Fuzzy Methods for Constructing Multi-Criteria Decision Functions

Ronald R. Yager
Machine Intelligence Institute
Iona College
ryager@iona.edu

Mixing Words and Mathematics

Building Decision Functions Using
 Information Expressed in Natural
 Language

Beginning

Bellman, R. E., \& Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science 17:4, 141-164

- Equivalence of Goals and Constraints (Criteria)
- Representation of Criteria as Fuzzy Sets Over the Set of Alternatives
- Linguistic Formulation of Relationship Between Criteria

Linguistic Expression of Multi-Criteria Decision
 Problem

Satisfy Criteria one and Criteria two and

- $D=C_{1}$ and C_{2} and $\ldots \ldots$. and C_{n}
- "and" as intersection of fuzzy sets
- $\mathrm{D}=\mathrm{C}_{1} \cap \mathrm{C}_{2} \cap \ldots \ldots \ldots \cap \mathrm{C}_{\mathrm{n}}$
- $D(x)=\operatorname{Min}_{j}\left[C_{j}(x)\right]$
- Choose x^{*} with biggest $\mathrm{D}(\mathrm{x})$

Importance Weighting in Multi-Criteria
 Decision Problem

Yager, R. R. (1978). Fuzzy decision making using unequal objectives.
Fuzzy Sets and Systems 1,87-95

- Associate with criteria C_{j} importance α_{j}
- $\alpha_{j} \in[0,1]$ and $C_{j}(x) \in[0,1]$
- $\mathrm{D}(\mathrm{x})=\operatorname{Min}_{\mathrm{j}}\left[\left(\mathrm{C}_{\mathrm{j}}(\mathrm{x})\right)^{\alpha} \mathrm{j}\right]$
- $\operatorname{Min}[a, 1]=\mathrm{a} \&\left(\mathrm{C}_{\mathrm{j}}(\mathrm{x})\right)^{0}=1 \Rightarrow$ No effect of $\alpha_{\mathrm{j}}=0$ $\operatorname{Min}[a, b]: S m a l l e r$ argument more effect

Anxiety In Decision Making

- Alternatives: $\mathrm{X}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots \ldots . ., \mathrm{x}_{\mathrm{q}}\right\}$
- Decision function D

$$
\mathrm{D}\left(\mathrm{x}_{\mathrm{j}}\right) \text { is satisfaction by } \mathrm{x}_{\mathrm{j}}
$$

- x^{*} best alternative
- Anxiety associated with selection

$$
\operatorname{Anx}(\mathrm{D})=\mathrm{D}\left(\mathrm{x}^{*}\right)-\frac{1}{\mathrm{q}-1} \sum_{\mathrm{x}_{\mathrm{j}} \neq \mathrm{x}^{*}} \mathrm{D}\left(\mathrm{x}_{\mathrm{j}}\right)
$$

Ordinal Scales

- $\mathrm{Z}=\left\{\mathrm{z}_{0}, \mathrm{z}_{1}, \mathrm{z}_{3}, \ldots \ldots \ldots . . \mathrm{z}_{\mathrm{m}}\right\}$

$$
\mathrm{z}_{\mathrm{i}}>\mathrm{z}_{\mathrm{k}} \quad \text { if } \mathrm{i}>\mathrm{k} \quad \text { (only ordering) }
$$

- Operations: Max and Min and Negation

$$
\operatorname{Neg}\left(z_{j}\right)=z_{m-j} \quad \text { (reversal of scale) }
$$

- Linguistic values generally only satisfy ordering Very High > High > Medium > Low > Very Low
- Often people only can provide information with this type of granulation

Ordinal Decision Making

Yager, R. R. (1981). A new methodology for ordinal multiple aspect decisions based on fuzzy sets. Decision Sciences 12, 589-600

- Criteria satisfactions and importances ordinal
- $\alpha_{j} \in \mathrm{Z}$ and $\mathrm{C}_{\mathrm{j}}(\mathrm{x}) \in \mathrm{Z}$
- $\mathrm{D}(\mathrm{x})=\operatorname{Min}_{\mathrm{j}}\left[\mathrm{G}_{\mathrm{j}}(\mathrm{x})\right]$

$$
\mathrm{G}_{\mathrm{j}}(\mathrm{x})=\operatorname{Max}\left(\mathrm{C}_{\mathrm{j}}(\mathrm{x}), \operatorname{Neg}\left(\alpha_{\mathrm{j}}\right)\right)
$$

- $\alpha_{j}=z_{0} \Rightarrow G_{j}(x)=z_{m} \quad$ (No effect on $\left.D(x)\right)$

$$
\alpha_{\mathrm{j}}=\mathrm{z}_{\mathrm{m}} \Rightarrow \mathrm{G}_{\mathrm{j}}(\mathrm{x})=\mathrm{C}_{\mathrm{j}}(\mathrm{x})
$$

