.
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Proposition 1

Let 4 = (w(n))∞n=1 be a weighting triangle, i.e., for each n ∈ N, let
w(n) = (w1,n, . . . ,wn,n) be a non–zero weighting vector. Under the
notations and requirements in Definition 1, define the function
A4 :

⋃
n∈N

In → I, A4(x) = Aw(n) (x), whenever x ∈ In. Then A4 is a well

defined idempotent extended aggregation function.
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Note that the approach allowing to introduce integer (rational) weights
as given in previous formulas was already applied to decomposable
idempotent symmetric extended aggregation functions by Fodor and
Roubens in 1994. However, our results cover a wider class of
symmetric strongly idempotent extended aggregation functions.
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Let g : [0,1]→ [0,1] be given by g(x) = 2 x − x2. Define the function

A :
⋃

n∈N
In → I by A(x1, . . . , xn) =

n∑
i=1

(
g
( i

n

)
− g

( i−1
n

))
x ′i , where x ′i is

the i–th order statistics from the sample (x1, . . . , xn). Then A, which is
an extended OWA operator, is a symmetric strongly idempotent
extended aggregation function which is not decomposable.
A(1,2,3) = g( 1

3 ) · 1 +
(
g( 2

3 )− g( 1
3 )
)
· 2 +

(
g(1)− g( 2

3 )
)
· 3 =

5
9 · 1 + 3

9 · 2 + 1
9 · 3 = 14

9 ; A(1,2) = g( 1
2 ) · 1 +

(
g(1)− g( 1

2 )
)
· 2 = 5

4 ;
A (A(1,2),A(1,2),3) = 13

9 .
Further observe that the limit in formula in Definition 1 need not exist,
in general.
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Qualitative weights

The idea of qualitative weights incorporation into aggregation is linked
to the transformation of the inputs by means of the corresponding
weights from [0,1] (as parameters expressing the importance of the
corresponding input coordinates/criteria),

Aw(x) = A(h(w1, x1), . . . ,h(wn, xn)),

where h : [0,1]× I → [0,1] is an appropriate binary function. This
idea was already applied, e.g., in expert systems, and for I = [0,1] it
was introduced by Yager in 2001, where h is a function called a RET
operator.
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Qualitative weights

Properties of function h

To ensure (W1), the following property of h is required:
(RET1) h(1, x) = x for all x ∈ I .
Similarly, to ensure (W2), A is supposed to have a neutral element e
and then
(RET2) h(0, x) = e for all x ∈ I.
Further, to ensure the monotonicity of Aw, one requires
(RET3) h(w , ·) is non-decreasing for all w ∈ [0,1].
Finally, to ensure the boundary conditions of aggregation functions,
one requires
(RET4) h(·,b) is non-decreasing for all b ≥ e;
(RET5) h(·,b) is non-increasing for all b ≤ e.
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Proposition 2

Let A :
⋃

n∈N
In → I be an extended aggregation function with neutral

element e and let h : [0,1]× I → I fulfil properties (RET1)–(RET5).
For any weighting vector w ∈ [0,1]n, max wi = 1, define the function
Aw by previous formula. Then Aw is an n-ary aggregation function
satisfying axioms (W1), (W2) and (W3).
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Example of RET operator

Typical example of a RET operator given by

h : h(w , x) = (x − e)w + e.

If e = 0 and I = [0,1], any binary semicopula fulfills (RET1)–(RET5),
while for e = 1, any fuzzy implication satisfying the neutrality
principle, which corresponds to (RET1), can be applied.
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In some special cases, h can also be defined for weights exceeding
1, that is, h maps [0,∞[×I into I. For example, recall the introduction
of weights for continuous t–norms and t–conorms. Take, e.g., a strict
t-norm T with an additive generator f : [0,1]→ [0,∞]. Then
h(w , x) = f−1 (wf (x)) , and for an arbitrary weighting vector w (the
only constraint is

∑
wi > 0) we can put Tw(x) = f−1 (

∑
wi f (xi )) .

