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Monotone (generalized) measures

Let X be a finite set. A set function : 2* — [0, 1] is
called a monotone measure if

1. u(0) =0, u(X) =1 (norming);
2. A C Bimpliesu(A) < p(B) (monotonicity).

Notation:

o M,,.n(X) is the set of all monotone measures on
2X.

© 1 < pofor p, po € Mo (X) If 11 (A) < pa(A)
forall A € 24.
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Examples of monotone measures

Example 1.
Let us assume that we have public opinion poll before
elections and some persons do not determined about
their voting.

Any person can choose a nhon-empty set of candidate
for which she (he) can vote.

Let we have three candidates 1,2,3 and the
Information about the future voting Is represented In
Table 1.
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3 m Bel Pl P
O O 0 0 0
O 01 01 0.7 1/3
O 0.05 0.05 0.75 1/3
O 0.1 0.25 0.95 2/3
1 0.05 0.05 0.75 1/3
1 0.1 0.25 0.95 2/3
1 0.2 03 09 2/3
1 0.4 1 1 1

O r O Fr O Fr OoOlr
RO O KR, EFLP OONDN

—_

Table 1: Results of public opinion poll.
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For estimating these results, we can introduce the
following functions:

Bel(A) = )  m(A) isthe pessimistic estimate of
B|BCA
percentage of voting for candidates from the 4et

PI(A) = >  m(A)isthe optimistic estimate of
B|BNA#()
percentage of voting for candidates from the 4et

P Is the probability measure, where
P({i}) = >, m(A)/|A]
Alie A
IS the average estimate of percentage of voting for
candidate.




Let M, be the set of possible probability measures on

the powerset of 1, 2, 3}. Then the set of probability
measures

P={Pe M,|Bel(A) < P(A) < PI(A) forall A}

describes all predictable results of voting (see Fig. 1).
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Figure 1. Set of probability measures
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Figure 2. Set of probability measures on plane

—n. 8/72



The sefP Is described by the following system of
Inequalities:

[ p1+p2t+p3=1
0.1 < D1 < 07,

0.05 < py < 0.75,

| 0.05 < p3 < 0.75,

and it can be also represented as a convex closure of
probability measure®, = (0.7,0.25,0.05),

P, = (0.7,0.05,0.25), P; = (0.25,0.05,0.75),

P, =(0.1,0.15,0.75), P; = (0.1,0.75,0.15),

Ps = (0.2,0.75,0.05).
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Example 2.1t is known that the random valugetakes
its values in the seft—1,0, 1}, and

—0.2< E[§] £0.2,0.3 < F[£?] £ 0.5. What are the
setP of permissible probability measures describing

£7?
LetPr(é = —1) = p1, Pr(¢ = 0) = po,
Pr(¢é =1) = ps.

Solution. E[§] = —p1 + p3, E[E?] = p1 + ps.
Therefore, the sd? is described by the following
system of linear inequalities:

p1+p2+p3 =1,
—0.1 < P1— P3 < 017
0.3 < p1 + p3 <0.5.

—n. 10/72




Figure 3. Set of probability measures on plane

—n. 11/72



The setP Is depicted on Fig. 3. It easy to see tlkals

a blue rectangle on Fig. 3. Its vertices are probability
measures’ = (0.3,0.5,0.2), P, = (0.2,0.5,0.3),

P; = (0.1,0.7,0.2), P, = (0.2,0.7,0.1). We can also
represent the information about random variable
using monotone measures. In this case, measures

giving us exact lower and boundaries of probabilities
are defined as

w(d) = min F(A),
i

(A) = max P;(A).

i=1,2.3.4
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1 2 3 u [
O 00 O O
1 0 0 0.1 0.3
O 1 0 05 0.7
1 1 0 0.7 0.9
O 01 01 03
1 0 1 0.3 0.5
O 1 1 0.7 0.9
1 11 1 1

Table 2: Values of measur@sand.
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Convex sets

Any convex set In our context can be represented as a
convex set ImR".

By definition a setV/ C R” is convexf x € M and
y € M impliesax + (1 —a)y € M for anya € |0, 1].
The pointax + (1 — a)y is called aconvex sunfor a
convex linear combinatigrof x andy.

