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t-norm

Definition . A continuous t-norm is a map T : [0, 1] × [0, 1] → [0, 1]
such that for all x, y, z ∈ [0, 1] satisfies

1. T (T (x, y), z)) = T (x, T (y, z)) (Associativity)

2. T (x, y) = T (y, x) (Commutativity)

3. T (1, x) = x

4. T is a non-decreasing map

5. T is a continuous map.

NB. Commutativity can be derived from the other properties though the
proof is not trivial.



Most Important t-norms

Example .

1. The minimum t-norm min defined by min(x, y) for all x, y ∈ [0, 1].

2. The t-norm of Łukasiewicz defined by
T (x, y) = max(0, x+ y − 1).

3. The Product t-norm T (x, y) = x · y.

It is trivial to prove that the minimum t-norm is the greatest t-norm.



Archimedean t-norms

Definition . For a t-norm T x ∈ [0, 1] is an idempotent element if and
only if T (x, x) = x. E(T ) will be the set of idempotent elements of T .

Definition . A t-norm T is Archimedean if and only if E(T ) = {0, 1}.

Example . The t-norms Product and Łukasiewicz are Archimedean
t-norms, while the minimum t-norm is not.

Definition . For a t-norm T , x ∈ [0, 1] is nilpotent if and only if there
exists n ∈ N such that Tn(x) = 0. Nil(T ) will be the set of nilpotent
elements of T .
(Tn is defined recursively: Tn(x) = T (Tn−1(x), x)).

Theorem . If a t-norm T is continuous Archimedean, then Nil(T ) is
[0, 1) or {0}. In the first case, T is called non-strict Archimedean. In the
second case, T is called strict Archimedean.



Isomorphic t-norms

Definition . Two t-norms T , T ′ are isomorphic if and only if there exists a
bijective map f : [0, 1] → [0, 1] such that

(f ◦ T )(x, y) = T ′(f(x), f(y))

Theorem .

All continuous strict Archimedean t-norms are isomorphic to the
Product t-norm.

All continuous non-strict Archimedean t-norms are isomorphic to the
t-norm of Łukasiewicz.



Ling’s Theorem

Theorem . Ling’s Theorem
A continuous t-norm T is Archimedean if and only if there exists a
continuous and strictly decreasing function t : [0, 1] → [0,∞) with
t(1) = 0 such that

T (x, y) = t[−1](t(x) + t(y))

where t[−1] is the pseudo inverse of t, defined by

t[−1](x) =

{

t−1(x) if x ∈ [0, t(0)]

0 otherwise.

T is strict if t(0) = ∞ and non-strict otherwise. t is called an additive
generator of T and two generators of the same t-norm differ only by a
positive multiplicative constant.



Ordinal Sums

Example .

1. t(x) = 1 − x is an additive generator of the t-norm of Łukasiewicz.

2. t(x) = − log(x) is an additive generator of the Product t-norm.

Theorem . Given a continuous t-norm T there exists a set of at most
denombrable disjoint open intervals (ai, bi) such that in every set
[ai, bi] × [ai, bi] the t-norm is a reduced copy Ti of an Archimedean
t-norm and outside these sets the t-norm coincides with the minimum
one. T is then called an ordinal sum of Ti.



Indistinguishability Operator

Definition . Let X be a universe and T a t-norm. A T -indistinguishability
operator E on X is fuzzy relation E : X ×X → [0, 1] on X satisfying
for all x, y, z ∈ X

1. E(x, x) = 1 (Reflexivity)

2. E(x, y) = E(y, x) (Symmetry)

3. T (E(x, y), E(y, z)) ≤ E(x, z) (T -Transitivity)

E separates points if and only if E(x, y) = 1 implies x = y.

E(x, y) is interpreted as the degree of indistinguishability (or similarity)
between x and y.



Generation of Indistinguishability Operators

One of the most interesting issues related to indistinguishability
operators is their generation, which depends on the way in which the
data are given and the use we want to make of them. The four most
common ways are:

By calculating the T -transitive closure of a reflexive and symmetric
fuzzy relation (a proximity or tolerance relation).

By using the Representation Theorem.

By calculating a decomposable operator from a fuzzy subset.

By obtaining a transitive opening of a proximity relation.



Transitive Closure

Given a t-norm T , the transitive closure of a reflexive and symmetric
fuzzy relation R on a set X is the smallest T -indistinguishability

operator relation R on X greater than or equal to R.



The Crisp Case

In the crisp case, if R is represented by a graph, its transitive closure is
the smallest graph that contains R and with all its connected
components complete subgraphs. This produce the well known chain
effect or chaining.
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sup−T Product

Definition . Let R and S be two fuzzy relations on X and T a t-norm.
The sup−T product of R and S is the fuzzy relation R ◦ S on X
defined for all x, y ∈ X by

(R ◦ S)(x, y) = sup
z∈X

T (R(x, z), S(z, y)).

The nth power Rn of a fuzzy relation R is

Rn =

n times
︷ ︸︸ ︷

R ◦ ... ◦ R .

The crisp case:

xR2y if and only if ∃z such that xRz and zRy.



Graphs of R and R2
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Transitive Closure and sup−T Product

Theorem . Let R be a reflexive and symmetric fuzzy relation on a set X
and T a continuous t-norm. Then the fuzzy relation supn∈NR

n on X is
the T -transitive closure of R.

Proposition . The transitive closure of a reflexive and symmetric fuzzy
relation R is the intersection of all T -indistinguishability operators
greater than or equal to R.



The Representation Theorem

Definition . The residuation
−→
T of a t-norm T is the map

−→
T : [0, 1] × [0, 1] → [0, 1] defined for all x, y ∈ [0, 1] by

−→
T (x|y) = sup{α ∈ [0, 1] | T (x, α) ≤ y}.

Definition . The biresiduation
↔
T of a t-norm T is the map

↔
T : [0, 1] × [0, 1] → [0, 1] defined for all x, y ∈ [0, 1] by

↔
T (x, y) = T (

−→
T (x|y),

−→
T (y|x)) = min(

−→
T (x|y),

−→
T (y|x)).

The biresiduation is also known as the natural T -indistinguishability
operator associated to T and is also notated by ET .



If T is a continuous Archimedean t-norm with additive generator t,
then
ET (x, y) = t−1(|t(x) − t(y)|) for all x, y ∈ [0, 1].
As special cases,

If T is the Łukasiewicz t-norm, then

ET (x, y) =
↔
T (x, y) = 1 − |x− y| for all x, y ∈ [0, 1].

