Fuzzy Methods for Constructing Multi-Criteria Decision Functions

Ronald R. Yager

Machine Intelligence Institute

Iona College

ryager@iona.edu

Mixing Words and Mathematics

Building Decision Functions Using Information Expressed in Natural Language

Beginning

Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science 17:4, 141-164

- Equivalence of Goals and Constraints (Criteria)
- Representation of Criteria as Fuzzy Sets Over the Set of Alternatives

• Linguistic Formulation of Relationship Between Criteria

Linguistic Expression of Multi-Criteria Decision Problem

Satisfy Criteria one and Criteria two and

- $D = C_1$ and C_2 and and C_n
- "and" as intersection of fuzzy sets
- $D = C_1 \cap C_2 \cap \dots \cap C_n$
- $D(x) = Min_j[C_j(x)]$
- Choose x^* with biggest D(x)

Importance Weighting in Multi-Criteria Decision Problem

Yager, R. R. (1978). Fuzzy decision making using unequal objectives. Fuzzy Sets and Systems 1,87-95

- Associate with criteria C_j importance α_j
- $\alpha_{j} \in [0, 1] \text{ and } C_{j}(x) \in [0, 1]$
- $D(x) = Min_j[(C_j(x))^{\alpha_j}]$
- Min[a, 1] = a & $(C_j(x))^0 = 1 \Rightarrow$ No effect of $\alpha_j = 0$ Min[a, b] : Smaller argument more effect

Anxiety In Decision Making

- Alternatives: $X = \{x_1, x_2, x_3, \dots, x_q\}$
- Decision function D $D(x_j) \text{ is satisfaction by } x_j$
- x* best alternative
- Anxiety associated with selection

Anx(D) = D(x*) -
$$\frac{1}{q - 1} \sum_{x_i \neq x^*} D(x_j)$$

Ordinal Scales

- $Z = \{z_0, z_1, z_3, ..., z_m\}$ $z_i > z_k$ if i > k (only ordering)
- Operations: Max and Min and Negation $Neg(z_j) = z_{m-j} \quad \text{(reversal of scale)}$
- Linguistic values generally only satisfy ordering Very High > High > Medium > Low > Very Low
- Often people only can provide information with this type of granulation

Ordinal Decision Making

Yager, R. R. (1981). A new methodology for ordinal multiple aspect decisions based on fuzzy sets. Decision Sciences 12, 589-600

- Criteria satisfactions and importances ordinal
- $\alpha_j \in \mathbb{Z}$ and $C_j(x) \in \mathbb{Z}$
- $D(x) = Min_j[G_j(x)]$ $G_j(x) = Max(C_j(x), Neg(\alpha_j))$
- $\alpha_j = z_0 \Rightarrow G_j(x) = z_m$ (No effect on D(x)) $\alpha_j = z_m \Rightarrow G_j(x) = C_j(x)$

• Linguistic Expression: Satisfy Criteria one and Criteria two and

$$\begin{aligned} & D = C_1 \quad \text{and} \quad C_2 \quad \text{and} \quad \dots \\ & D = C_1 \, \cap \, C_2 \, \cap \, \dots \\ & D(x) = Min_j[C_j(x)] \end{aligned}$$

• Linguistic Expression: Satisfy Criteria one or Criteria two or

$$D = C_1 \text{ or } C_2 \text{ or } \dots \text{ or } C_n$$

$$D = C_1 \cup C_2 \cup \dots \cup C_n$$

$$D(x) = Max_j[C_j(x)]$$

Building M-C Decision Functions

• Linguistic Expression

Satisfy Criteria one and Criteria two or

Satisfy Criteria one or two and criteria 3 or

Satisfy criteria 4 and Criteria 3 or Criteria 2

Mathematical Formulation

$$D = (C_1 \cap C_2) \cup ((C_1 \cup C_2) \cap C_3) \cup (C_4 \cap (C_3 \cup C_2))$$

Generalizing "and" Operators

t-norm operators generalize "and" (Min)

- T: $[0, 1] \times [0, 1] \rightarrow [0, 1]$
 - 1. T(a, b) = T(b, a) Commutative
 - 2. $T(a, b) \ge T(c, d)$ if $a \ge c \& b \ge d$ Monotonic
 - 3. T(a, T(b, c)) = T(T(a, b), c) Associative
 - 4. T(a, 1) = a one as identity
- Many Examples of t-norms

$$T(a, b) = Min[a, b]$$
 $T(a, b) = a b$ (product)

$$T(a, b) = Max(a + b - 1, 0)$$

$$T(a, b) = Max(1 - ((1 - a)^{\lambda} + (1 - b)^{\lambda})^{\frac{1}{\lambda}}, 0)$$