A pointz € M Is calledextremdor a convex sef\/ if
z cannot be represented as a convex sum

z=ax+ (1 —a)y

of any pointsx,y € M with x # z andy # z.
On Fig. 1 you can see a convex sefiih
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Figure 3: An example of a convex set IR”
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In this casex; = (1,3), xo = (5,7),x3 = (9, 5),
x4 = (8, 1) are extreme points, and the convex set can
be described by a linear system of inequalities:

([ x—y+2>0,

—x — 2y +19 > 0,
—4x +y+ 31 =20,
| 20+ Ty — 23 > 0.
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If the convex sefl/ C R" Is closed and bounded and
contains a finite number of extreme points
X1,X9, ...., Xm, then anyx € M can be represented as

a convex sum ok, Xo, ...., X, |.€.

X = a1X] + a9X9 + .oo. + A Xin s

m
wherea; > 0,7 =1,...mand)_a; = 1.

1=1
Let us consider our example. In this case, any point
x € M can be represented as a convex linear
combination of extreme points;, x5, X3, X4. ASsume

thatx = (5, 5), thenx can be represented as

X = a1X1 + A92X9 + A3X3 + A4X4,
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where

( a1 — (/3) — (3/4)@4,
(1/3) + (5/4)as

as = (/3) — (3/2)@4,

\ O<a4<(2/9)

It IS easy to see that the representation

X = a1X1 + a9Xs + .... + a,;,X,,, 1S NOt unique In
general. For our case, we have different
representations changinag in [0, (2/9)].
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The structure of monotone measures
Any monotone measure € 2+ can be considered as

a point inR?*", because values of can be represented
as a vector

(@), {21 }), oy p{n ), p({21, 22}), 0o (X))

Therefore, we can define a convex sum of monotone
measures; and, as

nw=ap; + (1 —a)usfora e [0,1]if
1W(A) = ap(A) + (1 —a)us(A) forall A € 24,

It Is easy to see thal/,,,,, IS a convex set.
Question: What are the extreme points &f,,,,,?
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Extreme points of M,,,.,,

A 1 € M, is called{0, 1}-valuediff u(A) € {0,1}
forall A € 2%,

Theorem. The set of all extreme points for a convex
setM,,., consists of 0, 1}-valued measures.

The description of {0, 1}-valued measures

Algebra2* can be considered as a partially ordered
set w.r.t. the set-theoretical inclusion.

A subseff of 2% isfilter if A € f andA C B implies
B € f. By definition, no filter contain®.

Proposition. Any{0, 1}-valued measure is a
charactectic function of some filter.
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AsetAisminimalinfif {B e f|B C A} = {A}.
Each filterf is generated by a set of its minimal
elementd A4, ..., Ay} in a way

f={Ae2"|3A, CA}.
This fact is denoted bff = (A4, ..., Ax).
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The algorithm of finding representation = >~ a;n;

of u € M,,,, through {0, 1}-valued measures;,.

0.v:=u,2=1.
1, pu(A) >0 .
1.n;(A) = " a; = min A).
WA {0, u(Ad) =0, A\M(A)>Olu( )

2. L= —a;n;,t:=1+ 1.
3.if y =0, theny = > a;n; else goto 1.
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Example. Let P be a probability measure @,

whereX = {x, x5, 23}, such thatP ({z;}) = 1/3,
= 1,2,3. Then

p-. i o
= 3Maay) T 3Mwa)) + 3(as)-

If we use the algorithm, then
1 1 1

P=_ ’ ’
3 M fead s }) T g Mo (n s} {ra s ) T 5 I3, 5))
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Basic concepts of imprecise probabillities

 Classical probabillity theory works with single
probability measures.

» The theory of imprecise probabilities works with
sets of probability measures.

In this lecture we consider probability measures
defined on the powerset of a finite set
X =A{x1,....,x,}.

M, (X) is the set of all probability measures df.
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Credal sets

In this lecture a credal set is understood as a closed
convex set of probability measures with a finite
number of extreme points. P is a credal set and

P. e M, (X), k=1,...,m, are its extreme points
then

P = {ZCLZPZMZ P> O, Zai — 1}
k=1 k=1
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Let X = {x1,x9, 3}, then any credal set is convex
subset of triangle consisting of poinis, p», p3):
pi = 0,p1+p2+p3=1

B,P, P, P, are extreme points.
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Lower probabilities

A monotone measure is called aower probabilityif
there Is aP € M, such thafu < P.

Any lower probability.. defines a credal set

P(p) =P € My (X)|P > pj.

—n. 27/72



Let ;. be a lower probability o2+, where
X ={x1, 29,23}, then extreme points @& () can be
found by solving the following inequalities:

p1 = W ({xl}) ;
p2 = U ({552}) ;
p3 = p(123})
p1 +p2 = p ({21, 22}),
p1+ps = ({21, 23}) .
P2+ p3 = i ({z2, 13}),
p1+p2+p3 =1

Clearly lower probabilities are less general than credal
sets.
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Upper probabilities

A monotone measure is called arupper probability
If there Is aP € M, such thafu > P.

