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Mixing Words and Mathematics

Building Decision Functions Using

Information Expressed in Natural

Language



Beginning
Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy

environment. Management Science 17:4, 141-164

•  Equivalence of Goals and Constraints (Criteria)

•  Representation of Criteria as Fuzzy Sets Over the

Set of Alternatives

•  Linguistic Formulation of Relationship Between 

Criteria 



Linguistic Expression of Multi-Criteria Decision
Problem

Satisfy Criteria one and Criteria two and .......

•  D = C1 and C2 and ........ and Cn

•  “and” as intersection of fuzzy sets 

•  D = C1 ∩  C2 ∩  ........ ∩  Cn

•  D(x) = Minj[Cj(x)]

•  Choose x* with biggest D(x)



Importance Weighting in Multi-Criteria
Decision Problem

Yager, R. R. (1978). Fuzzy decision making using unequal objectives.

Fuzzy Sets and Systems 1,87-95

•  Associate with criteria Cj importance α j

•  α j ∈  [0, 1] and Cj(x) ∈  [0, 1]

•  D(x) = Minj[(Cj(x))α j]

•  Min[a, 1] = a & (Cj(x))0 = 1 ⇒⇒⇒⇒  No effect of α j = 0

       Min[a, b] : Smaller argument more effect



Anxiety In Decision Making

•  Alternatives: X = {x1, x2, x3, ......., xq} 

•  Decision function D 

                  D(xj) is satisfaction by xj

•  x* best alternative

•  Anxiety associated with selection

        Anx(D) = D(x*) - 1
q - 1

D(xj)∑
xj≠x*



Ordinal Scales

•  Z = {z0, z1, z3, ........., zm}

        zi > zk       if i > k  (only ordering)

•  Operations: Max and Min and Negation

                  Neg(zj) = zm-j   (reversal of scale)

•  Linguistic values generally only satisfy ordering

     Very High > High > Medium > Low > Very Low

•  Often people only can provide information with 

this type of granulation



Ordinal Decision Making
Yager, R. R. (1981). A new methodology for ordinal multiple aspect

decisions based on fuzzy sets. Decision Sciences 12, 589-600

•  Criteria satisfactions and importances ordinal

•  α j ∈  Z and Cj(x) ∈  Z

•  D(x) = Minj[Gj(x)]

                Gj(x) = Max(Cj(x), Neg(α j))

•  α j = z0  ⇒  Gj(x) = zm  (No effect on D(x))

    α j = zm ⇒  Gj(x) = Cj(x)



•  Linguistic Expression: Satisfy Criteria one a n d
Criteria two and  .......

      D = C1 and C2 and ........ and Cn
     D = C1 ∩  C2 ∩  ........ ∩  Cn
     D(x) = Minj[Cj(x)]

•  Linguistic Expression: Satisfy Criteria one o r
Criteria two or  .......

      D = C1 or C2 or ........ or Cn
     D = C1 ∪  C2 ∪  ........ ∪  Cn
     D(x) = Maxj[Cj(x)]



Building M-C Decision Functions

•  Linguistic Expression
Satisfy Criteria one and  Criteria two 

 o r
Satisfy Criteria one or  two and  criteria 3

o r
Satisfy criteria 4 and  Criteria 3 or  Criteria 2

 

•  Mathematical Formulation
D = (C1 ∩  C2) ∪ ( (C1 ∪  C2) ∩ C3) ∪  (C4 ∩  (C3 ∪  C2))



Generalizing “and” Operators
t-norm operators generalize “and”  (Min)

•  T: [0, 1] × [0, 1] →   [0, 1]

    1. T(a, b) = T(b, a)    Commutative
    2. T(a, b) ≥ T(c, d) if a ≥ c & b ≥ d  Monotonic
    3. T(a, T(b, c)) = T(T(a, b), c)  Associative
    4. T(a, 1) = a       one as identity

•  Many Examples of t-norms
     T(a, b) = Min[a, b]       T(a, b ) = a b   (product)
     T(a, b) = Max(a + b -1, 0)