- Linguistic Expression: Satisfy Criteria one and Criteria two and

$$
\begin{aligned}
& \mathrm{D}=\mathrm{C}_{1} \text { and } \mathrm{C}_{2} \text { and } \ldots \ldots . . \text { and } \mathrm{C}_{\mathrm{n}} \\
& \mathrm{D}=\mathrm{C}_{1} \cap \mathrm{C}_{2} \cap \ldots \ldots . \cap \mathrm{C}_{\mathrm{n}} \\
& \mathrm{D}(\mathrm{x})=\operatorname{Min}_{\mathrm{j}}\left[\mathrm{C}_{\mathrm{j}}(\mathrm{x})\right]
\end{aligned}
$$

- Linguistic Expression: Satisfy Criteria one or Criteria two or

$$
\begin{aligned}
& \mathrm{D}=\mathrm{C}_{1} \text { or } \mathrm{C}_{2} \text { or } \ldots \ldots . . \text { or } \mathrm{C}_{\mathrm{n}} \\
& \mathrm{D}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \ldots . . \cup \mathrm{C}_{\mathrm{n}} \\
& \mathrm{D}(\mathrm{x})=\operatorname{Max}_{\mathrm{j}}\left[\mathrm{C}_{\mathrm{j}}(\mathrm{x})\right]
\end{aligned}
$$

Building M-C Decision Functions

- Linguistic Expression

Satisfy Criteria one and Criteria two
or
Satisfy Criteria one or two and criteria 3
or
Satisfy criteria 4 and Criteria 3 or Criteria 2

- Mathematical Formulation
$\mathrm{D}=\left(\mathrm{C}_{1} \cap \mathrm{C}_{2}\right) \cup\left(\left(\mathrm{C}_{1} \cup \mathrm{C}_{2}\right) \cap \mathrm{C}_{3}\right) \cup\left(\mathrm{C}_{4} \cap\left(\mathrm{C}_{3} \cup \mathrm{C}_{2}\right)\right)$

Generalizing "and" Operators t-norm operators generalize "and" (Min)

- $\mathrm{T}:[0,1] \times[0,1] \rightarrow[0,1]$

1. $\mathrm{T}(\mathrm{a}, \mathrm{b})=\mathrm{T}(\mathrm{b}, \mathrm{a}) \quad$ Commutative
2. $\mathrm{T}(\mathrm{a}, \mathrm{b}) \geq \mathrm{T}(\mathrm{c}, \mathrm{d})$ if $\mathrm{a} \geq \mathrm{c} \& \mathrm{~b} \geq \mathrm{d}$ Monotonic
3. $\mathrm{T}(\mathrm{a}, \mathrm{T}(\mathrm{b}, \mathrm{c}))=\mathrm{T}(\mathrm{T}(\mathrm{a}, \mathrm{b}), \mathrm{c})$ Associative
4. $\mathrm{T}(\mathrm{a}, 1)=\mathrm{a} \quad$ one as identity

- Many Examples of t-norms

$$
\begin{aligned}
& \mathrm{T}(\mathrm{a}, \mathrm{~b})=\operatorname{Min}[\mathrm{a}, \mathrm{~b}] \quad \mathrm{T}(\mathrm{a}, \mathrm{~b})=\mathrm{ab} \quad \text { (product) } \\
& \mathrm{T}(\mathrm{a}, \mathrm{~b})=\operatorname{Max}(\mathrm{a}+\mathrm{b}-1,0) \\
& \mathrm{T}(\mathrm{a}, \mathrm{~b})=\operatorname{Max}\left(1-\left((1-\mathrm{a})^{\lambda}+(1-\mathrm{b})^{\lambda}\right)^{\frac{1}{\lambda}}, 0\right)
\end{aligned}
$$

Family parameterized by λ

Generalizing "or" Operators
 t-conorm operators generalize "or" (Max)

- S: $[0,1] \times[0,1] \rightarrow[0,1]$

1. $\mathrm{S}(\mathrm{a}, \mathrm{b})=\mathrm{S}(\mathrm{b}, \mathrm{a}) \quad$ Commutative
2. $\mathrm{S}(\mathrm{a}, \mathrm{b}) \geq \mathrm{S}(\mathrm{c}, \mathrm{d})$ if $\mathrm{a} \geq \mathrm{c} \& \mathrm{~b} \geq \mathrm{d}$ Monotonic
3. $\mathrm{S}(\mathrm{a}, \mathrm{S}(\mathrm{b}, \mathrm{c}))=\mathrm{S}(\mathrm{S}(\mathrm{a}, \mathrm{b}), \mathrm{c})$ Associative
4. $\mathrm{S}(\mathrm{a}, 0)=\mathrm{a} \quad$ zero as identity