Any upper probability generate a credal set
{P € My, (X)|P < p}.

It Is possible to consider only lower probabilities. Let
1 be an upper probability. Introduce into

consideration a measuré(A) = 1 — u(A°). The

measure. is called dual ofx. Clearly . and
generate the same credal set
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Coherent lower probabillities

A lower probability . Is called acoherent lower
probability if for any A € 2* there is aP € M, such
thaty < Pandu(A) = P(A).

Any coherent lower probability can be generated as
follows: If P Is a credal set then

_ X
u(A) = win P(A), A € 2%,

IS a coherent lower probability.
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Coherent upper probabillities

An upper probability. Is called acoherent upper
probability if for any A € 2* there is aP € M, such
thaty > P andu(A) = P(A).

Any coherent upper probability can be generated as
follows: If P Is a credal set then

_ X
u(A) = ax P(A), A € 2%,

IS a coherent upper probabillity.
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2-monotone measures

A monotone measure Is call@éemonotonaf the
following inequality holds:

u(A) + p(B) < p(AN B) + p(AU B).
for the dual measure the following inequality holds:
p'(A) + p(B) = p'(AN B) + u'(AU B).

This measure Is callegtalternative It is known that
any 2-monotone measure is a coherent lower
probabllity, and any 2-alternative measure Is a
coherent upper probabillity.
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Example. Let i1 Is a lower envelope of probabllity
measures$’; and P, with values

P ({z1}) = 1/4, Pr ({z2}) = 0, P ({x3}) = 3/4,
Py ({z4}) = 0,
Py ({z1}) =0, P> ({x2}) = 1/2, P> ({x3}) = 0,
By ({z4}) = 1/2,

l.e. u(A) = IE%I%PZ-(A). Then

J ({fj;m}) + p ({13;%4}) > L ({:4}) + p ({551»1;5237 Ta}) -

Thereforeu Is a coherent lower probabillity, but it is
not 2-monotone.
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Properties of 2-monotone measures

Theorem 1.A u € M,,,, on2+ (| X| = n)is
2-monotone if for anyB € 2+ (|B| < n — 2) and any
x,y € X\B (x # y) the following inequality is
fulfilled:

u(BU{z}) + w(BU{y}) < p(BU{z,y}) + pu(B).

Theorem 2.Let i € M,,0n, | X| = n, and let

{By, By, ..., B,} be a complete chain i&r*, i.e.

)= bhcBicC..CBb,=X and\BiH\Bil =1,

1 =20,....n— 1.

Then aP & Mpr with P(BZ) = /L(BZ), 1 =20, ...,n, 1S
an extreme point oP (1) and any extreme point of
P(u) is described as above.




Example. Consider a 2-monotone measusel,
which we got for describing a public opinion poll. Let
us find the extreme points @fel, using Theorem 2:

If Bl — {1}, B2 — {2,3}, Bg — {1, 2,3}, then
Pi({1}) = p(B1) = 0.1,

Pu{2}) = u(By) — u(By) = 0.25 — 0.1 = 0.15,
Fﬂﬁﬂ)_ Q%) M@%%=1—025:075

Pz({Q}) (Bg) — 0.05,
Py({3}) = 1u(By) — u(By) = 0.2 — 0.05 = 0.15,
Py({1}) = p(Bs) —

0

(D

1(Bs) =1—0.2=0.8.
), P» = (0.8,0.05,0.15).

P, = (0.1,0.15,
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Conditioning of coherent lower probabillities

Let P € M,, and an evenB occurred. Then the
probability of A given B Is calculated as

P(A|B) = P(AN B)/P(B).
Let us denote the conditional probability measitye

In case of imprecise probabilities we have a credal set
P and the same conditioning leads to a credal set

Pp = {PB’P = P}

Let . be a coherent lower probability. Then the
conditional measurgp can be calculated as

pp(A) = inf {Pp(A)|P € P(u)}.
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Conditioning of 2-monotone measures

Theorem. Let i be 2-monotone. Then

AN B)

A o

1e) = AN B) + W (BVA)
Proof. By definition

e P(AN B)
ip(A) =Wl S B P(B g W
Notice that the functiorf («, 5) = ;75 Is increasing

w.r.t. « and decreasing w.r.t. Therefore, In the right
part of (1) we must choose the smallesind the

biggests.
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Itisso,ifP(ANB)=u(AN B) and
P(BNA) = u%BnA). Therefore,

u(AN B)