If T is the Product t-norm, then

ET (x, y) =
↔
T (x, y) = min(x

y ,
y
x) for all x, y ∈ [0, 1] where

z
0 = 1.

If T is the minimum t-norm, then

ET (x, y) =
↔
T (x, y) =

{

min(x, y) if x 6= y

1 otherwise.



Eµ

Proposition . Let µ be a fuzzy subset of X and T a continuous t-norm.
The fuzzy relation Eµ on X defined for all x, y ∈ X by

Eµ(x, y) = ET (µ(x), µ(y))

is a T -indistinguishability operator.

In the crisp case, when µ = A is a crisp subset of X , EA generates a
partition of X into A and its complementary set X −A, since in this
case EA(x, y) = 1 if and only if x and y both belong to A or to X − A.



Lemma . Let (Ei)i∈I be a family of T -indistinguishability operators on a
set X . The relation E on X defined for all x, y ∈ X by

E(x, y) = inf
i∈I

Ei(x, y)

is a T -indistinguishability operator.



Representation Theorem

Theorem . Representation Theorem. Let R be a fuzzy relation on a set
X and T a continuous t-norm. R is a T -indistinguishability operator if
and only if there exists a family (µi)i∈I of fuzzy subsets of X such that
for all x, y ∈ X

R(x, y) = inf
i∈I

Eµi
(x, y).

(µi)i∈I is called a generating family of R. A fuzzy subset belonging to a
generating family of R is called a generator of R. A generating family of
R with minimal cardinality is called a basis of E and the cardinality of the
corresponding set of indexes its dimension.

Lemma . µ is a generator of E if and only if Eµ ≥ E.



Generalization to T -transitive Fuzzy Relations

Theorem . Let R be a fuzzy relation on a set X and T a continuous
t-norm. R is T -transitive if and only if there exist two families (µi)i∈I

and (νi)i∈I of fuzzy subsets of X with µi ≥ νi ∀i ∈ I such that for all
x, y ∈ X

R(x, y) = inf
i∈I

−→
T (µi(x)|νi(y)).



Decomposable Indistinguishability Operators

Definition . Let T be a t-norm. The decomposable T -indistinguishability
operator Eµ generated by a fuzzy subset µ of X is defined for all
x, y ∈ X by

Eµ(x, y) =

{

T (µ(x), µ(y)) if x 6= y

1 otherwise.



Tetrahedric relation

Proposition . Let T be a continuous Archimedean t-norm with additive
generator t and µ a fuzzy subset of X . If the decomposable
T -indistinguishability operator Eµ on X generated by µ satisfies
Eµ(x, y) 6= 0 for all x, y ∈ X , then it generates the following
tetrahedric relation on X : Given four different elements x, y, z, t ∈ X ,

T (Eµ(x, y), Eµ(z, t)) = T (Eµ(x, z), Eµ(y, t)).



Transitive Openings

Definition . Let R be a proximity relation on a set X and T a t-norm. A
T -indistinguishability operator R on X is a T -transitive opening of R if
and only if

R ≤ R

If E is another T -indistinguishability operator on X satisfying
E ≤ R, then E ≤ R.



Complete linkage

In the complete linkage, the entries of a proximity relation R = (aij) on
a finite set X are modified according to the next algorithm to obtain a
min-transitive opening. Given two disjoint subsets Ci Cj of X its

similarity degree S is defined by S(Ci, Cj) = mini∈Ci,j∈Cj
(aij).

1. Initially a cluster Ci is assigned to every element xi of X (i.e. the
clusters of the first partition are singletons).

2. In each new step two clusters are merged in the following way.
If {C1, C2, ..., Ck} is the actual partition, then we must select the
two clusters Ci and Cj for which the similarity degree S(Ci, Cj) is
maximal. (If there are several such maximal pairs, one pair is picked
at random). The new cluster Ci ∪ Cj replaces the two clusters Ci

and Cj , and all entries of amn and anm of R with m ∈ Ci and

n ∈ Cj are lowered to S(Ci, Cj).

3. Step 2 is repeated until there remains one single cluster containing
all the elements of X .



Example . Let us consider the proximity R on X = {x1, x2, x3, x4} with matrix








x1 x2 x3 x4

x1 1 0.1 0.7 0.4

x2 0.1 1 0.4 0.3

x3 0.7 0.4 1 0.5

x4 0.4 0.3 0.5 1








.

The first partition is C1 = {x1}, C2 = {x2}, C3 = {x3}, C4 = {x4}. The greatest similarity degree

between clusters is S(C1, C3) = 0.7. These two clusters are merged to form C13 = {x1, x3}. The matrix

does not change in this step.

The new partition is C13, C2, C4. The similarity degrees are

S(C13, C2) = min(a12, a32) = min(0.1, 0.4) = 0.1

S(C13, C4) = min(a14, a34) = min(0.4, 0.5) = 0.4

S(C2, C4) = a24 = 0.3.

The greatest similarity degree is 0.4 and the new partition is therefore C134 = {x1, x3, x4}, C2 = {x2}.

The entries a14, a41, a34, a43 of the matrix R are replaced by 0.4 obtaining










x1 x2 x3 x4

x1 1 0.1 0.7 0.4

x2 0.1 1 0.4 0.3

x3 0.7 0.4 1 0.4

x4 0.4 0.3 0.4 1








.

In the last step, we merge the two clusters C134, C2. The similarity degree is

S(C134, C2) = min(a12, a32, a42) = min(0.1, 0.4, 0.3) = 0.1.

The transitive opening of R obtained by complete linkage is then








x1 x2 x3 x4

x1 1 0.1 0.7 0.4

x2 0.1 1 0.1 0.1

x3 0.7 0.1 1 0.4

x4 0.4 0.1 0.4 1








.



The Archimedean case

Proposition . Let R be a proximity relation on a finite set
X = {r1, r2, ..., rs} of cardinality s and T a t-norm. S is a
T -indistinguishability operator smaller than or equal to R if and only if its
entries satisfy the following system of inequalities:

0 ≤ S(ri, rj) ≤ R(ri, rj)

for all i, j = 1, 2, ..., s.

T (S(ri, rj), S(rj , rk)) ≤ S(ri, rk)

for all i, j, k = 1, 2, ..., s.

S(ri, rj) = S(rj , ri)

for all i, j = 1, 2, ..., s.