Family parameterized by λ

Generalizing "or" Operators

t-conorm operators generalize "or" (Max)

- S: $[0, 1] \times [0, 1] \rightarrow [0, 1]$
 - 1. S(a, b) = S(b, a) Commutative
 - 2. $S(a, b) \ge S(c, d)$ if $a \ge c \& b \ge d$ Monotonic
 - 3. S(a, S(b, c)) = S(S(a, b), c) Associative
 - 4. S(a, 0) = a zero as identity
- Many Examples of t-norms

$$S(a, b) = Max[a, b]$$
 $S(a, b) = a + b - a b$

$$S(a, b) = Min(a + b, 1)$$

$$S(a, b) = Min((a^{\lambda} + b^{\lambda})^{\frac{1}{\lambda}}, 1)$$

Family parameterized by λ

Alternative Forms of Basic M-C functions

- $D = C_1$ and C_2 and and C_n
- $D(x) = T_j[C_j(x)]$
- $D(x) = \prod_{j} C_{j}(x)$ (product)
- $D = C_1$ or C_2 or or C_n
- $D(x) = S_j[C_j(x)]$
- $D(x) = Min(\sum_{j} C_{j}(x), 1]$ (Bounded sum)

- Use of families of t-norms enables a parameterized representation of multi-criteria decision functions
- This opens the possibility of learning the associated parameters from data

Generalized Importance Weighted "anding"

- $D = C_1$ and C_2 and and C_n
- Associate with criteria C_j importance α_j
- $D(x) = T_j[G_j(x)]$ $G_j(x) = S(C_j(x), 1 - \alpha_j)$
- $D(x) = Min_j[(Max(C_j(x), 1 \alpha_j))]$ $D(x) = \prod(Max(C_j(x), 1 \alpha_j))$

Generalized Importance Weighted "oring"

- $D = C_1$ or C_2 or or C_n
- Associate with criteria C_j importance α_j
- $D(x) = S_j[H_j(x)]$ $H(x) = T(C_j(x), \alpha_j)$
- $D(x) = Max_{j}[Min(\alpha_{j}, C_{j}(x))]$ $D(x) = Max_{j}[\alpha_{j} C_{j}(x)]$ $D(x) = Min(\sum_{j} \alpha_{j} C_{j}(x), 1]$

Some Observations

- If any $C_j(x) = 0$ then $T(C_1(x), C_1(x), ..., C_1(x)) = 0$
- Imperative of this class of decision functions is All criteria must be satisfied

- If any $C_j(x) = 1$ then $S(C_1(x), C_1(x), ..., C_1(x)) = 1$
- Imperative of this class of decision functions is At least one criteria must be satisfied

$$D(x) = \frac{1}{n} \sum_{j=1}^{n} C_j(x)$$

Mean Operators

- $\mathbf{M} \colon \mathbf{R}^n \to \mathbf{R}$
 - 1. Commutative
 - 2. Monotonic

$$\mathbf{M}(\mathbf{a}_1, \mathbf{a}_2,, \mathbf{a}_n) \ge \mathbf{M}(\mathbf{b}_1, \mathbf{b}_2,, \mathbf{b}_n) \text{ if } \mathbf{a}_j \ge \mathbf{b}_j$$

3. Bounded $\min_{j}[a_{j}] \le \mathbf{M}(a_{1}, a_{2},, a_{n}) \le \max_{j}[a_{j}]$ (Idempotent: $\mathbf{M}(a, a,, a) = a$

Many Examples of Mean Operators
Min_j[a_j], Max_j[a_j], Median, Average
OWA Operators
Choquet Aggregation Operators

Ordered Weighted Averaging Operators OWA Operators

Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man and Cybernetics 18, 183-190

OWA Aggregation Operators

- Mapping F: $R^n \rightarrow R$ with $F(a_1, ..., a_n) = \sum_{j=1}^n w_j b_j$
 - b_j is the jth largest of the a_j
 - weights satisfy: 1. $w_j \in [0, 1]$ and 2. $\sum_{j=1}^{n} w_j = 1$
- Essential feature of the OWA operator is the reordering operation, nonlinear operator
- Weights not associated directly with an argument but with the ordered position of the arguments