     T(a, b) = Max(1 - ((1 - a)λ + (1 - b)λ)
1
λ , 0)

              Family parameterized by λ  



Generalizing “or” Operators
t-conorm operators generalize “or”  (Max)

•  S: [0, 1] × [0, 1] →   [0, 1]

    1. S(a, b) = S(b, a)   Commutative
    2. S(a, b) ≥ S(c, d) if a ≥ c & b ≥ d  Monotonic
    3. S(a, S(b, c)) = S(S(a, b), c)  Associative
    4. S(a, 0) = a       zero as identity

•  Many Examples of t-norms
     S(a, b) = Max[a, b]       S(a, b ) = a + b - a b   
     S(a, b) = Min(a + b, 1)

     S(a, b) = Min((aλ +bλ)
1
λ , 1)

              Family parameterized by λ  



Alternative Forms of Basic M-C functions

•  D = C1 and  C2 and  ........ and  Cn

•  D(x) = Tj[Cj(x)]

•  D(x) = ∏jCj(x)  (product)

•  D = C1 or  C2 or  ........ or  Cn

•  D(x) = Sj[Cj(x)]

•  D(x) = Min(∑ jCj(x), 1]  (Bounded sum)



•  Use of families of t-norms enables a

parameterized representation of multi-criteria

decision functions

•  This opens the possibility of learning the

associated parameters from data

•  C1     C2      C3      C4           D

     .3      .5      1         .7          .5



Generalized Importance Weighted
“anding”

•  D = C1 and  C2 and  ........ and  Cn

•  Associate with criteria Cj importance α j

•  D(x) = T j[Gj(x)]

           Gj(x) = S(Cj(x), 1 - α j)

•   D(x) = Minj[(Max(Cj(x), 1 - α j))

       D(x) = ∏(Max(Cj(x), 1 - αj)



Generalized Importance Weighted
“oring”

•  D = C1 or  C2 or  ........ or  Cn

•  Associate with criteria Cj importance α j

•  D(x) = Sj[Hj(x)]

         H(x) = T(Cj(x), α j)

•  D(x) = Maxj[Min(α j, Cj(x))]

    D(x) = Maxj[α j Cj(x)]

   D(x) = Min(∑jα jCj(x), 1]



Some Observations

•  If any Cj(x) = 0 then

          T (C1(x), C1(x), ......, C1(x)) = 0 

•  Imperative of this class of  decision functions is
        All  criteria must be satisfied

•  If any Cj(x) = 1 then

          S(C1(x), C1(x), ......, C1(x)) = 1 

•  Imperative of this class of  decision functions is
        At least one criteria must be satisfied



               

D(x) = 1
n  Cj(x)∑

j = 1

n



Mean Operators

•  M : R
n

 →  R

1.  Commutative
2.  Monotonic 
M(a1, a2, ....., an) ≥ M(b1, b2, ....., bn) if aj ≥ bj 

 3. Bounded
Minj[aj] ≤ M(a1, a2, ....., an) ≤ Maxj[aj]

(Idempotent: M (a, a, ....., a) = a

•  Many Examples of Mean Operators
Minj[aj], Maxj[aj], Median, Average

OWA Operators
Choquet Aggregation Operators



Ordered Weighted Averaging Operators
OWA Operators

Yager, R. R. (1988). On ordered weighted averaging

aggregation operators in multi-criteria decision

making. IEEE Transactions on Systems, Man and

Cybernetics 18, 183-190



OWA Aggregation Operators

• Mapping F: R
n

 →  R with F(a1, ....., an) = wj bj∑
j = 1

n

      bj is the jth largest of the aj

      weights satisfy: 1. wj ∈  [0, 1] and 2 . wj∑
j = 1

n

 = 1

         

