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Mixing Words and M athematics

Building Decision Functions Using
|nformation Expressed in Natural
L anguage



Beginning
Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in afuzzy

environment. Management Science 17:4, 141-164

« Equivalence of Goals and Constraints (Criteria)

 Representation of Criteria as Fuzzy Sets Over the
Set of Alternatives

« Linguistic Formulation of Relationship Between
Criteria



Linguistic Expression of Multi-Criteria Decision
Problem
Satisfy Criteria one and Criteriatwo and .......

D=Cqy and Cy and ........ and C,

D(X) = Mini[C;j(x)]

Choose x* with biggest D(x)



|mportance Weighting in Multi-Criteria

Decision Problem
Yager, R. R. (1978). Fuzzy decision making using unequal objectives.
Fuzzy Sets and Systems 1,87-95

Associate with criteria Cj Importance a;

a; 0 [0, 1] and Cj(x) O [0, 1]
D(x) = Min[(C;(x))C]]

Min[a, 1] = a & (Cj(x))o =10 No effect of aj =0
Min[a, b] : Smaller argument more effect



Anxiety I|n Decison Making

Alternatives: X = {Xq, X9, X3, ... , xq}

Decision function D

D(xj) IS satisfaction by X;

X* best alternative

Anxiety associated with selection
Anx(D) = D(x*) - —L % D(x))

XjZX*



Ordinal Scales

> 7 If 1 > k (only ordering)

Operations. Max and Min and Negation
Neg(zj) = Zmp. (reversal of scale)

Linguistic values generally only satisfy ordering
Very High > High > Medium > Low > Very Low

Often people only can provide information with
this type of granulation



Ordinal Decision M aking
Yager, R. R. (1981). A new methodology for ordinal multiple aspect

decisions based on fuzzy sets. Decision Sciences 12, 589-600

« Criteria satisfactions and importances ordinal

+ a; 0 Z and Cj(x) O Z

+ D(X) = Min[G;(x)]
Gj(x) = Max(C;(x), Neg(a;))

* aj =2 O Gj(x) = Z, (No effect on D(x))

aj = Zpy, N Gj(x) = Cj(x)



« Linguistic Expression: Satisfy Criteria one and
Criteria two and .......
D=Cq and Cy and ........ and C,

D = Cl N C2 N veennn. N Cn
D(X) = I\/Iinj[Cj(X)]

e Linguistic Expression: Satisfy Criteria one or
Criteria two or .......
D=Cqo0rCyor.... or Cp

D=Cy0Cy0 ... 0 C,
D(x) = Maxj{Cj(x)



Building M -C Decision Functions

 Linguistic EXxpression

Satisfy Criteria one and Criteria two

or

Satisfy Criteria one or two and criteria 3

or

Satisfy criteria 4 and Criteria 3 or Criteria 2

e Mathematical Formulation
D = (Cl N C2) X (Cl [] C2) n Cqg) O (C4 N (C3 [] Cz))



Generalizing “and” Operators
t-norm operatorsgeneralize“and” (Min)

e T:[0,1] x [0, 1] - [O, 1]
1. T(a, b) = T(b, @ Commutative
2. T(a, b)=2T(c,d)ifa=zc& b=d Monotonic
3. T(a, T(b, ¢)) = T(T(a, b), ¢) Associative
4. T(a, 1) = a one as identity

e Many Examples of t-norms
T(a, b) = Min[a, D] T(a, b) =ab (product)

T(a, b) = Max(a + b -1, 0)
1

T(a b) = Max(1 - (1 - @} + (1 - H})*, 0)
Family parameterized by A



Generalizing “or” Operators
t-conorm operatorsgeneralize“or” (Max)

« S [0, 1] x [0, 1] - [0, 1]
1. S(a, b) = S(b, & Commutative
2. S(a, b) = S(c,d)ifa=c& b>=d Monotonic
3. S(a, S(b, c)) = S(S(a, b), c) Associative
4. S(a, 0) = a Zero as identity

« Many Examples of t-norms
S(a, b) = Max[a, b] Sab)=a+b-ab
S(a b) = Min(a + b, 1)
1
S(a, b) = Min((@ +bM?, 1)
Family parameterized by A