Recall that special classes of anonymous (i.e., symmetric)
aggregation functions with neutral elements appropriate for qualitative
weights incorporation are triangular norms, triangular conorms,
uninorms.

R. Mesiar, STU Bratislava, Faculty of Civil Engineering, Dept. of Mathematics



Weighted Aggregation Functions Concluding remarks

Qualitative weights

In some special cases, h can also be defined for weights exceeding
1, that is, h maps [0,∞[×I into I. For example, recall the introduction
of weights for continuous t–norms and t–conorms. Take, e.g., a strict
t-norm T with an additive generator f : [0,1]→ [0,∞]. Then
h(w , x) = f−1 (wf (x)) , and for an arbitrary weighting vector w (the
only constraint is

∑
wi > 0) we can put Tw(x) = f−1 (

∑
wi f (xi )) .

Recall that special classes of anonymous (i.e., symmetric)
aggregation functions with neutral elements appropriate for qualitative
weights incorporation are triangular norms, triangular conorms,
uninorms.

R. Mesiar, STU Bratislava, Faculty of Civil Engineering, Dept. of Mathematics



Weighted Aggregation Functions Concluding remarks
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For a fixed score (x1, x2, . . . , xn), we will look for an appropriate
“projection” to the subspace of all unanymous scores (r , r , . . . , r),
r ∈ I, applying some defuzzification method. Thus, in fact, we will
define a function with inputs and outputs from some real interval I. In
the special case of the MOM defuzzification method we will
rediscover a generalization of the penalty method introduced by
Yager and Rybalov in 1997.
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Dissimilarity function

For a fixed real interval I and n ∈ N we introduce a dissimilarity
function D : In × In → [0,∞[ by

D(x,y) =
n∑

i=1

Di (xi , yi ),

where all Di : I2 → [0,∞[ are particular one-dimensional dissimilarity
functions, Di (x , y) = Ki (fi (x)− fi (y)), with Ki : ]−∞,∞[→ ]−∞,∞[
a convex function with the unique minimum Ki (0) = 0, and
fi : I → ]−∞,∞[, a strictly monotone continuous real function. If Ki
are even functions then D is a metric on In.
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Definition 2

For a given dissimilarity D, the function U : In → [0,1]I which assigns
to a score x the fuzzy subset Ux of I with the membership function

Ux(r) =
1

1 + D(x, r)
,

where r = (r , . . . , r), will be called a D–fuzzy utility function.
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Qualitative weights

Proposition 3

Each D–fuzzy utility function U assigns to each score x ∈ In a
continuous quasi-convex fuzzy quantity Ux, i.e., for all r , s ∈ I,
λ ∈ [0,1],

Ux(λ · r + (1− λ)s) ≥ min(Ux(r),Ux(s)),

and thus for any α ∈]0,1] the α–cut Uα
x = {r ∈ I | Ux(r) ≥ α} is a

closed subinterval of I in the standard topology.
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Qualitative weights

For each defuzzification method DEF acting on quasi–convex
(continuous) fuzzy quantities, we can assign to each score x a
characteristic DEF (Ux). Supposing that for any fuzzy quantity Q,
DEF (Q) ∈ supp(Q), DEF (U) is an In → I function. In general, this
function must be neither idempotent nor non–decreasing. MOM
defuzzification method (Mean of Maxima) yields both of these
properties and thus we will illustrate our approach on the MOM
defuzzification. Note that MOM(U)(x) = 1

2

(
inf Uα∗

x + sup Uα∗

x
)
,

where α∗ = sup{α ∈ ]0,1] |Uα
x 6= ∅}.

Definition 3.
For a given dissimilarity D, the MOM-based operator MOM(U) will be
denoted by AD.
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Qualitative weights

Example 1

(i) For D(x,y) =
n∑

i=1
(f (xi )− f (yi ))2, we have

AD(x) = f−1
(

1
n

n∑
i=1

f (xi )

)
, i.e., AD is a quasi–arithmetic mean.