• $W = [w_1 \ w_2 \ w_n]$ called the weighting vector

• $B = [b_1 \ b_2 \ b_n]$ is ordered argument vector

•
$$F(a_1, ..., a_n) = W B^T$$

• If id(j) is index of jth largest of ai then

$$F(a_1,, a_n) = \sum_{j=1}^n w_j a_{id(j)}$$

$$\bullet$$
 $a_{id(j)} = b_j$

Form of Aggregation is Dependent Upon the Weighting Vector Used

OWA Aggregation is Parameterized by W

Some Examples

- W*: $w_1 = 1 & w_j = 0 \text{ for } j \neq 1 \text{ gives}$ $F^*(a_1,, a_n) = Max_i[a_i]$
- W_* : $w_n = 1 & w_j = 0$ for $j \neq n$ gives $F^*(a_1, ..., a_n) = Min_i[a_i]$
- w_N : $w_j = \frac{1}{n}$ for all j gives the simple average $F^*(a_1,, a_n) = \frac{1}{n} \sum_{i=1}^n a_i$

Attitudinal Character of an OWA Operator

• A-C(W) =
$$\frac{1}{n-1} \sum_{j=1}^{n} w_j (n-j)$$

• Characterization of type of aggregation

•
$$A-C(W) \in [0, 1]$$

• Weights symmetric $(w_j = w_{n-j+1}) \Rightarrow A-C(W) = 0.5$

An A-C value near **one** indicates a bias toward the **larger** values in the argument (**Or-like** /**Max-like**)

An A-C value near zero indicates a bias toward the smaller values in the argument (And-like /Min-like)

An A-C value **near 0.5** is an indication of a **neutral** type aggregation

Measure of Dispersion an OWA Operator

• Disp(W) =
$$-\sum_{j=1}^{n} w_j \ln(w_j)$$

- Characterization amount of information used
- $Disp(W^*) = Disp(W_*) = 0$ (Smallest value) $A-C(W_N) = ln(n)$ (Largest value)
- Alternative Measure

$$Disp(W) = \sum_{j=1}^{n} (w_j)^2$$

Some Further Notable Examples

• Median: if n is odd then $w_{\frac{n+1}{2}}=1$ if n is even then $w_{\frac{n}{2}}=w_{\frac{n}{2}+1}=\frac{1}{2}$

• **kth best:** $w_k = 1$ then $F^*(a_1, ..., a_n) = a_{id(k)}$

• Olympic Average: $w_1 = w_n = 0$, other $w_j = \frac{1}{n-2}$

• Hurwicz average: $w_1 = \alpha$, $w_n = 1-\alpha$, other $w_j = 0$

OWA Operators Provide a Whole family of functions for the construction of mean like multi-Criteria decision functions

$$D(x) = F_W(C_1(x), C_2(x),, C_n(x))$$

Selection of Weighting Vector Some Methods

- 1. Direct choice of the weights
- 2. Select a notable type of aggregation
- 3. Learn the weights from data
- 4. Use characterizing features
- 5. Linguistic Specification

Learning the Weights from Data

- Filev, D. P., & Yager, R. R. (1994). Learning OWA operator weights from data. Proceedings of the Third IEEE International Conference on Fuzzy Systems, Orlando, 468-473.
- Filev, D. P., & Yager, R. R. (1998). On the issue of obtaining OWA operator weights. Fuzzy Sets and Systems 94, 157-169.
- Torra, V. (1999). On learning of weights in some aggregation operators: the weighted mean and the OWA operators. Mathware and Softcomputing 6, 249-265

Algorithm for Learning OWA Weights

- Express OWA weights as $w_j = \frac{e^{\lambda_j}}{\displaystyle\sum_{k=1}^n e^{\lambda_k}}$
- Use data of observations to learn λ_i (a₁, , a_n) and aggregated value d
- Order arguments to get b_j for j = 1 to n
- Using current estimate of weights calculate

$$\widehat{d} = \sum_{j=1}^{n} w_j b_j$$

• Updated estimates of λ_j $\lambda'_j = \lambda_j - \alpha w_j (b_i - \widehat{d}) (\widehat{d} - d)$

Using Characterizing Features

• A-C(W) =
$$\frac{1}{n-1} \sum_{j=1}^{n} w_j (n-j)$$

- $\alpha \in [0, 1]$ degree of "orness"
- Determine W with specified α

O'Hagan Method

 \bullet Specify α and determine weights to maximize the dispersion

• Max
$$-\sum_{j=1}^{n} w_j \ln(w_j)$$

such that

1.
$$\frac{1}{n-1}\sum_{j=1}^{n} w_{j} (n-j) = \alpha$$

2.
$$\sum_{j=1}^{n} w_j = 1$$

3.
$$w_1 \ge 0$$

Linguistic Specification of Weights

- 1. Linguistically specify aggregation imperative of multiple criteria
- 2. Translate linguistic imperative into Fuzzy Set
- 3. Use fuzzy set to determine OWA weights