Example . Let us consider the reflexive and symmetric fuzzy relation R =







1 2

3
0

2

3
1 2

3

0 2

3
1







on

X = {a, b, c}. A fuzzy relation S on X with matrix S =







1 p q

p 1 r

q r 1







is an L-indistinguishability

operator smaller than or equal to R if and only if

0 ≤ p ≤ 2

3
T (q, p) ≤ r

0 ≤ q ≤ 0 T (q, r) ≤ p

0 ≤ r ≤ 2

3
T (r, p) ≤ q

T (p, q) ≤ r T (r, q) ≤ p

T (p, r) ≤ q.



If T is the t-norm of Łukasiewicz, then there are 8 possible solutions:

p = 0,
1

3
, q = 0, r = 0,

1

3
,
2

3

p =
2

3
, q = 0, r = 0,

1

3
.

Among them, there are 2 L-transitive openings of R. Namely






1 1
3 0

1
3 1 2

3

0 2
3 1




 ,






1 2
3 0

2
3 1 1

3

0 1
3 1




 .



Granularity and Extensional Sets

Extensional fuzzy subsets

Upper approximations

Lower approximations

Fuzzy Points



Granularity

According to L.A. Zadeh, granularity is one of the basic concepts that
underlie human cognition and the elements within a granule ’have to be
dealt with as a whole rather than individually’.

Informally, granulation of an object A results in a collection
of granules of A, with a granule being a clump of objects (or
points) which are drawn together by indistinguishability,
similarity, proximity or functionality.

L.A. Zadeh



Extensional Fuzzy Subsets

Definition . Let E be a T -indistinguishability operator on a set X . A
fuzzy subset µ of X is extensional with respect to E (or simply
extensional) if and only if for all x, y ∈ X

T (E(x, y), µ(y)) ≤ µ(x).

HE will be the set of extensional fuzzy subsets of X with respect to E.

This definition fuzzifies the predicate

If x and y are equivalent and y ∈ µ, then x ∈ µ.



Proposition . Let E be a T -indistinguishability operator on X , µ a fuzzy
subset of X and Eµ the T -indistinguishability operator generated by µ.
µ ∈ HE if and only if Eµ ≥ E.

Hence HE coincides with the set of generators of E.

Lemma . Given a T-indistinguishability operator E on a set X and an
element x ∈ X , the column µx = E(x, ·) of x is extensional.



Proposition . Let E be a T -indistinguishability operator on a set X . The
following properties are satisfied for all µ ∈ HE , (µi)i∈I a family of
extensional fuzzy subsets and α ∈ [0, 1].

1.
∨

i∈I µi ∈ HE .

2.
∧

i∈I µi ∈ HE .

3. T (α, µ) ∈ HE .

4.
−→
T (µ|α) ∈ HE .

5.
−→
T (α|µ) ∈ HE .

Theorem . Let H be a subset of [0, 1]X satisfying the properties of the
last proposition. Then there exists a T -indistinguishability operator E on
X such that H = HE . E is uniquely determined and it is generated
(using the Representation Theorem) by the family of elements of H .



Upper and Lower Approximations



Upper and Lower Approximations



Upper and Lower Approximations



Upper and Lower Approximations



The Map φE

Definition . Let E be a T-indistinguishability operator on a set X . The

map φE : [0, 1]X → [0, 1]X is defined for all x ∈ X by

φE(µ)(x) = sup
y∈X

T (E(x, y), µ(y)) .



Proposition . For all µ, µ′ ∈ [0, 1]X ,

1. If µ ≤ µ′ then φE(µ) ≤ φE(µ′).

2. µ ≤ φE(µ).

3. φE(
∨

i∈I µi) =
∨

i∈I φE(µi).

4. φE(φE(µ)) = φE(µ).

5. φE({x})(y) = φE({y})(x)

6. φE(T (α, µ)) = T (α, φE(µ)).

Theorem . Let φ : [0, 1]X → [0, 1]X be a map satisfying the properties of the last

proposition. The fuzzy relation Eφ on X defined for all x, y ∈ X by

Eφ(x, y) = φ({x})(y)

is a T -indistinguishability operator on X .



Proposition . µ ∈ HE if and only if φE(µ) = µ.

Hence, HE is characterized as the set of fixed points of φE .

Proposition . Im(φE) = HE .

Proposition . For any µ ∈ [0, 1]X , φE(µ) = infµ′∈HE
{µ ≤ µ′}.

So, φE(µ) is the most specific extensional set that contains µ (i.e.
µ ≤ φE(µ)) and in this sense it is the optimal upper approximation of µ
in HE .



The Map ψE

Definition . Let E be a T-indistinguishability operator on a set X . The

map ψE : [0, 1]X → [0, 1]X is defined by

ψE(µ)(x) = inf
y∈X

−→
T (E(x, y)|µ(y)) ∀x ∈ X.



Proposition . For all µ, µ′ ∈ [0, 1]X , we have:

1. µ ≤ µ′ ⇒ ψE(µ) ≤ ψE(µ′).

2. ψE(µ) ≤ µ.

3. ψE(
∧

i∈I µi) =
∧

i∈I ψE(µi).

4. ψE(ψE(µ)) = ψE(µ).

5. ψE(
−→
T ({x} |α))(y) = ψE(

−→
T ({y} |α))(x).

6. ψE(
−→
T (α|µ)) =

−→
T (α|ψE(µ)).

Theorem . Let ψ : [0, 1]X → [0, 1]X be a map satisfying the properties of the last

proposition. The fuzzy relation Eψ on X defined for all x, y ∈ X by

Eψ(x, y) = inf
α∈[0,1]

−→
T (ψ(

−→
T ({x} |α)(y)|α)).

is a T -indistinguishability operator on X .



Proposition . µ ∈ HE if and only if ψE(µ) = µ.

Hence, HE is also characterized as the set of fixed points of ψE .

Proposition . Im(ψE) = HE .

Proposition . For any µ ∈ [0, 1]X , ψE(µ) = supµ′∈HE
{µ′ ≤ µ}.

So, ψE(µ) is the greatest extensional set contained in µ (i.e.
µ ≥ φE(µ)) and in this sense it is the optimal lower approximation of µ
in HE .



Fuzzy Points

Definition . Let E be a T -indistinguishability operator on a set X .
µ ∈ HE is a fuzzy point of X with respect to E if and only if

T (µ(x1), µ(x2)) ≤ E(x1, x2) ∀x1, x2 ∈ X.

PX will denote the set of fuzzy points of X with respect to E.



The Map ΛE

Definition . Let E be a T -indistinguishability operator on a set X . The

map ΛE : [0, 1]X → [0, 1]X is defined by

ΛE(µ)(x) = inf
y∈X

−→
T (µ(y)|E(y, x)) ∀x ∈ X.