Alternative Forms of Basic M-C functions
D =Cqand Cyand ........ and C,
D(x) = Tj[Cj(x)]
D(X) = |‘|jCj (X) (product)
D=Cqyor Cyyor ... or C,
D(x) = §[Cj(x)]

D(X) = Min(5iCj(x), 1] (Bounded sum)



. Use of families of t-norms enables a
parameterized representation of multi-criteria
decision functions

. This opens the possibility of learning the
associated parameters from data



Generalized |mportance Welghted
“anding’

D=0Cq and Co and ........ and Ch

Associate with criteria CJ- Importance aj

D() = T{[G;(0)]
Gj(X) = S(Cj(X), 1- O(J)

D(X) = Minj[(Max(Cj(x), 1-aj))
D(x) = |'|(I\/Iax(Cj(x), 1- aj)



Generalized I mportance Weighted
“oring”

D:C10r Czor ........ or Cn

Associate with criteria CJ- Importance of

D(x) = Si[H;j(x)]
HX) = T(C(x), a))

D(X) = I\/Ian[Min(O(j, Cj(x))]
D(X) = Man[aj Cj (X)]
D(X) = Min(zjajCj(x), 1]



Some Observations

If any Cj(x) = 0 then
T(Cq1(x), C1(X%), ...... , C1(x)) =

Imperative of this class of decision functions is
All criteria must be satisfied

If any Cj(x) = 1 then
S(Cl(X), Cl(X), ...... : Cl(X)) =

Imperative of this class of decision functions is
At least one criteria must be satisfied






Mean Operators

n
e M:R - R
1. Commutative
2. Monotonic

3. Bounded
I\/Iinj[aj] <M(aq, a, ....., 8 < Maxj[aj]
(ldempotent. M (a, &, ..... , Q) = a

« Many Examples of Mean Operators
I\/Iinj[aj], Maxj[aj], Median, Average

OWA Operators
Choquet Aggregation Operators



Ordered Weighted Averaging Operators
OWA Operators

Yager, R. R. (1988). On ordered weighted averaging
aggregation operators in multi-criteria decision
making. |EEE Transactions on Systems, Man and

Cybernetics 18, 183-190



OWA Aqggregation Operators

e Mapping F: Rn - R with F(aq, ....., ay) = Z W; b;
] bj IS the jth largest of the &

0 weights satisfy: 1. wj O [0, 1] and 2. > Wy =
J=1

« Essential feature of the OWA operator is the
reordering operation, nonlinear operator

« Weights not associated directly with an argument
but with the ordered position of the arguments



W = [wq woy wp] caled the weighting vector

B =[bq by b,] Isordered argument vector



Form of Aggregation is Dependent Upon the
Weighting Vector Used

OWA Aggregation is Parameterized by W



Some Examples

c W*:wp =1& W, =0 for ) # 1 gives
F*(al, ..... , an) = Maxi[ai]



Attitudinal Character of an OWA Operator

cACW) = LS w (- )
=1

 Characterization of type of aggregation
« A-C(W) O [0, 1]

+ A-C(W*) =1 A-C(Wp) =05 A-C(W,)=0

 Weights symmetric (Wj = Wn-j+1) 0 A-C(W) =05



An A-C value near one indicates a bhias toward the
larger values in the argument (Or-like /Max-like)

An A-C value near zero indicates a bias toward the
smaller values in the argument (And-like /Min-
like)

An A-C vaue near 0.5 is an indication of a neutr al
type aggregation



M easur e of Dispersion an OWA Operator

Disp(W) = - % wi In(w;)
j=1

Characterization amount of i1nformation used

Disp(W*) = Disp(W,) = 0 (Smallest value)
A-C(Wyp;) = In(n) (Largest value)

Alternative Measure

Disp(W) = 5 (w))?
=1



Some Further Notable Examples

e Median: If nisodd then wn+1 =1
2
n -1

2

If niseven then wn =wn,

2

N

* kKth best: wy =1 then F*(aq, ..... a&,) = g (k)

« Olympic Average: wq = wp, = 0, other Wi = 1 ;
n -

* Hurwicz average: wq = a, w, = 1-a, other Wj = 0



OWA Operators Provide a Whole family of
functionsfor the construction of mean like

multi—Criteria decision functions

D(X) = Fy(C1(X), Co(X), ...... , Cnh(X))



1.