• Essential feature of the OWA operator is the

reordering operation, nonlinear operator

• Weights not associated directly with an argument

but with the ordered position of the arguments



• W = [w1 w2        wn] called the weighting vector

• B = [b1  b2         bn] is ordered argument vector

• F(a1, ....., an) = W BT

• If id(j) is index of jth largest of ai then

           F(a1, ....., an) =  w j aid(j)∑
j = 1

n

          aid(j) = bj



Form of Aggregation is Dependent Upon the

Weighting Vector Used

OWA Aggregation is Parameterized by W



Some Examples

• W*: w1 = 1 & wj = 0 for j ≠ 1 gives

                        F*(a1, ....., an) = Maxi[ai]

• W
*

: wn = 1 & wj = 0 for j ≠ n gives

                        F*(a1, ....., an) = Mini[ai]

• WN: wj = 1
n  for all j gives the simple average

                       F*(a1, ....., an) = 1
n   ai∑

i = 1

n



Attitudinal Character of an OWA Operator

• A-C(W) = 1
n - 1

  wj (n - j)∑
j = 1

n

• Characterization of type of aggregation

• A-C(W) ∈  [0, 1]

• A-C(W*) = 1    A-C(WN) = 0.5    A-C(W
*

) = 0

• Weights symmetric (wj = wn-j+1) ⇒  A-C(W) = 0.5



An A-C value near one  indicates a bias toward the

larger  values in the argument (Or-like /Max-like)

An A-C value near zero  indicates a bias toward the

s m a l l e r  values in the argument (And-like /Min-

like)

An A-C value near 0.5 is an indication of a neutral

type aggregation



Measure of Dispersion an OWA Operator

• Disp(W) = -  wj ∑
j = 1

n
ln(wj)

• Characterization amount of information used

• Disp(W*) = Disp(W
*

) = 0  (Smallest value)

   A-C(WN) = ln(n)  (Largest value)

• Alternative Measure

       Disp(W) =   (wj)
2∑

j = 1

n



 Some Further Notable Examples

• Median : if n is odd  then wn + 1
2

 = 1 

                 if n is even  then wn
2

 = wn
2

+1 = 1
2

• kth best: wk = 1   then F*(a1, ....., an) = aid(k)

• Olympic Average: w1 = wn = 0, other wj =  1
n - 2

• Hurwicz average: w1 = α , wn = 1-α , other wj = 0



OWA Operators Provide a Whole family of

functions for the construction of mean like

multi–Criteria decision functions

D(x) = FW(C1(x), C2(x), ......, Cn(x))



Selection of Weighting Vector
Some Methods

1. Direct choice of the weights

2. Select a notable type of aggregation

3. Learn the weights from data

4. Use characterizing features

5. Linguistic Specification



Learning the Weights from Data

• Filev, D. P., & Yager, R. R. (1994). Learning OWA operator weights

from data. Proceedings of the Third IEEE International Conference on

Fuzzy Systems, Orlando, 468-473.

• Filev, D. P., & Yager, R. R. (1998). On the issue of obtaining OWA

operator weights. Fuzzy Sets and Systems 94, 157-169.

• Torra, V. (1999). On learning of weights in some aggregation

operators: the weighted mean and the OWA operators. Mathware

and Softcomputing 6, 249-265



Algorithm for Learning OWA Weights

•  Express OWA weights as wj = eλ j

eλk∑
k = 1 

n

•  Use data of observations to learn λ i

    (a1 ,     , an)   and aggregated value d

•  Order arguments to get bj for j = 1 to n

•  Using current estimate of weights calculate 

         d  = wj∑
j = 1 

n
 bj

•  Updated estimates of λ j
                         λ'j = λj - α wj (bi - d ) (d  - d) 



Using Characterizing Features

• A-C(W) = 1
n - 1

  wj (n - j)∑
j = 1

n

• A-C(W) = 1   “orlike”

  A-C(W) = 0     “andlike”

• α  ∈  [0, 1] degree of “orness”

• Determine W with specified α  



O’Hagan Method

• Specify α  and determine weights to maximize the

dispers ion

•      Max  -  wj ∑
j = 1

n
ln(wj)

    such that 

           1. 1
n - 1

  wj (n - j)∑
j = 1

n
 = α  

           2.   wj ∑
j = 1

n
 = 1

           3.   wj ≥ 0



Linguistic Specification of Weights

1. Linguistically specify aggregation imperative of

multiple criteria

2. Translate linguistic imperative into Fuzzy Set

3. Use fuzzy set to determine OWA weights 

Computing with Information Specified in a

Natural Language



Quantifier Guided Criteria Aggregation

• D = Min:  All  criteria must be satisfied

   D = Max:  At least one criteria must be satisfied

     