Proposition . Let µ be a normal fuzzy subset of X (i.e. ∃x0 ∈ X such
that µ(x0) = 1) ΛE(µ) = µ if and only if µ is a column µx of E.

Proposition . Let E be a T -indistinguishability operator on X and
µ ∈ HE . ΛE(µ) ≥ µ if and only if µ ∈ PX .

Theorem . Let E be a T -indistinguishability operator on X . Fix(ΛE) is
the set of all fuzzy points µ ∈ PX which are maximal in PX .



Fuzzy Points and the Representation Theorem

Proposition . Let (µi)i∈I be a family of fuzzy subsets of X and E the
T -indistinguishability operator generated by this family
(E(x, y) = infi∈I Eµi

(x, y)). Then E is the greatest
T -indistinguishability operator for which all the fuzzy subsets of the
family are extensional.

Proposition . Let (µi)i∈I be a family of normal fuzzy subsets of X and
(xi)i∈I a family of elements of X such that µi(xi) = 1 for all i ∈ I .
Then the following two properties are equivalent.

a) There exists a T -indistinguishability operator E on X such that

µi(x) = E(x, xi) ∀i ∈ I ∀x ∈ X.

b) For all i, j ∈ I ,

sup
x∈X

T (µi(x), µj(x)) ≤ inf
y∈X

ET (µi(y), µj(y)).



Proposition . Let (µi)i∈I be a family of normal fuzzy subsets of X and
(xi)i∈I a family of elements of X such that µi(xi) = 1 for all i ∈ I
satisfying

sup
x∈X

T (µi(x), µj(x)) ≤ inf
y∈X

ET (µi(y), µj(y)).

for all i, j ∈ I . Then the T -indistinguishability operator E = supi∈I E
µi

is the smallest T -indistinguishability operator on X satisfying

µi(x) = E(x, xi) ∀i ∈ I, ∀x ∈ X.



Indistinguishability Operators Between Fuzzy Subsets.

Definition . The natural T -indistinguishability operator on [0, 1]X is

defined for all µ, ν ∈ [0, 1]X by

ET (µ, ν) = inf
x∈X

ET (µ(x), ν(x)).



Geometric Aspects of Indistinguishability Operators

Archimedean t-norms and pseudo distances

Betweenness Relations

S-metrics

min-indistinguishability Operators



Generalized Metric Spaces

Definition . Let X be a set, (M, ◦,≤) an ordered semi group with
identity element e and m a map m : X ×X →M . (X,m) is called a
generalized metric space and m a generalized metric on X if and only if
for all x, y, z ∈ X

1. m(x, x) = e

2. m(x, y) = m(y, x)

3. m(x, y) ◦m(y, z) ≥ m(x, z).

m separates points if and only if

m(x, y) = e implies x = y.



Examples

Metric spaces are of course generalized metric spaces with
(M, ◦,≤) = (R+,+,≤).

A set X with a T -indistinguishability operator E is a generalized
metric space valued on ([0, 1], T,≤T ). (This encapsulates the very
intuitive idea that two objects are similar, equivalent or
indistinguishable when they are close and allow us to look at
T -indistinguishability operators as similarities and distances at the
same time.)

S-metrics. The semi group is the unit interval with a t-conorm S and
the usual order.



Homomorphisms Between Indistinguishability Operators

Definition . Given two t-norms T, T ′, a T -indistinguishability operator E
on a set X and T ′-indistinguishability E′ on X ′, a morphism ϕ between
E and E′ is a pair of maps ϕ = (h, f) such that the following diagram
is commutative

X ×X
E

−−−→ [0, 1]


yh×h



yf

X ′ ×X ′ E′

−−−→ [0, 1]

(i.e. f(E(x, y)) = E′(h(x), h(y)) for all x, y ∈ X).

When h and f are bijective maps, ϕ is called an isomorphism.



Maps Between T-indistinguishability Operators

Definition . A metric transform is a sub-additive and non-decreasing
map s : [0,∞) → [0,∞) with s(0) = 0.

Proposition . Let E be a T -indistinguishability operator on a set X with
T a continuous Archimedean t-norm with an additive generator t and f a
map f : [0, 1] → [0, 1]. f ◦ E is a T -indistinguishability operator on X
if and only if there exists a metric transform s such that the restriction
f|Im(E) of f to the image of E satisfies

f|Im(E) = t[−1] ◦ s ◦ t.



Example

Example . Let s : [0,∞) → [0,∞) be the map defined by s(x) = xα

for all x ∈ [0,∞) with 0 < α ≤ 1. s is a metric transform, since
s(0) = 0 and

s(x+ y) = (x+ y)α ≤ xα + yα = s(x) + s(y).

If E is a T -indistinguishability operator on a set X with T the
Łukasiewicz t-norm, t(x) = 1 − x an additive generator, then

E′(x, y) = f(E(x, y)) = (t−1 ◦s◦ t)(E(x, y)) = 1− (1−E(x, y))α

is also a T -indistinguishability operator on X .
Let T be the Product t-norm and t(x) = − ln x an additive generator of
T . If E is a T -indistinguishability operator on a set X , then

E′(x, y) = e−(− ln E(x,y))α

also is a T -indistinguishability operator on
X .



min-indistinguishability Operators

Lemma . Let E be a min-indistinguishability operator on a set X . If for
x, y, z ∈ X E(x, y) ≤ E(y, z) ≤ E(x, z), then E(x, y) = E(y, z).

Proposition . Let E be a min-indistinguishability operator on a set X
and f : [0, 1] → [0, 1] a map in the unit interval. f ◦ E is a
min-indistinguishability operator on X if and only if f(1) = 1 and f
restricted to Im(E) is a non-decreasing function.



Indistinguishability Operators and Isomorphic t-norms

Definition . Two continuous t-norms T, T ′ are isomorphic if and only if
there exists a bijective map f : [0, 1] → [0, 1] such that

f ◦ T = T ′ ◦ (f × f).

Isomorphisms f are continuous and increasing maps.

All strict continuous Archimedean t-norms are isomorphic. In
particular, they are isomorphic to the Product t-norm.

All non-strict continuous Archimedean t-norms are isomorphic. In
particular, they are isomorphic to the Łukasiewicz t-norm.



Proposition . Let f be a bijective map f : [0, 1] → [0, 1], T , T ′ two

continuous Archimedean t-norms and t, t′ additive generators of T and
T ′ respectively. If f is an isomorphism between T and T ′, then there

exists α ∈ (0, 1] such that f = t′[−1](αt).