- Many Examples of t-norms

$$
\begin{aligned}
& S(a, b)=\operatorname{Max}[a, b] \quad S(a, b)=a+b-a b \\
& S(a, b)=\operatorname{Min}(a+b, 1) \\
& S(a, b)=\operatorname{Min}\left(\left(a^{\lambda}+b^{\lambda}\right)^{\frac{1}{\lambda}}, 1\right)
\end{aligned}
$$

Family parameterized by λ

Alternative Forms of Basic M-C functions

- $\mathrm{D}=\mathrm{C}_{1}$ and C_{2} and and C_{n}
- $\mathrm{D}(\mathrm{x})=\mathrm{T}_{\mathrm{j}}\left[\mathrm{C}_{\mathrm{j}}(\mathrm{x})\right]$
- $\mathrm{D}(\mathrm{x})=\Pi_{\mathrm{j}} \mathrm{C}_{\mathrm{j}}(\mathrm{x}) \quad$ (product)
- $D=C_{1}$ or C_{2} or $\ldots \ldots \ldots$ or C_{n}
- $\mathrm{D}(\mathrm{x})=\mathrm{S}_{\mathrm{j}}\left[\mathrm{C}_{\mathrm{j}}(\mathrm{x})\right]$
- $\mathrm{D}(\mathrm{x})=\operatorname{Min}\left(\sum_{\mathrm{j}} \mathrm{C}_{\mathrm{j}}(\mathrm{x}), 1\right] \quad$ (Bounded sum)
- Use of families of t-norms enables a parameterized representation of multi-criteria decision functions
- This opens the possibility of learning the associated parameters from data
$\begin{array}{rrlrr}\mathrm{C}_{1} & \mathrm{C}_{2} & \mathrm{C}_{3} & \mathrm{C}_{4} & \mathrm{D} \\ .3 & .5 & 1 & .7 & .5\end{array}$

Generalized Importance Weighted "anding"

- $D=C_{1}$ and C_{2} and and C_{n}
- Associate with criteria C_{j} importance α_{j}
- $\mathrm{D}(\mathrm{x})=\mathbf{T}_{\mathrm{j}}\left[\mathrm{G}_{\mathrm{j}}(\mathrm{x})\right]$

$$
\mathrm{G}_{\mathrm{j}}(\mathrm{x})=\mathbf{S}\left(\mathrm{C}_{\mathrm{j}}(\mathrm{x}), 1-\alpha_{\mathrm{j}}\right)
$$

- $\mathrm{D}(\mathrm{x})=\operatorname{Min}_{\mathrm{j}}\left[\left(\operatorname{Max}\left(\mathrm{C}_{\mathrm{j}}(\mathrm{x}), 1-\alpha_{\mathrm{j}}\right)\right)\right.$

$$
\mathrm{D}(\mathrm{x})=\prod\left(\operatorname{Max}\left(\mathrm{C}_{\mathrm{j}}(\mathrm{x}), 1-\alpha_{\mathrm{j}}\right)\right.
$$

Generalized Importance Weighted "oring"

- $D=C_{1}$ or C_{2} or $\ldots \ldots$ or C_{n}
- Associate with criteria C_{j} importance α_{j}
- $\mathrm{D}(\mathrm{x})=\mathrm{S}_{\mathrm{j}}\left[\mathrm{H}_{\mathrm{j}}(\mathrm{x})\right]$

$$
\mathrm{H}(\mathrm{x})=\mathrm{T}\left(\mathrm{C}_{\mathrm{j}}(\mathrm{x}), \alpha_{\mathrm{j}}\right)
$$

- $\mathrm{D}(\mathrm{x})=\operatorname{Max}_{\mathrm{j}}\left[\operatorname{Min}\left(\alpha_{\mathrm{j}}, \mathrm{C}_{\mathrm{j}}(\mathrm{x})\right)\right]$
$D(x)=\operatorname{Max}_{j}\left[\alpha_{j} C_{j}(x)\right]$
$D(x)=\operatorname{Min}\left(\sum_{j} \alpha_{j} C_{j}(x), 1\right]$

Some Observations

- If any $\mathrm{C}_{\mathrm{j}}(\mathrm{x})=0$ then

$$
\mathbf{T}\left(\mathrm{C}_{1}(\mathrm{x}), \mathrm{C}_{1}(\mathrm{x}), \ldots \ldots, \mathrm{C}_{1}(\mathrm{x})\right)=0
$$