3.

4.

5.

Selection of Weighting Vector
Some M ethods

Direct choice of the weights
Select a notable type of aggregation
Learn the weights from data
Use characterizing features

Linguistic Specification



L earning the Weightsfrom Data

* Filev, D. P.,, & Yager, R. R. (1994). Learning OWA operator weights
from data. Proceedings of the Third IEEE International Conference on

Fuzzy Systems, Orlando, 468-473.

® Filev, D. P, & Yager, R. R. (1998). On the issue of obtaining OWA
operator weights. Fuzzy Sets and Systems 94, 157-1609.

® Torra, V. (1999). On learning of weights in some aggregation

operators. the weighted mean and the OWA operators. Mathware

and Softcomputing 6, 249-265



Algorithm for Learning OWA Waeights

Express OWA weights as wj = e

n
> e
k=1
Use data of observations to learn Aj

(1, .,a,) and aggregated value d
Order arguments to get bj for j = 1ton

Using current estimate of weights calculate
n

a: Z ijj
j=1

Updated estimates of A j

A=A -awj (bi-d) (d - d)



Using Characterizing Features

-A-c:(W):n}jL i wi (- j)
=1

e A-C(W) =1 “orlike’
A-C(W) =0 “andlike’

e a O [0, 1] degree of “orness’

« Determine W with specified a



O’Hagan M ethod

o Specify a and determine weights to maximize the
dispersion
n

* Max - Z Wj|n(WJ)
=1

such that
1 n
1. w;: (N-1)=a
n'ljZ1 J( )
n
2 Z w, =1



Linguistic Specification of Weights

1. Linguistically specify aggregation imperative of
multiple criteria

2. Translate linguistic imperative into Fuzzy Set
3. Use fuzzy set to determine OWA weights

Computing with Information Specified in a
Natural Language



Quantifier Guided Criteria Aggregation

e D = Min: AIll criteria must be satisfied
D = Max: At least one criteria must be satisfied

“Quantifier” criteria must be satisfied
 Other examples of linguistic quantifiers:
most, amost all, at least half

only a few, at least 1/3

« Monotonic quantifiers



Representation of Linguistic Quantifier

 Represent quantifier as fuzzy subset Q on unit
Interval

e Q(r) Is the degree the proportion r satisfies the
concept of the quantifier

*Q: [0, 1] - [0, 1]
1. Q(0) = 0
2.Q(1) = 1

3. QN =0Q(p) ifr>p
BUM Function



Obtaining OWA Weightsfrom Quantifier

" Wi —Q(—) Q( )



Functionally Guided Criteria

Aggregation
e Specify a Bum function f: [0, 1] - [O, 1]
1. f(0) =0
2.1(1) =1

3. f(r) = f(p) if r>p

ew. = £y _gd 1
wi = 1) - 05
e Linear function f(r) =r Quantifier = Some

-1
wj—n



| mportance Weighted OWA Multi-Criteria
Decision Functions

* Importance v; associated criteria C;

e Aggregation Agenda
Quantifier Important Criteria are Satisfied
Most Important Criteria are Satisfied



Calculation of D(x) = FQ/V(al, as, ....., an)
e Order the criteria satisfactions the a;

* gq(j) isith largest & vjqjy its importance

J n
e Cadlculate S] = kzl Vid(k) & T = Sn: kzl Vid(k)

 Determine OWA Weights
== o) . oL
Wi = Q(F) - Q)

n
* D(¥) = > Wj aq()
j=1



Some M ethods of Obtaining I mportances
 Fixed Specified Value

« Determined by Property of Alternative

vj = E(x)

 Dependent upon Other Attribute in Aggregation

Vj = Ck(x)

Induces a prioritization

e Rule Based



Concept Based Hierarchical
Formulation of Multi-Criteria
Decision Functions Using OWA

Operators



Definition of a Concept

Concept Is more abstract criteria
Con=<(Cj, C2,...., Cn: V: Q>,

Ci are a collection of measurable criteria

Q is an OWA Aggregation Imperative

V vector where v; Is importance of Cj In concept

Con(x) = Forv(C1(x), C2(X),...., Cn(x))