Example . The only automorphism of the Łukasiewicz t-norm is the
identity map.
Indeed, taking t(x) = 1 − x, then f(x) = 1 − α + α x and the only
bijective linear map in [0,1] is the identity.
The automorphisms of the Product t-norm are f(x) = xα with α > 0.
More general, the only automorphism of a non-strict Archimedean
t-norm is the identity map and for strict t-norms, every α > 0 produces
an isomorphism fα with fα 6= fβ if α 6= β.



Proposition . If E is a T -indistinguishability operator on a set X for a
given t-norm T and f is a continuous, increasing and bijective map
f : [0, 1] → [0, 1], then f ◦ E is a T ′-indistinguishability operator with

T ′ = f ◦ T ◦ (f−1 × f−1).



Proposition . Let T be a continuous t-norm and E a
T -indistinguishability operator on a set X . If (µi)i∈I is a generating
family of E and f a continuous, increasing and bijective map
f : [0, 1] → [0, 1], then (f ◦ µi)i∈I is a generating family of the similar

T ′-indistinguishability operator f ◦ E.

Corollary . Similar indistinguishability operators have the same
dimension.

Corollary . With the preceding notations, (µi)i∈I is a basis of E if and
only if (f ◦ µi)i∈I is a basis of f ◦ E.



Isometries Between Indistinguishability Operators

Definition . Given two sets X,Y and two T -indistinguishability
operators E,F on X,Y respectively, a map τ : X → Y is an isometry
if and only if E(x, y) = F (τ(x), τ(y)) ∀x, y ∈ X .



When Eµ = Eν?

Theorem . Let T be a continuous Archimedean t-norm, t a generator of
T and µ, ν fuzzy subsets of X . Eµ = Eν if and only if ∀x ∈ X one of
the following conditions holds:

a) t(µ(x)) = t(ν(x)) + k1 with k1 ≥ sup{−t(ν(x))|x ∈ X}
or

b) t(µ(x)) = −t(ν(x)) + k2 with k2 ≥ sup{t(ν(x))|x ∈ X}.

Moreover, if T is non-strict, then k1 ≤ inf{t(0) − t(ν(x)) | x ∈ X}
and k2 ≤ inf{t(0) + t(ν(x)) | x ∈ X}.



Example

Example . If T is the Łukasiewicz t-norm, with the previous notations

µ(x) = ν(x) + k with inf{1 − ν(x)} ≥ k ≥ sup
x∈X

{−ν(x)}

or

µ(x) = −ν(x) + k with inf
x∈X

{1 + ν(x)} ≥ k ≥ sup
x∈X

{ν(x)}.

Example . If T is the product t-norm, then

µ(x) =
ν(x)

k
with k ≥ sup

x∈X
{ν(x)}

or

µ(x) =
k

ν(x)
with k ≤ inf

x∈X
{ν(x)}.



When Eµ = Eν for the minimum

Theorem . Let T be the t-norm minimum and let µ be a fuzzy subset of
X such that there exists an element xM of X with µ(xM ) ≥ µ(x)
∀x ∈ X . Let Y ⊂ X be the set of elements x of X with
µ(x) = µ(xM ) and s = sup{µ(x) such that x ∈ X − Y }. A fuzzy
subset ν of X generates the same T -indistinguishability operator than µ
if and only if

∀x ∈ X − Y µ(x) = ν(x) and ν(y) = t with s ≤ t ≤ 1 ∀y ∈ Y.



Isometries

Theorem . Let T be a continuous t-norm and Eµ the
T -indistinguishability operator on X generated by the fuzzy subset µ of
X . The map τ : X → X is an isometry if and only if there exists a
fuzzy subset ν of X with Eµ = Eν and µ ◦ τ = ν.

Corollary . Let T be a continuous t-norm and Eµ, Eν two
T -indistinguishability operators on X,Y respectively generated by µ and
ν. A bijective map τ : X → Y is an isometry if and only if µ = v ◦ τ .



The group of isometries of ([0, 1], ET )

.
Theorem . Let T be a non-strict continuous Archimedean t-norm T and
t an additive generator of T . The group of isometries of ([0, 1], ET )
consists of the identity and the strong negation generated by t.

Definition . Given a t-norm T and a ∈ [0, 1], the map
ta : [0, 1] → [0, 1] defined by ta(x) = T (a, x) will be called the
T -translation by a.

Theorem . Let T be a strict continuous Archimedean t-norm. The group
of isometries of ([0, 1], ET ) is the set of T -translations of [0, 1] (i.e.
{ta|a ∈ [0, 1]}).

Theorem . Let T be the t-norm minimum. The group of isometries of
([0, 1], ET ) consists of only the identity map.



Relating Indistinguishability Operators and distances

1. If ϕ is a strong negation, S the dual t-conorm of T with respect to ϕ
and E a T -indistinguishability operator on a set X , then
m = ϕ ◦ E is an S-metric on X . In particular, if T is greater than
or equal to the Łukasiewicz t-norm, then m is a pseudodistance on
X that is a distance if and only if E separates points. If T is the
minimum t-norm, then m is a pseudoultrametric.

2. If T is a continuous Archimedean t-norm and t an additive
generator of T , then E is a T -indistinguishability operator on a set
X if and only if d = t ◦ E is a pseudodistance on X and E
separates points if and only if d is a distance on X .



Definition . Let T be a t-norm and ϕ a strong negation. Then
S = ϕ ◦ T ◦ ϕ is the dual t-conorm of T with respect to ϕ. In this case
(T, S, ϕ) is called a De Morgan triplet.

Definition . Given a t-conorm S and a set X a map
m : X ×X → [0, 1] is an S-pseudometric on X if and only if for all
x, y, z ∈ X

1. m(x, x) = 0

2. m(x, y) = m(y, x)

3. S(m(x, y),m(y, z)) ≥ m(x, z).

m is an S-metric if and only if it also satisfies

m(x, y) = 0 implies x = y.



Duality between S-pseudometrics and T -indistinguishability Operators

Proposition . Let (T, S, ϕ) be a De Morgan triplet and X a set. E is a
T -indistinguishability operator on X if and only if m = ϕ ◦ E is an
S-pseudometric on X . E separates points if and only if m is an
S-metric.

Corollary . Let T be a t-norm greater than or equal to the t-norm of
Łukasiewicz. E is a T -indistinguishability on a set X if and only if
m = ϕ ◦ E is a pseudodistance on X . E separates points if and only if
m is a distance on X .