- Imperative of this class of decision functions is All criteria must be satisfied
- If any $\mathrm{C}_{\mathrm{j}}(\mathrm{x})=1$ then

$$
\mathbf{S}\left(\mathrm{C}_{1}(\mathrm{x}), \mathrm{C}_{1}(\mathrm{x}), \ldots \ldots, \mathrm{C}_{1}(\mathrm{x})\right)=1
$$

- Imperative of this class of decision functions is At least one criteria must be satisfied

$$
D(x)=\frac{1}{n} \sum_{j=1}^{n} C_{j}(x)
$$

Mean Operators

- $\mathbf{M}: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}$

1. Commutative
2. Monotonic
$\mathbf{M}\left(a_{1}, a_{2}, \ldots ., a_{n}\right) \geq \mathbf{M}\left(b_{1}, b_{2}, \ldots ., b_{n}\right)$ if $a_{j} \geq b_{j}$
3. Bounded

$$
\operatorname{Min}_{j}\left[a_{j}\right] \leq \mathbf{M}\left(a_{1}, a_{2}, \ldots . ., a_{n}\right) \leq \operatorname{Max}_{j}\left[a_{j}\right]
$$

(Idempotent: $\mathbf{M}(\mathrm{a}, \mathrm{a}, \ldots ., \mathrm{a})=\mathrm{a}$

- Many Examples of Mean Operators
$\operatorname{Min}_{j}\left[\mathrm{a}_{\mathrm{j}}\right], \operatorname{Max}_{\mathrm{j}}\left[\mathrm{a}_{\mathrm{j}}\right]$, Median, Average
OWA Operators
Choquet Aggregation Operators

Ordered Weighted Averaging Operators OWA Operators

Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man and Cybernetics 18, 183-190

OWA Aggregation Operators

- Mapping F: $R^{n} \rightarrow R$ with $F\left(a_{1}, \ldots . ., a_{n}\right)=\sum_{j=1}^{n} w_{j} b_{j}$
b_{j} is the $j^{\text {th }}$ largest of the a_{j}
weights satisfy: 1. $w_{j} \in[0,1]$ and 2. $\sum_{j=1}^{n} w_{j}=1$
- Essential feature of the OWA operator is the reordering operation, nonlinear operator
- Weights not associated directly with an argument but with the ordered position of the arguments
- $\mathrm{W}=\left[\begin{array}{lll}\mathrm{w}_{1} & \mathrm{w}_{2} & \mathrm{w}_{\mathrm{n}}\end{array}\right]$ called the weighting vector
- $B=\left[\begin{array}{lll}b_{1} & b_{2} & b_{n}\end{array}\right]$ is ordered argument vector
- $F\left(a_{1}, \ldots . ., a_{n}\right)=W B^{T}$
- If $\operatorname{id}(j)$ is index of j th largest of a_{i} then

$$
F\left(a_{1}, \ldots ., a_{n}\right)=\sum_{j=1}^{n} w_{j} a_{i d(j)}
$$

$$
a_{i d(j)}=b_{j}
$$

Form of Aggregation is Dependent Upon the Weighting Vector Used

OWA Aggregation is Parameterized by W

Some Examples

- $W^{*}: w_{1}=1 \& w_{j}=0$ for $j \neq 1$ gives

$$
\mathrm{F}^{*}\left(\mathrm{a}_{1}, \ldots . ., \mathrm{a}_{\mathrm{n}}\right)=\operatorname{Max}_{\mathrm{i}}\left[\mathrm{a}_{\mathrm{i}}\right]
$$

- $\mathrm{W}_{*}: \mathrm{w}_{\mathrm{n}}=1 \& \mathrm{w}_{\mathrm{j}}=0$ for $\mathrm{j} \neq \mathrm{n}$ gives

$$
F^{*}\left(a_{1}, \ldots . ., a_{n}\right)=\operatorname{Min}_{i}\left[a_{i}\right]
$$

- $\mathrm{W}_{\mathrm{N}}: \mathrm{w}_{\mathrm{j}}=\frac{1}{\mathrm{n}}$ for all j gives the simple average

$$
\mathrm{F}^{*}\left(\mathrm{a}_{1}, \ldots ., \mathrm{a}_{\mathrm{n}}\right)=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}}
$$

Attitudinal Character of an OWA Operator

- $A-C(W)=\frac{1}{n-1} \sum_{j=1}^{n} w_{j}(n-j)$
- Characterization of type of aggregation
- $\mathrm{A}-\mathrm{C}(\mathrm{W}) \in[0,1]$
- $\mathrm{A}-\mathrm{C}\left(\mathrm{W}^{*}\right)=1 \quad \mathrm{~A}-\mathrm{C}\left(\mathrm{W}_{\mathrm{N}}\right)=0.5 \quad \mathrm{~A}-\mathrm{C}\left(\mathrm{W}_{*}\right)=0$
- Weights symmetric $\left(w_{j}=w_{n-j+1}\right) \Rightarrow A-C(W)=0.5$