           “Quantif ier”  criteria must be satisfied

• Other examples of linguistic quantifiers:

           most, almost all, at least half

          only a few, at least 1/3

• Monotonic quantifiers



Representation of Linguistic Quantifier

• Represent quantifier as fuzzy subset Q on unit

interval

• Q(r) is the degree the proportion r satisfies the

concept of the quantifier

• Q : [0, 1] →  [0, 1] 

         1. Q(0) = 0

         2. Q(1) = 1

         3.  Q(r) ≥ Q(p)  if r > p

                     BUM Function



Obtaining OWA Weights from Quantifier

1
n

2
n

3
n

n
n

1

w1

w2

w3

Q(r)

r

Quantifier

• wj = Q( j
n ) - Q(j - 1n )



Functionally Guided Criteria
Aggregation

• Specify a Bum function f: [0, 1] →  [0, 1] 

         1. f(0) = 0

         2. f(1) = 1

         3.  f(r) ≥ f(p)  if r > p

• wj = f( j
n ) - f(j - 1n )

• Linear function f(r) = r    Quantifier ⇔ S o m e

    wj = 1
n     



Importance Weighted OWA Multi-Criteria

Decision Functions

• Importance vi  associated criteria Ci

• Aggregation Agenda
    Quantifier Important Criteria are Satisfied

         Most  Important Criteria are Satisfied

• D(x) = FQ/V(a1, a2, ....., an)

                     ai = Ci(x)



Calculation of D(x) = FQ/V(a1, a2, ....., an)

• Order the criteria satisfactions the ai

• aid(j) is jth largest  & vid(j) its importance

•  Calculate  Sj = vid(k)∑
k = 1

j

    &  T = Sn= vid(k)∑
k = 1

n

 • Determine OWA Weights

                 wj = Q(
Sj

T
) - Q(

Sj-1

T
)

 • D(x) = w j aid(j)∑
j = 1

n



Some Methods of Obtaining Importances

• Fixed Specified Value

• Determined by Property of Alternative

                 vj = E(x)

• Dependent upon Other Attribute in Aggregation

             vj = Ck(x)

 Induces a prioritization

• Rule Based 



Concept Based Hierarchical

Formulation of Multi-Criteria

Decision Functions Using OWA

Operators



Definition of a Concept

• Concept is more abstract criteria

Con ≡ <C1, C2,...., Cn: V: Q>.

• Ci are a collection of measurable criteria

• Q is an OWA Aggregation Imperative

• V vector where vi is importance of Ci in concept

•  Con(x) = FQ/V(C1(x), C2(x),...., Cn(x))



Concepts with Concepts as Components

Con  = <Con1, Con2, ...., Conq: V: Q>.

Con(x) = FQ/V(Con1(x), Con2(x),...., Conq(x))

Multi-Criteria Decision Function Viewed as

Concept

Allows hierarchical structure for the multi-criteria

decision functions



Decision function:

         (C1 and C2 and C3) or (C3 and C4)

Represent as concept: <Con1, Con2 : V: Q>.

Here Q is or  and V  =  
1

1
.

Additionally

Con1 = <C1, C2, C3: V1: Q1>

Con2 = <C3, C4 : V2: Q2>

Where Q1 = Q2 = all 

V1 = 

1

1

1

 and V 2 = 
1

1
 



Hierarchical Formulation

Q

V

CC
3 4

Con
1 Con

2

1
Q

1
V

2
Q

2
V

C C C
321



Ordinal OWA Operator

• Z = {z0, z1, z3, ........., zm } ordinal scale

• Mapping F: Z
n

 →  Z with 

                 F(a1, ....., an) = Maxj[wj ∧  bj]

       bj is the jth largest of the aj
       weights satisfy: 1. wj ∈  Z

                                  2.   wi ≥ wk  if i > j

                                  3.  wn = zm  

• Allows mean like M-C decision functions with
ordinal information



Multi-Criteria Decision Functions Using
Choquet Aggregation Operators 

• Provides wide class of M-C decision functions

• C  = {C1, C2, ........, Cn}  “set of all criteria”