Indistinguishability Operators and Pseudodistances. Archimedean Case

Proposition . Let T be a continuous Archimedean t-norm and t an
additive generator of T .

1. If d is a pseudo distance on a set X , then E = t[−1] ◦ d is a
T -indistinguishability operator on X .

2. If E is a T -indistinguishability on X , then d = t ◦ E is a pseudo
distance on X .

d is a distance on X if and only if E separates points.



This bijection is not canonical but depends o the generator t. The next
proposition relates the distances and indistinguishability operators
generated by different additive generators of a t-norm.

Proposition . Let T be a continuous Archimedean t-norm and t and u
two additive generators of T such that u = α · t with α > 0.

1. If d is a pseudo distance on a set X , E = t[−1] ◦ d and

E′ = u[−1] ◦ d, then for all x, y ∈ X , E′(x, y) = t[−1]
(

d(x,y)
α

)

.

2. If E is a T -indistinguishability operator on X , d = t ◦ E and
d′ = u ◦ E, then for all x, y ∈ X , d′(x, y) = α · t(E(x, y)).



Betweenness Relations

Definition . A (metric) betweenness relation on a set X is a ternary

relation B on X (i.e. B ⊆ X3) satisfying for all x, y, z ∈ X

1. (x, y, z) ∈ B ⇒ x 6= y 6= z 6= x

2. (x, y, z) ∈ B ⇒ (z, y, x) ∈ B

3. (x, y, z) ∈ B ⇒ (y, z, x) /∈ B, (z, x, y) /∈ B

4. (x, y, z) ∈ B and (x, z, t) ∈ B ⇒ (x, y, t) ∈ B and
(y, z, t) ∈ B.

If (x, y, z) ∈ B, then y is said to be between x and z.
If given any three elements of B, one of them is between the other two,
then the betweenness relation is called linear or total.
If d is a distance defined on a set X , the relation ”y is between x and z
when d(x, y) + d(y, z) = d(x, z)” satisfies the axioms of a
betweenness relation.



Proposition . Let T be a continuous Archimedean t-norm and E a
T -indistinguishability operator separating points on a set X such that
E(x, y) 6= 0 for all x, y ∈ X . The ternary relation B on X defined by
(x, y, z) ∈ B if and only if x 6= y 6= z 6= x and

T (E(x, y), E(y, z)) = E(x, z)

is a betweenness relation on X .



Linear Betweenness Relations and One Dimensional Indistinguishability Operators

Proposition . Let T be a continuous Archimedean t-norm and E a
T -indistinguishability operator separating points on X such that there
exists min{E(x, y) | x, y ∈ X} 6= 0 for all x, y ∈ X . E is one
dimensional if and only if the betweenness relation B determined by E
on X is linear.

Corollary . Let T be a continuous Archimedean t-norm and E a
T -indistinguishability operator separating points on a finite set X of
cardinality n satisfying E(x, y) 6= 0 ∀x, y ∈ X . E is one dimensional if

and only if the cardinality of B is 2 ·
(
n
3

)
.



Radial Betweenness Relations and Decomposable Indistinguishability Operators

Definition . A betweenness relation B on a set X is called radial if and
only if there exists an element a ∈ X such that a is between any other
two elements of X and these are the only elements of B (i.e.
(x, y, z) ∈ B if and only if y = a). The element a is called the center of
the betweenness relation.

Proposition . Let T be a continuous Archimedean t-norm, E a
T -indistinguishability operator separating points on a finite set X of
cardinality n satisfying E(x, y) 6= 0 ∀x, y ∈ X and B the betweenness
relation generated on X by E. E is decomposable if and only if B is

radial or E can be extended to a T -indistinguishability operator E on

X = X ∪ {a} with a /∈ X in such a way that the betweenness relation

B generated on X by E is radial with center a.



The Length of an Indistinguishability Operator and Betweenness Relations

Definition . Given a t-norm T and a T -indistinguishability operator E on
a set X , the length of E is the maximum k ∈ N (if it exists) such that
there exists a reflexive and symmetric fuzzy relation R on X with

Rk−1 6= Rk = E and length(E) = ∞ otherwise.

Note that length(E) ≥ 1, since E1 = E, and if X is finite of cardinality
n, then length(E) ≤ n− 1.



Proposition . Let E be a T -indistinguishability operator on a finite set X
of cardinality n. E is one dimensional if and only if length(E) = n− 1.

Proposition . Let E be a T -indistinguishability operator on a finite set X
of cardinality n and length(E) = k. Then the dimension of E is less
than or equal to n− k.

Proposition . Let E be a T -indistinguishability operator on a finite set X
and B the betweenness relation defined by E on X . Then,
length(E) = 1 if and only if B = ∅.

Proposition . If E is a decomposable T -indistinguishability operator on
a finite set X , then length(E) ≤ 2.



Fuzzy Betweenness Relations

Definition . A fuzzy betweenness relation with respect to a given strict
Archimedean t-norm T on a set X is a fuzzy ternary relation, i.e. a map

X ×X ×X → [0, 1]

(x, y, z) → xyz

satisfying the following properties for all x, y, z, t ∈ X

1. xxy = 1

2. xyz = zyx

3. (a) T (xyz, xzt) ≤ xyt

(b) T (xyz, xzt) ≤ yzt

4. If x 6= y, then xyx < 1.



Proposition . The crisp part of a fuzzy betweenness relation in the set of
triplets of different elements of X is a classical betweenness relation on
X .

Proposition . Let T be a continuous strict Archimedean t-norm and E a
T -indistinguishability operator separating points on X with E(x, y) 6= 0
for all x, y ∈ X . Then the fuzzy ternary relation on X defined by

xyz =
−→
T (E(x, z)|T (E(x, y), E(y, z)))

is a fuzzy betweenness relation.

Reciprocally,

Proposition . Let T be a continuous strict Archimedean t-norm. If xyz is
a fuzzy betweenness relation on a set X , then the fuzzy relation E on X
defined by E(x, y) = xyx is T -indistinguishability operators on X .



Replacing an Indistinguishability Operator by a low dimensional One

Example . Let T be the product t-norm and E the T -indistinguishability
operator on the set X = {1, 2, 3, 4, 5} of cardinality 5 given by the
following matrix











1 0.74 0.67 0.50 0.41

0.74 1 0.87 0.65 0.53

0.67 0.87 1 0.74 0.60

0.50 0.65 0.74 1 0.80

0.41 0.53 0.60 0.80 1











.