An A-C value near one indicates a bias toward the larger values in the argument (Or-like /Max-like)

An A-C value near zero indicates a bias toward the smaller values in the argument (And-like /Minlike)

An A-C value near 0.5 is an indication of a neutral type aggregation

Measure of Dispersion an OWA Operator

- $\operatorname{Disp}(\mathrm{W})=-\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{w}_{\mathrm{j}} \ln \left(\mathrm{w}_{\mathrm{j}}\right)$
- Characterization amount of information used
- $\operatorname{Disp}\left(\mathrm{W}^{*}\right)=\operatorname{Disp}\left(\mathrm{W}_{*}\right)=0 \quad$ (Smallest value)

$$
\mathrm{A}-\mathrm{C}\left(\mathrm{~W}_{\mathrm{N}}\right)=\ln (\mathrm{n}) \quad(\text { Largest value })
$$

- Alternative Measure

$$
\operatorname{Disp}(W)=\sum_{j=1}^{\mathrm{n}}\left(\mathrm{w}_{\mathrm{j}}\right)^{2}
$$

Some Further Notable Examples

- Median: if n is odd then $\frac{\mathrm{w}_{\mathrm{n}+1}}{2}=1$

$$
\text { if } \mathrm{n} \text { is even then } \frac{\mathrm{w}_{\frac{\mathrm{n}}{2}}=\frac{\mathrm{wn}_{2}}{2}+1=\frac{1}{2} \text { }}{}
$$

- kth best: $\mathrm{w}_{\mathrm{k}}=1$ then $\mathrm{F}^{*}\left(\mathrm{a}_{1}, \ldots . ., \mathrm{a}_{\mathrm{n}}\right)=\mathrm{a}_{\mathrm{id}(\mathrm{k})}$
- Olympic Average: $\mathrm{w}_{1}=\mathrm{w}_{\mathrm{n}}=0$, other $\mathrm{w}_{\mathrm{j}}=\frac{1}{\mathrm{n}-2}$
- Hurwicz average: $w_{1}=\alpha, w_{n}=1-\alpha$, other $w_{j}=0$

OWA Operators Provide a Whole family of functions for the construction of mean like

 multi-Criteria decision functions$$
D(x)=F_{W}\left(C_{1}(\mathbf{x}), C_{2}(\mathbf{x}), \ldots \ldots, C_{n}(x)\right)
$$

Selection of Weighting Vector Some Methods

1. Direct choice of the weights
2. Select a notable type of aggregation
3. Learn the weights from data
4. Use characterizing features
5. Linguistic Specification

Learning the Weights from Data

- Filev, D. P., \& Yager, R. R. (1994). Learning OWA operator weights from data. Proceedings of the Third IEEE International Conference on Fuzzy Systems, Orlando, 468-473.
- Filev, D. P., \& Yager, R. R. (1998). On the issue of obtaining OWA operator weights. Fuzzy Sets and Systems 94, 157-169.
- Torra, V. (1999). On learning of weights in some aggregation operators: the weighted mean and the OWA operators. Mathware and Softcomputing 6, 249-265

Algorithm for Learning OWA Weights

- Express OWA weights as $w_{j}=\frac{\mathrm{e}^{\lambda_{j}}}{\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{e}^{\lambda_{\mathrm{k}}}}$
- Use data of observations to learn λ_{i}
$\left(a_{1}, \quad, a_{n}\right)$ and aggregated value d
- Order arguments to get b_{j} for $\mathrm{j}=1$ to n
- Using current estimate of weights calculate

$$
\widehat{\mathrm{d}}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{w}_{\mathrm{j}} \mathrm{~b}_{\mathrm{j}}
$$

- Updated estimates of λ_{j}

$$
\lambda_{j}^{\prime}=\lambda_{j}-\alpha w_{j}\left(b_{i}-\widehat{d}\right)(\widehat{d}-d)
$$

Using Characterizing Features

- $A-C(W)=\frac{1}{n-1} \sum_{j=1}^{n} w_{j}(n-j)$
- $\mathrm{A}-\mathrm{C}(\mathrm{W})=1 \quad$ "orlike"
$\mathrm{A}-\mathrm{C}(\mathrm{W})=0 \quad$ "andlike"
- $\alpha \in[0,1]$ degree of "orness"
- Determine W with specified α

O'Hagan Method

- Specify α and determine weights to maximize the dispersion
- Max $-\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{w}_{\mathrm{j}} \ln \left(\mathrm{w}_{\mathrm{j}}\right)$
such that

$$
\begin{aligned}
& \text { 1. } \frac{1}{n-1} \sum_{j=1}^{n} w_{j}(n-j)=\alpha \\
& \text { 2. } \sum_{j=1}^{n} w_{j}=1 \\
& \text { 3. } w_{j} \geq 0
\end{aligned}
$$