Computing with Information Specified in a Natural Language

Quantifier Guided Criteria Aggregation

• D = Min: All criteria must be satisfied

D = Max: At least one criteria must be satisfied

"Quantifier" criteria must be satisfied

• Other examples of linguistic quantifiers: most, almost all, at least half only a few, at least 1/3

• Monotonic quantifiers

Representation of Linguistic Quantifier

- Represent quantifier as fuzzy subset Q on unit interval
- Q(r) is the degree the proportion r satisfies the concept of the quantifier
- $Q:[0, 1] \to [0, 1]$
 - 1. Q(0) = 0
 - 2. Q(1) = 1
 - 3. $Q(r) \ge Q(p)$ if r > p

BUM Function

Obtaining OWA Weights from Quantifier

•
$$w_j = Q(\frac{j}{n}) - Q(\frac{j-1}{n})$$

Functionally Guided Criteria Aggregation

• Specify a Bum function f: $[0, 1] \rightarrow [0, 1]$

1.
$$f(0) = 0$$

$$2. f(1) = 1$$

3.
$$f(r) \ge f(p)$$
 if $r > p$

•
$$w_j = f(\frac{j}{n}) - f(\frac{j-1}{n})$$

• Linear function f(r) = r Quantifier $\Leftrightarrow Some$

$$w_j = \frac{1}{n}$$

Importance Weighted OWA Multi-Criteria Decision Functions

- Importance v_i associated criteria C_i
- Aggregation Agenda
 Quantifier Important Criteria are Satisfied
 Most Important Criteria are Satisfied

•
$$D(x) = F_{Q/V}(a_1, a_2,, a_n)$$

 $a_i = C_i(x)$

Calculation of $D(x) = F_{Q/V}(a_1, a_2,, a_n)$

- Order the criteria satisfactions the ai
- $a_{id(j)}$ is j^{th} largest & $v_{id(j)}$ its importance
- Calculate $S_j = \sum_{k=1}^{j} v_{id(k)}$ & $T = S_n = \sum_{k=1}^{n} v_{id(k)}$
 - Determine OWA Weights

$$\widetilde{\mathbf{w}}_{j} = \mathbf{Q}(\frac{\mathbf{S}_{j}}{\mathbf{T}}) - \mathbf{Q}(\frac{\mathbf{S}_{j-1}}{\mathbf{T}})$$

•
$$D(x) = \sum_{j=1}^{n} \widetilde{w}_{j} a_{id(j)}$$

Some Methods of Obtaining Importances

- Fixed Specified Value
- Determined by Property of Alternative

$$v_j = E(x)$$

• Dependent upon Other Attribute in Aggregation

$$v_j = C_k(x)$$

Induces a prioritization

Rule Based

Concept Based Hierarchical Formulation of Multi-Criteria Decision Functions Using OWA Operators

Definition of a Concept

- Concept is more abstract criteria $Con \equiv \langle C_1, C_2, ..., C_n : V : Q \rangle$.
- Ci are a collection of measurable criteria
- Q is an OWA Aggregation Imperative
- V vector where v_i is importance of C_i in concept
- $Con(x) = F_{Q/V}(C_1(x), C_2(x),..., C_n(x))$

Concepts with Concepts as Components

$$\mathbf{Con} = \langle \mathbf{Con_1}, \ \mathbf{Con_2}, \ \dots, \ \mathbf{Con_q} \colon \ \mathbf{V} \colon \ \mathbf{Q} \rangle$$

$$Con(x) = F_{Q/V}(Con_1(x), Con_2(x),..., Con_q(x))$$

Multi-Criteria Decision Function Viewed as Concept

Allows hierarchical structure for the multi-criteria decision functions

Decision function:

(C1 and C2 and C3) or (C3 and C4)

Represent as concept: <Con1, Con2 : V: Q>.

Here Q is
$$or$$
 and $V = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Additionally

$$Con_1 = \langle C_1, C_2, C_3 : V_1 : Q_1 \rangle$$

$$Con_2 = \langle C_3, C_4 : V_2 : Q_2 \rangle$$

Where $Q_1 = Q_2 = all$

$$V_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \text{ and } V_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Hierarchical Formulation

Ordinal OWA Operator

- $Z = \{z_0, z_1, z_3, \dots, z_m\}$ ordinal scale
- Mapping F: $Z^n \to Z$ with

$$F(a_1,, a_n) = Max_j[w_j \wedge b_j]$$

- b_j is the jth largest of the a_j
- $\stackrel{\checkmark}{\bullet}$ weights satisfy: 1. $w_j \in Z$