The associated fuzzy betweenness relation is given by the table in the
next slide.



x y z xyz x y z xyz x y z xyz x y z xyz

1 2 3 0.96 2 3 1 0.79 3 4 1 0.55 4 5 1 0.66

1 2 4 0.96 2 3 4 0.99 3 4 2 0.55 4 5 2 0.65

1 2 5 0.96 2 3 5 0.98 3 4 5 0.99 4 5 3 0.65

1 3 2 0.79 2 4 1 0.44 3 5 1 0.37 5 1 2 0.57

1 3 4 0.99 2 4 3 0.55 3 5 2 0.37 5 1 3 0.46

1 3 5 0.98 2 4 5 0.98 3 5 4 0.65 5 1 4 0.26

1 4 2 0.44 2 5 1 0.29 4 1 2 0.57 5 2 1 0.96

1 4 3 0.55 2 5 3 0.37 4 1 3 0.45 5 2 3 0.77

1 4 5 0.98 2 5 4 0.65 4 1 5 0.26 5 2 4 0.46

1 5 2 0.29 3 1 2 0.57 4 2 1 0.96 5 3 1 0.98

1 5 3 0.37 3 1 4 0.45 4 2 3 0.76 5 3 2 0.98

1 5 4 0.66 3 1 5 0.46 4 2 5 0.43 5 3 4 0.56

2 1 3 0.57 3 2 1 0.96 4 3 1 0.99 5 4 1 0.98

2 1 4 0.57 3 2 4 0.76 4 3 2 0.99 5 4 2 0.98

2 1 5 0.57 3 2 5 0.77 4 3 5 0.56 5 4 3 0.99



The dimension of E is 3. Nevertheless it is close to the one-dimensional
T -indistinguishability operator E′ with matrix











1 0.76 0.67 0.50 0.40

0.76 1 0.88 0.68 0.53

0.67 0.88 1 0.75 0.60

0.50 0.66 0.75 1 0.80

0.40 0.53 0.60 0.80 1











whose associated fuzzy betweenness relation is shown in the next slide.



x y z xyz x y z xyz x y z xyz x y z xyz

1 2 3 1 2 3 1 0.78 3 4 1 0.56 4 5 1 0.64

1 2 4 1 2 3 4 1 3 4 2 0.56 4 5 2 0.64

1 2 5 1 2 3 5 1 3 4 5 1 4 5 3 0.64

1 3 2 0.78 2 4 1 0.43 3 5 1 0.36 5 1 2 0.58

1 3 4 1 2 4 3 0.56 3 5 2 0.36 5 1 3 0.45

1 3 5 1 2 4 5 1 3 5 4 0.64 5 1 4 0.25

1 4 2 0.43 2 5 1 0.28 4 1 2 0.58 5 2 1 1

1 4 3 0.56 2 5 3 0.36 4 1 3 0.45 5 2 3 0.78

1 4 5 1 2 5 4 0.64 4 1 5 0.25 5 2 4 0.43

1 5 2 0.28 3 1 2 0.58 4 2 1 1 5 3 1 1

1 5 3 0.36 3 1 4 0.45 4 2 3 0.78 5 3 2 1

1 5 4 0.64 3 1 5 0.45 4 2 5 0.43 5 3 4 0.56

2 1 3 0.58 3 2 1 1 4 3 1 1 5 4 1 1

2 1 4 0.58 3 2 4 0.78 4 3 2 1 5 4 2 1

2 1 5 0.58 3 2 5 0.78 4 3 5 0.56 5 4 3 1



The crisp part of the fuzzy betweenness relation generated by E′ is a

linear betweenness relation, since its cardinality is 2 ·
(5
3

)
.



Calculation of the Dimension

Definition . Let E be a T -indistinguishability on a set X . In HE we
define the following relation ≤H

µ ≤H ν if and only if Eµ ≥ Eν .

Lemma . ≤H is a reflexive and transitive relation.

We define an equivalence relation ∼ on HE in order to obtain a partial
ordering:

µ ∼ ν if and only if Eµ = Eν .

Definition . The quotient set HE/ ∼ will be denoted Hp
E and µ ∈ HE

will be called maximal if and only if its equivalence class µ is maximal on
Hp

E .



Lemma . Let M be the set of maximal elements of HE . Then M is a
generating family of E.

Proposition . Let (µi)i∈I be a generating family of E. Then there exists

a generating family (µ′i)i∈I of maximal generators with the same index
set.

Corollary . It is always possible to find a basis of maximal elements for a
given T -indistinguishability operator.



If µ is a generator of a given T -indistinguishability operator E on
X = {a1, a2, ..., an}, then Eµ ≥ E or, in a more explicit way,

ET (µ(ai), µ(aj))) ≥ E(ai, aj) ∀i, j = 1, 2.....n.

Proposition . The set of generators of a T -indistinguishability operator
E on X is the solution of the following system of inequalities:

−→
T (max(xi, xj)|min(xi, xj)) ≤ E(ai, aj) 0 ≤ xi, xj ≤ 1 i, j = 1, 2, ..., n.



Proposition . If T is the Product t-norm, then HE is the polyhedron
solution of the system of inequalities

xi − E(ai, aj) · xj ≤ 0 0 ≤ xi, xj ≤ 1 i, j = 1, 2, ..., n.

Proposition . If T is the Łukasiewicz t-norm, then HE is the polyhedron
solution of the system of inequalities

xi − xj ≤ 1 − E(ai, aj) 0 ≤ xi, xj ≤ 1 i, j = 1, 2, ..., n.

Proposition . If T is the minimum t-norm, then HE is the solution of
system of inequalities

min(xi, xj) ≥ E(ai, aj) xi 6= xj 0 ≤ xi, xj ≤ 1 i, j = 1, 2, ..., n.



Proposition . If T is the Product or the Łukasiewicz t-norm, then the
elements of a basis of a T -indistinguishability operator E are located in
the (hyper) faces of HE .

Proposition . If T is the product or the Łukasiewicz t-norm, then it is
always possible to find a basis of E with all its elements on the edges of
HE .