Linguistic Specification of Weights

1. Linguistically specify aggregation imperative of multiple criteria
2. Translate linguistic imperative into Fuzzy Set
3. Use fuzzy set to determine OWA weights

Computing with Information Specified in a Natural Language

Quantifier Guided Criteria Aggregation

- D = Min: All criteria must be satisfied
$\mathrm{D}=\mathrm{Max}$: At least one criteria must be satisfied
"Quantifier" criteria must be satisfied
- Other examples of linguistic quantifiers:
most, almost all, at least half only a few, at least $1 / 3$
- Monotonic quantifiers

Representation of Linguistic Quantifier

- Represent quantifier as fuzzy subset Q on unit interval
- $\mathrm{Q}(\mathrm{r})$ is the degree the proportion r satisfies the concept of the quantifier
- $\mathrm{Q}:[0,1] \rightarrow[0,1]$

1. $\mathrm{Q}(0)=0$
2. $Q(1)=1$
3. $\mathrm{Q}(\mathrm{r}) \geq \mathrm{Q}(\mathrm{p})$ if $\mathrm{r}>\mathrm{p}$

BUM Function

Obtaining OWA Weights from Quantifier

Quantifier

- $w_{j}=Q\left(\frac{j}{n}\right)-Q\left(\frac{j-1}{n}\right)$

Functionally Guided Criteria Aggregation

- Specify a Bum function f: $[0,1] \rightarrow[0,1]$

$$
\begin{aligned}
& \text { 1. } f(0)=0 \\
& \text { 2. } f(1)=1
\end{aligned}
$$

$$
\text { 3. } f(r) \geq f(p) \text { if } r>p
$$

- $w_{j}=f\left(\frac{j}{n}\right)-f\left(\frac{j-1}{n}\right)$
- Linear function $f(r)=r \quad$ Quantifier \Leftrightarrow Some

$$
\mathrm{w}_{\mathrm{j}}=\frac{1}{\mathrm{n}}
$$

Importance Weighted OWA Multi-Criteria
 Decision Functions

- Importance v_{i} associated criteria C_{i}
- Aggregation Agenda

Quantifier Important Criteria are Satisfied Most Important Criteria are Satisfied

- $\mathrm{D}(\mathrm{x})=\mathrm{F}_{\mathrm{Q} / \mathrm{V}}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots . ., \mathrm{a}_{\mathrm{n}}\right)$

$$
\mathrm{a}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}}(\mathrm{x})
$$

Calculation of $D(x)=F_{Q / v}\left(a_{1}, a_{2}, \ldots . ., a_{n}\right)$

- Order the criteria satisfactions the a_{i}
- $\mathrm{a}_{\mathrm{id}(\mathrm{j})}$ is $\mathrm{j}^{\text {th }}$ largest $\& \mathrm{v}_{\mathrm{id}(\mathrm{j})}$ its importance
- Calculate $S_{j}=\sum_{k=1}^{j} v_{i d(k)} \quad \& T=S_{n}=\sum_{k=1}^{n} v_{i d(k)}$
- Determine OWA Weights

$$
\widetilde{w}_{j}=Q\left(\frac{S_{j}}{T}\right)-Q\left(\frac{S_{j-1}}{T}\right)
$$

- $D(x)=\sum_{j=1}^{n} \widetilde{w}_{j} a_{i d(j)}$

Some Methods of Obtaining Importances

- Fixed Specified Value
- Determined by Property of Alternative

$$
\mathrm{v}_{\mathrm{j}}=\mathrm{E}(\mathrm{x})
$$

- Dependent upon Other Attribute in Aggregation

$$
\mathrm{v}_{\mathrm{j}}=\mathrm{C}_{\mathrm{k}}(\mathrm{x})
$$

Induces a prioritization

- Rule Based

Concept Based Hierarchical

Formulation of Multi-Criteria

Decision Functions Using OWA

Operators

Definition of a Concept

- Concept is more abstract criteria

$$
\mathrm{Con} \equiv\langle\mathrm{C} 1, \mathrm{C} 2, \ldots ., \mathrm{C}, \mathrm{~V}: \mathrm{Q}>
$$

- C_{i} are a collection of measurable criteria
- Q is an OWA Aggregation Imperative
- V vector where v_{i} is importance of Ci in concept
- $\operatorname{Con}(x)=\mathrm{F}_{\mathrm{Q} / \mathrm{v}}\left(\mathrm{C}_{1}(\mathrm{x}), \mathrm{C}_{2}(\mathrm{x}), \ldots ., \mathrm{C}_{\mathrm{n}}(\mathrm{x})\right)$