2.
$$w_i \ge w_k$$
 if $i > j$

3.
$$w_n = z_m$$

• Allows mean like M-C decision functions with ordinal information

Multi-Criteria Decision Functions Using Choquet Aggregation Operators

• Provides wide class of M-C decision functions

•
$$C = \{C_1, C_2, \dots, C_n\}$$
 "set of all criteria"

 \bullet Requires specification of monotonic measure μ over set of criteria

•
$$D(x) = G_{\mu}(a_1, a_2,, a_n)$$

 $a_i = C_i(x)$

Set Measure µ

- For any subset A of criteria, $\mu(A)$ indicates the acceptability of a solution that satisfies all the criteria in A
- μ : $2^{\mathbb{C}} \to [0, 1]$ (subsets of C into the unit interval)
 - 1. $\mu(\emptyset) = 0$
 - 2. $\mu(C) = 1$
 - $3. \mu(A) \ge \mu(B)$ if $B \subset A$
- $\mu(\emptyset) = 0$ & $\mu(A) = 1$ "any criteria is okay" $\mu(C) = 1$ & $\mu(A) = 0$ "all criteria are needed"

Evaluation of Choquet M-C Decision Function

•
$$D(x) = G_{\mu}(a_1, a_2, ..., a_n)$$
 $a_i = C_i(x)$

- Order criteria satisfactions $\Rightarrow a_{id(j)}$ is j^{th} largest
- $H_j = \{C_{id(k)} | k = 1 \text{ to } j\}, j \text{ most satisfied criteria}$
- $w_j = \mu(H_j) \mu(H_{j-1})$
- $D(x) = G_{\mu}(a_1, a_2, ..., a_n) = \sum_{j=1}^{n} w_j a_{id(j)}$

Uninorms

• t-norm operators

$$T(a_1, \, a_2, \,, \, a_n) = T(a_1, \, a_2, \,, \, a_n, \, 1)$$

 Identity is One

$$T(a_1, a_2,, a_n) \ge T(a_1, a_2,, a_n, a_{n+1})$$

• t-conorm operators

$$S(a_1, \, a_2, \,, \, a_n) \leq S(a_1, \, a_2, \,, \, a_n, \, a_{n+1})$$

 Identity is Zero

$$T(a_1, a_2,, a_n) = T(a_1, a_2,, a_n, 0)$$

• Uninorm operators

Identity is $e \in [0, 1]$

Uninorm operators with identity e

For
$$a_{n+1} < e$$

$$U(a_1, a_2,, a_n) \le U(a_1, a_2,, a_n, a_{n+1})$$
For $a_{n+1} = e$

$$U(a_1, a_2,, a_n) = U(a_1, a_2,, a_n, e)$$
For $a_{n+1} > e$

$$U(a_1, a_2,, a_n) \ge U(a_1, a_2,, a_n, a_{n+1})$$

M-C Decision Functions Using Uninorms

- Multi-Criteria Decision Function $D(X) = U(C_1(x),, C_n(x))$
- Criteria with satisfaction greater then **e** have positive effect while those less then **e** have negative effect
- Introduces bipolar scale
- e acts like "0" in a zero in simple addition

Multi-Criteria Decision Functions Using Fuzzy Systems Modeling

- Set of Criteria C₁, C₂,, C_n
- Describe Decision Function D(x)
- If $S.C_1$ is A_{11} and ... $S.C_n$ is A_{1n} then D(x) is d_1
 - If $S.C_1$ is A_{m1} and ... $S.C_n$ is A_{mn} then D(x) is d_m
- A_{ij} is fuzzy subset of unit interval d_i value in the unit interval $S.C_j$ denotes variable "satisfaction of Criteria C_j "

Evaluation of Decision Function by Alternative

• Determine Satisfaction of Rule i by alternative x

$$r_{\mathbf{i}}(\mathbf{x}) = \prod_{j=1}^{n} A_{ij}(C_{j}(\mathbf{x}))$$

• Obtain overall satisfaction

$$D(x) = \frac{\sum_{i=1}^{m} r_i(x) d_i}{\sum_{i=1}^{m} r_i(x)}$$

Evaluating Criteria Satisfaction $C_{j}(x)$

- Scalar Number: $C_j(x) = 0.7$
- Ordinal Value: $C_j(x) = medium$
- Interval Valued : $C_{j}(x) = [0.3, 0.7]$
- Fuzzy Set Valued: $C_{i}(x)$ is a fuzzy subset of [0, 1]
- Intuitionistic Values: $C_j(x) = (a, b) / a + b \le 1$ a degree satisfaction/b degree not satisfaction
- Probabilistic Values: $C_j(x)$ is Probability distribution on [0, 1]

THE END