(ii) For D(x,y) =
n∑

i=1
| xi − yi |, we have AD(x) = med(x1, . . . , xn), i.e.,

the median operator.
(iii) For n = 2, D(x,y) =| x1 − y1 | +(x2 − y2)2, we have

AD(x) = med(x1, x2 − 1/2, x2 + 1/2).
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Qualitative weights

Example 1

(iv) For D(x,y) =
n∑

i=1
Dc(xi , yi ), where

Dc(x , y) =

{
c(y − x), if x ≤ y
x − y , else , AD is the α–quantil (order

statistics) with α = 1
(1+c) .

(v) For D(x,y) =
n

max
i=1
| xi − yi | we have AD(x) =

min
i

xi +max
i

xi

2 , i.e., AD

is a special OWA operator.

R. Mesiar, STU Bratislava, Faculty of Civil Engineering, Dept. of Mathematics



Weighted Aggregation Functions Concluding remarks

Qualitative weights

Example 1

(iv) For D(x,y) =
n∑

i=1
Dc(xi , yi ), where

Dc(x , y) =

{
c(y − x), if x ≤ y
x − y , else , AD is the α–quantil (order

statistics) with α = 1
(1+c) .

(v) For D(x,y) =
n

max
i=1
| xi − yi | we have AD(x) =

min
i

xi +max
i

xi

2 , i.e., AD

is a special OWA operator.

R. Mesiar, STU Bratislava, Faculty of Civil Engineering, Dept. of Mathematics



Weighted Aggregation Functions Concluding remarks

Qualitative weights

Weighted dissimilarity Dw

Dissimilarity based approach to aggregation functions allows a
straightforward incorporation of weights. For a weighting vector
w = (w1, . . . ,wn), the weighted dissimilarity Dw will be given by

Dw(x,y) =
n∑

i=1
wi Di (xi , yi ) and then we will apply Definition 3 to obtain

the corresponding weighted aggregation function. In the case of
standard aggregation functions we have obtained in Example 1 (i)
and (ii), the standard weighted quasi–arithmetic mean and the
weighted median are obtained, respectively. The weighted
aggregation function corresponding to Example 1 (iii) is given by
ADw (x) = med(x1, x2 − w1

2w2
, x2 + w1

2w2
).
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Qualitative weights

Definition 4

Let Aw : In → I be a weighted aggregation function. Then the
operator A′w : In → I given by A′w(x) = Aw(xσ(1), . . . , xσ(n)), where
σ : {1, . . . ,n} → {1, . . . ,n} is a permutation for which
xσ(1) ≤ . . . ≤ xσ(n), will be called an OWAF.
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Qualitative weights

Evidently, starting from a weighted arithmetic mean Mw, Definition 4
yields the OWA operator M ′w. Note that the ordered weighted t–norm
T ′(0,1,1)(x , y , z) = β · γ and its dual ordered weighted t–conorm
S′(1,1,0)(x , y , z) = α + β − αβ, α = min(x , y , z), β =med(x , y , z),
γ = max(x , y , z), were found to be important in the study of fuzzy
preference structures.
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Concluding remarks

We have discussed some aspects of the theory of aggregation
functions, including the review of some properties and classes of
aggregation functions, and some construction methods. Especially,
we have splitted the properties of extended aggregation functions into
local properties, i.e., the properties of relevant n–ary aggregation
functions for each fixed n, and into global properties which are often
called “strong".
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Concluding remarks

Global properties properties constraint different arities functions
involved in each extended aggregation function and thus, in the next
development of the theory of aggregation functions they should be
investigated in more detail. We expect interesting generalizations
based on modifications of these standard approaches in the near
future.
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Concluding remarks

For example, copulas are due to their probabilistic nature strongly
connected with the standard operations, especially with the sum.
Switching to the possibilistic background which is related to the
maximum, we end up with semicopulas. However, there are many
appropriate pseudo–additions (t–conorms) varying between the sum
and maximum.
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Thanks for your attention!
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