Concepts with Concepts as Components

$$
\operatorname{Con}=\left\langle\operatorname{Con}_{1}, \operatorname{Con}_{2}, \ldots ., \operatorname{Con}_{\mathrm{q}}: \mathrm{V}: \mathrm{Q}\right\rangle
$$

$\operatorname{Con}(x)=\mathrm{F}_{\mathrm{Q} / \mathrm{v}}\left(\operatorname{Con}_{1}(\mathrm{x}), \operatorname{Con}_{2}(\mathrm{x}), \ldots, \operatorname{Con}_{\mathrm{q}}(\mathrm{x})\right)$

Multi-Criteria Decision Function Viewed as Concept

Allows hierarchical structure for the multi-criteria decision functions

Decision function:
(C1 and C_{2} and C 3) or (C 3 and C 4)
Represent as concept: <Con1, Con2: V: Q>.
Here Q is or and $\mathrm{V}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
Additionally

$$
\begin{aligned}
& \operatorname{Con}_{1}=\left\langle\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}: \mathrm{V}_{1}: \mathrm{Q}_{1}\right\rangle \\
& \operatorname{Con}_{2}=\left\langle\mathrm{C}_{3}, \mathrm{C}_{4}: \mathrm{V}_{2}: \mathrm{Q}_{2}\right\rangle
\end{aligned}
$$

Where $\mathrm{Q} 1=\mathrm{Q} 2=$ all
$\mathrm{V}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\mathrm{V}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Hierarchical Formulation

Ordinal OWA Operator

- $\mathrm{Z}=\left\{\mathrm{z}_{0}, \mathrm{z}_{1}, \mathrm{z}_{3}, \ldots \ldots \ldots, \mathrm{z}_{\mathrm{m}}\right\}$ ordinal scale
- Mapping $F: Z^{n} \rightarrow Z$ with

$$
F\left(a_{1}, \ldots . ., a_{n}\right)=\operatorname{Max}_{j}\left[w_{j} \wedge b_{j}\right]
$$

* b_{j} is the j th largest of the a_{j}
* weights satisfy: $1 . w_{j} \in Z$

$$
\begin{aligned}
& \text { 2. } w_{i} \geq w_{k} \quad \text { if } \mathrm{i}>j \\
& \text { 3. } \mathrm{w}_{\mathrm{n}}=\mathrm{z}_{\mathrm{m}}
\end{aligned}
$$

- Allows mean like $\mathrm{M}-\mathrm{C}$ decision functions with ordinal information

Multi-Criteria Decision Functions Using Choquet Aggregation Operators

- Provides wide class of M-C decision functions
- $C=\left\{C_{1}, C_{2}, \ldots \ldots . ., C_{n}\right\}$ "set of all criteria"
- Requires specification of monotonic measure μ over set of criteria
- $\mathrm{D}(\mathrm{x})=\mathrm{G}_{\mu}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots . ., \mathrm{a}_{\mathrm{n}}\right)$

$$
\mathrm{a}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}}(\mathrm{x})
$$

Set Measure μ

- For any subset A of criteria, $\mu(A)$ indicates the acceptability of a solution that satisfies all the criteria in A
- $\mu: 2^{C} \rightarrow[0,1]$ (subsets of C into the unit interval) 1. $\mu(\varnothing)=0$

2. $\mu(C)=1$
3. $\mu(A) \geq \mu(B)$ if $B \subset A$

- $\mu(\varnothing)=0 \quad \& \mu(A)=1$ "any criteria is okay"
$\mu(\mathrm{C})=1 \quad \& \mu(\mathrm{~A})=0 \quad$ "all criteria are needed"

Evaluation of Choquet M-C Decision Function

- $D(x)=G_{\mu}\left(a_{1}, a_{2}, \ldots ., a_{n}\right) \quad a_{i}=C_{i}(x)$
- Order criteria satisfactions $\Rightarrow a_{i d(j)}$ is $j^{\text {th }}$ largest
- $\mathrm{H}_{\mathrm{j}}=\left\{\mathrm{C}_{\mathrm{id}(\mathrm{k})} \mid \mathrm{k}=1\right.$ to j$\}$, j most satisfied criteria
- $\mathrm{w}_{\mathrm{j}}=\mu\left(\mathrm{H}_{\mathrm{j}}\right)-\mu\left(\mathrm{H}_{\mathrm{j}-1}\right)$
- $D(x)=G_{\mu}\left(a_{1}, a_{2}, \ldots . ., a_{n}\right)=\sum_{j=1}^{n} w_{j} a_{i d(j)}$

Uninorms

t-norm operators

$$
\mathrm{T}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots . ., \mathrm{a}_{\mathrm{n}}\right)=\mathrm{T}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots . ., \mathrm{a}_{\mathrm{n}}, 1\right)
$$