• Requires specification of monotonic measure µ

over set of criteria

• D(x) = Gµ(a1, a2, ....., an)

                     ai = Ci(x)



Set Measure µµµµ

• For any subset A  of criteria, µ (A ) indicates the

acceptability of a solution that satisfies all the
criteria in A 

• µ : 2C  →  [0, 1] (subsets of C  into the unit interval)

       1. µ(∅)  = 0

       2. µ(C ) = 1

       3. µ(A) ≥≥≥≥ µ(B)  if B ⊂⊂⊂⊂     A

• µ(∅)  = 0  & µ(A ) = 1 “any criteria is okay”

   µ(C ) = 1  & µ(A ) = 0   “all criteria are needed”



Evaluation of Choquet M-C Decision Function

• D(x) = Gµ(a1, a2, ....., an)      ai = Ci(x)

• Order criteria satisfactions ⇒  aid(j) is jth largest  

• Hj ={Cid(k)| k = 1 to j}, j most satisfied criteria

• wj =µ(Hj) - µ(Hj-1)

• D(x) = Gµ(a1, a2, ....., an) = w j aid(j)∑
j = 1

n



Uninorms



•  t-norm operators
             T(a1, a2, ....., an) = T(a1, a2, ....., an, 1)

  Identity is One  
            T(a1, a2, ....., an) ≥ T(a1, a2, ....., an, an+1)

•  t-conorm operators
             S(a1, a2, ....., an) ≤ S(a1, a2, ....., an, an+1)

  Identity is Zero 
              T(a1, a2, ....., an) = T(a1, a2, ....., an, 0)

•  Uninorm operators 
      Identity is e  ∈  [0, 1]



Uninorm operators with identity e
   
For an+1 < e

       U(a1, a2, ....., an) ≤ U(a1, a2, ....., an, an+1)

   For an+1 = e

       U(a1, a2, ....., an) = U(a1, a2, ....., an, e)

   For an+1 > e

       U(a1, a2, ....., an) ≥ U(a1, a2, ....., an, an+1)



M-C Decision Functions Using Uninorms

•  Multi-Criteria Decision Function
D(X) = U(C1(x),  ....., Cn(x))

•  Criteria with satisfaction greater then e  have
positive effect while those less then e  have
negative effect

•  Introduces bipolar scale

•  e  acts like “0” in a zero in simple addition



Multi-Criteria Decision Functions Using
Fuzzy Systems Modeling 

•  Set of Criteria C1, C2, ........, Cn

•  Describe Decision Function D(x)

• If S.C1 is A11 and ... S.Cn is A1n then D(x) is d1

  If S.C1 is Am1 and ... S.Cn is Amn then D(x) is dm

•  Aij is fuzzy subset of unit interval

    di value in the unit interval

    S.Cj denotes variable “satisfaction of Criteria Cj”



Evaluation of Decision Function by Alternative 

•  Determine Satisfaction of Rule i by alternative x

                     ri(x)= Aij(Cj(x))∏
j = 1

n

•  Obtain overall satisfaction

                D(x) = 

ri(x) di∑
i = 1

m

ri(x)∑
i = 1

m



Evaluating Criteria Satisfaction Cj(x)

•  Scalar Number: Cj(x) = 0 .7

•  Ordinal Value: Cj(x) = med ium

•  Interval Valued : Cj(x) = [0.3, 0.7]

•  Fuzzy Set Valued: Cj(x) is a fuzzy subset of [0, 1]

•  Intuitionistic Values: Cj(x) = (a, b)    /a + b ≤ 1

a degree satisfaction/b degree not satisfaction

• Probabilistic Values: Cj (x) is Probability

distribution on [0, 1]



       THE END