Concepts with Concepts as Components

Con =<Con1, Cony, ..., Cong: V: Q>
Con(x) = FQ/V(Conl(x), Con2(x),...., Cong(x))

Multi-Criteria Decision Function Viewed as
Concept

Allows hierarchical structure for the multi-criteria
decision functions



Decision function:
(C1 and C2 and C3) or (C3 and C4)

Represent as concept: <Coni, Con2 : V: Q>.
1

Here Q i1s or and V = .
1

Additionally
Con1 = <Cq, C2, C3: V1: Q1>
Con2 = <C3, C4 : V2: Q2>
Where Q1 = Q2 = all

V1i=|1 andez{li
1




Hierarchical Formulation

%




Ordinal OWA Operator

N bj IS the jth largest of the 3

0 welights satisfy: 1. W; 0 Z
2. Wi = Wi if 1>

3. Wp = Z

e Allows mean like M-C decision functions with
ordinal 1nformation



Multi-Criteria Decision Functions Using
Choquet Aggregation Operators

e Provides wide class of M-C decision functions
*C ={Cq, Cy, ........ , Cnt “set of al criterid’

 Requires specification of monotonic measure u

over set of criteria

e D(X) = Gu(al, ay, ... , an)



Set Measure

« For any subset A of criteria, u(A) Indicates the

acceptability of a solution that satisfies all the
criteria in A

e u: 2C . [0, 1] (subsets of C into the unit interval)
L@ =0
2. 1(C) =1
3. u(A)2u(B) if B OA

(D =0 & p(A) =1 “any criteria is okay”
H(C) =1 & u(A) =0 *“al criteria are needed”



Evaluation of Choguet M-C Decision Function
D(x) = Gu(al, ay, ... , an) a = Gi(x)
Order criteria satisfactions [ qd()) IS jth largest
Hj :{Cid(k)| k =1 to |}, ] most satisfied criteria
wj =u(Hj) - u(Hj 1)

D(X) = G,(a1, 8, -y 87) = 3 Wi Big)



Uninorms



t-norm operators

T(aq, ag, ....., ay) = T(aq, ay,

ldentity is One
T(ag, a9, ..... , an)

a1, ag, ..., ay) < (a1, ay,
ldentity Is Zero
T(ag, a9, ..... , an) = T(aq, ag, .....

Uninorm operators
ldentity ise O [0, 1]



Uninorm operators with identity e

For a1 <e€
U(ag, a9, ..... , an) < U(aq, ag, .....
Forah41 =€
U(ag, a9, ..... , aq) = U(ag, &, .....
For a,4q > €

U(ag, a9, ..... , an) =2 U(aq, ag, .....



M -C Decision Functions Using Uninorms

e Multi-Criteria Decision Function
D(X) = U(Cq(x), ..... , Ch(X))

« Criteria with satisfaction greater then e have
positive effect while those less then e have
negative effect

 Introduces bipolar scale

« e acts like “0” In a zero in simple addition



Multi-Criteria Decision Functions Using
Fuzzy Systems M odeling

Set of Criteria Cq1, Co, ., , Cp

Describe Decision Function D(X)

| f SC]. 1S All and ... SCn 1S Aln then D(X) 1S dl

If S.Cq I1sApp and ... S.C, Is Ay then D(X) Is dp,

Aij IS fuzzy subset of unit interval
d; value in the unit interval

S.Cj denotes variable “satisfaction of Criteria Cj"



Evaluation of Decision Function by Alter native

« Determine Satisfaction of Rule | by alternative x

109= [ Ai(GX)

J=1

e Obtain overall satisfaction

S [ d
D(x) = =4
> ri(x)



Evaluating Criteria Satisfaction Cj (X)

e« Scalar Number: Cj(x) =0.7
« Ordina Value: Cj(x) = medium
 Interval Valued : Cj(x) = [0.3, 0.7]

 Fuzzy Set Valued: Cj (X) Is a fuzzy subset of [0, 1]

Intuitionistic Values: CJ- (X)) =(a b) /a+bsl
a degree satisfaction/b degree not satisfaction
 Probabilistic Values: Cj (x) 1s Probability

distribution on [0, 1]



THE END