Identity is One

$$
\mathrm{T}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots ., \mathrm{a}_{\mathrm{n}}\right) \geq \mathrm{T}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots . ., \mathrm{a}_{\mathrm{n}}, \mathrm{a}_{\mathrm{n}+1}\right)
$$

- t-conorm operators

$$
S\left(a_{1}, a_{2}, \ldots ., a_{n}\right) \leq S\left(a_{1}, a_{2}, \ldots ., a_{n}, a_{n+1}\right)
$$

Identity is Zero

$$
\mathrm{T}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots . ., \mathrm{a}_{\mathrm{n}}\right)=\mathrm{T}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots . ., \mathrm{a}_{\mathrm{n}}, 0\right)
$$

- Uninorm operators

Identity is $\mathbf{e} \in[0,1]$

Uninorm operators with identity \mathbf{e}

For $\mathrm{a}_{\mathrm{n}+1}<\mathrm{e}$

$$
\mathrm{U}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots . ., \mathrm{a}_{\mathrm{n}}\right) \leq \mathrm{U}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots . ., \mathrm{a}_{\mathrm{n}}, \mathrm{a}_{\mathrm{n}+1}\right)
$$

For $\mathrm{a}_{\mathrm{n}+1}=\mathrm{e}$

$$
\mathrm{U}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots . ., \mathrm{a}_{\mathrm{n}}\right)=\mathrm{U}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots ., \mathrm{a}_{\mathrm{n}}, \mathbf{e}\right)
$$

For $\mathrm{a}_{\mathrm{n}+1}>\mathrm{e}$

$$
\mathrm{U}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots . ., \mathrm{a}_{\mathrm{n}}\right) \geq \mathrm{U}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots ., \mathrm{a}_{\mathrm{n}}, \mathrm{a}_{\mathrm{n}+1}\right)
$$

M-C Decision Functions Using Uninorms

- Multi-Criteria Decision Function

$$
\mathrm{D}(\mathrm{X})=\mathrm{U}\left(\mathrm{C}_{1}(\mathrm{x}), \ldots \ldots, \mathrm{C}_{\mathrm{n}}(\mathrm{x})\right)
$$

- Criteria with satisfaction greater then \mathbf{e} have positive effect while those less then \mathbf{e} have negative effect
- Introduces bipolar scale
- e acts like " 0 " in a zero in simple addition

Multi-Criteria Decision Functions Using Fuzzy Systems Modeling

- Set of Criteria $C_{1}, C_{2}, \ldots \ldots . ., C_{n}$
- Describe Decision Function $\mathrm{D}(\mathrm{x})$
- If $S . C_{1}$ is A_{11} and $\ldots S . C_{n}$ is $A_{1 n}$ then $D(x)$ is d_{1}

If S.C C_{1} is $A_{m 1}$ and $\ldots S . C_{n}$ is $A_{m n}$ then $D(x)$ is d_{m}

- $A_{i j}$ is fuzzy subset of unit interval d_{i} value in the unit interval S. C_{j} denotes variable "satisfaction of Criteria C_{j} "

Evaluation of Decision Function by Alternative

- Determine Satisfaction of Rule i by alternative x

$$
\mathrm{r}_{\mathrm{i}}(\mathrm{x})=\prod_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{~A}_{\mathrm{ij}}\left(\mathrm{C}_{\mathrm{j}}(\mathrm{x})\right)
$$

- Obtain overall satisfaction

$$
D(x)=\frac{\sum_{i=1}^{m} r_{i}(x) d_{i}}{\sum_{i=1}^{m} r_{i}(x)}
$$

Evaluating Criteria Satisfaction $\mathbf{C}_{\mathbf{j}} \mathbf{(x)}$

- Scalar Number: $\mathrm{C}_{\mathrm{j}}(\mathrm{x})=0.7$
- Ordinal Value: $\mathrm{C}_{\mathrm{j}}(\mathrm{x})=$ medium
- Interval Valued : $\mathrm{C}_{\mathrm{j}}(\mathrm{x})=[0.3,0.7]$
- Fuzzy Set Valued: $\mathrm{C}_{\mathrm{j}}(\mathrm{x})$ is a fuzzy subset of $[0,1]$
- Intuitionistic Values: $\mathrm{C}_{\mathrm{j}}(\mathrm{x})=(\mathrm{a}, \mathrm{b}) \quad / \mathrm{a}+\mathrm{b} \leq 1$ a degree satisfaction/b degree not satisfaction
- Probabilistic Values: $\mathrm{C}_{\mathrm{j}}(\mathrm{x})$ is Probability distribution on $[0,1]$

THE END