Since the elements of a preceding basis belong to different edges and,
since the number of edges is finite, a method to calculate a basis of E
can be derived:



Procedure to calculate a basis of a T -indistinguishability E on a finite set
X(cardinality of X = n) for T the Łukasiewicz or the Product t-norm:

1. Calculate the edges of the set HE .

2. Count = 1.

3. Build a set A obtained taking a generator from each edge of HE .

4. Define B(Count) = the set of subsets of A of Count elements.

5. Select a set H of B(Count) and build the T -indistinguishability
operator EH generated by H .

6. If EH = E then end.

7. Do step 5 and step 6 for all different elements of B(Count).

8. Count = Count+ 1. Go to 4.



Example . Let us consider the Product-indistinguishability operator E on
a set X of cardinality 4 represented by the matrix








1 0.12 0.41 0.13

0.12 1 0.12 0.23

0.41 0.12 1 0.27

0.13 0.23 0.27 1










The set of edges in this case is

{(0.12 1.00 0.29 0.23), (0.41 0.12 1.00 0.52),

(0.12 1.00 0.25 0.92), (0.41 0.12 1.00 0.27),

(0.12 1.00 0.29 0.92), (0.66 0.23 0.27 1.00),

(0.12 1.00 0.12 0.44), (1.00 0.12 0.48 0.13),

(0.12 1.00 0.12 0.23), (1.00 0.12 0.41 0.13),

(0.13 0.23 0.32 1.00), (1.00 0.12 0.41 0.52),

(0.13 0.23 0.27 1.00), (1.00 0.12 1.00 0.27),

(0.29 1.00 0.12 0.44), (1.00 0.12 1.00 0.52),

(0.29 1.00 0.12 0.23), (1.00 0.57 0.41 0.13),

(0.35 1.00 0.85 0.23), (1.00 0.57 0.48 0.13)}

and a basis is

{(0.12 1.00 0.25 0.92), (0.29 1.00 0.12 0.23)}.



When the cardinality of the universe of discourse X is 3, there is a nice geometric interpretation of these results.

Example . The set of generators HE of the Product-indistinguishability operator E on X = {a1, a2, a3}

with matrix






1 0.23 0.37

0.23 1 0.26

0.37 0.26 1







is the part of the pyramid with vertex on the origin of coordinates with edges passing through the points

A, B, C, D, E, F contained in [0, 1]3.

A = (0.37, 0, 26, 1) B = (1, 0.23, 0.86)

C = (1, 0.23, 0.37) D = (0.72, 1, 0.26)

E = (0.23, 1, 0.26) F = (0.23, 1, 0.61).



E is bidimensional and a basis of E is given by the two fuzzy subsets

B = (1, 0.23, 0.86) F = (0.23, 1, 0.61).



Example . The set of generators HE of the T -indistinguishability operator E on X = {a1, a2, a3} (T the

Łukasiewicz t-norm) with matrix






1 0.32 0.42

0.32 1 0.36

0.42 0.36 1







is the part of the prism with edges parallel to the line x = y = z passing through the points

A, B, C, D, E, F contained in [0, 1]3.

A = (0.68, 0, 0.64) B = (0.68, 0, 0.1)

C = (0.58, 0.64, 0) D = (0, 0.68, 0.04)

E = (0, 0.68, 0.58) F = (0.06, 0, 0.64).

A basis of E is given by the two fuzzy subsets

A = (0.68, 0, 0.64) B = (0.68, 0, 0.1)

and E is bidimensional.





Transitive closure

Let R be a reflexive and symmetric fuzzy relation on a finite set
X = {a1, a2, ..., an} of cardinality n and T the Łukasiewicz t-norm.

Let us recall that R ≤ R and if E is another T -indistinguishability

operator on X satisfying R ≤ E, then R ≤ E.
HR is the polyhedron solution of the system of inequalities

xi − xj ≤ 1 −R(ai, aj) 0 ≤ xi, xj ≤ 1 i, j = 1, 2, ..., n.

But this system is equivalent to

xi − xj ≤ 1 −R(ai, aj) 0 ≤ xi, xj ≤ 1 i, j = 1, 2, ..., n.

Therefore from R we can calculate the set HR and from here we can

calculate R finding a basis and then generating R from it.



Note that the inequalities

xi − xj < 1 − R(ai, aj) with R(ai, aj) < R(ai, aj)

are superfluous and therefore the numbers R(ai, aj) that are greater

than R(ai, aj) are Q-linear combination of the R(ai, aj) that coincide

with their respective R(ai, aj). Therefore, the more numbers R(ai, aj)

different from their corresponding R(ai, aj), the less edges will have
HR and the smaller its dimension. In other words,

The farther a reflexive and symmetric relation R is from its

transitive closure R, the smaller the dimension of R.



min-indistinguishability Operators

Definition . A map m : X ×X → R is a pseudo ultrametric if and only
if for all x, y, z ∈ X

1. m(x, x) = 0.

2. m(x, y) = m(y, x).

3. max(m(x, y),m(y, z)) ≥ m(x, z).

If m(x, y) = 0 implies x = y, then it is called an ultrametric.



Balls of Ultrametrics

Proposition . Let m be an ultrametric on X . Then

1. If B(x, r) denotes the ball of centre x and radius r and
y ∈ B(x, r), then B(x, r) = B(y, r). (All elements of a ball are
its centre).

2. If two balls have non-empty intersection, then one of them is
contained in the other one.



Proposition . Let E be a fuzzy relation on a set X . E is a
min-indistinguishability operator on X if and only if m = 1 − E is a
pseudo ultrametric.

Corollary . The cardinality of Im(E) = {E(x, y)} is smaller than or
equal to the cardinality of X . In particular, if X is finite of cardinality n
and E is identified with a matrix, then the number of different entries of
the matrix is less or equal than n.

Definition . Let E be a fuzzy relation on X and α ∈ [0, 1], the α-cut of
E is the set Eα of pairs (x, y) ∈ X ×X such that E(x, y) ≥ α.

Proposition . Let E be a fuzzy relation on X . E is a
min-indistinguishability operator on X if and only if for each α ∈ [0, 1],
the α-cut of E is an equivalence relation on X .



min-indistinguishability Operators and Hierarchical Trees

Definition . A hierarchical tree of a finite set X is a sequence of
partitions A1, A2, ..., Ak of X such that every partition refines the
preceding one.
A hierarchical tree is indexed if every partition Ai has associated a
non-negative number λi and λi < λi+1 for all i = 1, 2, ..., k − 1.

Proposition . Every min-indistinguishability operator E on a finite set X
generates an indexed hierarchical tree on X .

Reciprocally,

Proposition . Every indexed hierarchical tree A1, A2, ..., Ak of a finite
set X with λk = 1 generates a min-indistinguishability operator E on
X .



Example . Let X = {a, b, c, d, e} and E the min-indistinguishability operator with matrix










a b c d e

a 1 0.5 0.2 0.2 0.2

b 0.5 1 0.2 0.2 0.2

c 0.2 0.2 1 0.2 0.2

d 0.2 0.2 0.2 1 0.7

e 0.2 0.2 0.2 0.7 1
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