1) 2 A B) + W (BVA)
Let us show that” € P(u) with
P(ANB)=pu(AnB)andP(BNA) = u4(BnN A)
exists.
Notice thatu?(BN A) =1 — u(A U B) and
AN B C AU B. Thus, 2-monotonicity of: implies
thatdP € P(u) with P(AN B) = u(AnN B) and
P(AUB) = u(AuB). R
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Upper and lower expectations (previsions)

Let X = {zq, x9, ..., 2, } be afinite set and® is a

probability measure o2*. In classical probability
theory a random valugis a mapping : X — R and
Its expectation is defined by

Ep €] = z E(z:) P({x}).

If probabilities are defined imprecise, then instead of a
probabllity measure we have a credal Bednd we
can define lower and upper expectations using
formulas:
Ep (€] = inf Ep (€], Ep[¢] = sup Ep [¢].
Sl PeP
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Clearly, the functional&r and Ep can be defined on
the setF of all bounded functions oX .

Notation:

0 Is a function onX that Is equal to zero;
1 Is a function onX that is equal to one.

Theorem. The functionals&’p and Ep are lower and
upper expectations of some non-empty credabPset

1. Ep|0] =0, Ep [1] =1;

2. Eplaf +c| = aBpf

+ca,ceR, feF,

3. Ep [fi]l + Ep |f2] < Ep [f1 + [f2] for any

EanEJT;

4. Fp = —Ep(—f) forany f ¢ F.
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Upper and lower expectations for 2-monotone
measures

Lemma. Let P € M, and letf a be non-negative
function onX. Then

Ep[f] = 79 P({z € X|f(x) > t})dt (1)

Proof. Let x(y) = { (1)’ z z 8’ Then the right part

of (1) can be transformed to

f@x —th)dt.
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Changing the order of integration we get

f(fx —tdt)dP ff )dP = Ep[f].

Theorem 1.Letu € My_,0n and letf be a
non-negative function oX. Then

Epgy [f] = T w({z € X|f(z) > t}) dt

Proof. Clearly,

Epy f] = inf fP {z e X|f(x) >t})dt >

PeP(u

(j)ﬁ (z € X[f(z) > t})dt
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Since setgx € X|f(x) > t} form a chain and
e Mo rmon, P € P(,u) with

p(iz € X[f(z) > t}) = P({z € X|f(z) > t}).
for all ¢t € [0, +00). This implies the result.

Theorem 2.Letyu € Ms_,,0, and f € F. Let
f=f.— f_,where

fi(z) = { f((f% T

r <0,
Then

Bogy [f] = [ n({x € X|f(z) > 1)) di -

[ nl ({x € X|f-(x) > t}) dt.
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Choquet Integral

Let u € M,,.,, then the Choquet integral is a
functional defined by

(Ohoquet)j{ff(a:)d,u =

p({z € X[ fi(z) > t})di —

O

bfud ({z € X[f-(z) > t})dt.

Definition. Functionsf;, f, € F are called

comonotonidf fi(z) < fi(y) implies fo(z) < fa(y)
foranyx,y € X.
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Properties of Choquet Integral

1. f La(@)dp = p(A).

2.fcf:17d,u:cffxd,u,c€R.
X X

3]qf (@)= = | f(@)dp”

4f T) + ¢)du = ff )du + ¢, c € R.

5. f( ) g(x) for aII.cz: e X implies
gf du<;y@mm

6. If f andg are comonotonic, then

Jkﬂ@+y@Mu=gf@Mu+gm@WL

X




7.if p € My yon, thenEp,y [f] = | f(z)dp and
X
EP(M) Sl = ){ fx)dp.

8-){f(37)d(a/ﬁ1 + bpz) = a)[ f(@)dp + b}_{f f(x)dps,
a,b>0,a+0b=1.

Theorem. A functional F' on F is a Choquet integral
for someu € M,,,,, Iff

1) F(lx) =1,

2) F (cly) = cF (14) foranyc € R;

3) f <gimpliesF(f) < F(g);

4) If f andg are comonotonic, then
F(f+g9)=F(f)+ F(g).
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Computing of Choquet Integral

Let f € F and we order the elements &f such that

Let us consider the sequence of sets

BQ — @, Bl — {leil},Bl — {Zl?il,iliiQ} ) ooos
Bn — {Zlﬁ‘il, ,Zl?zn} =p.¢

n

J f@)dp =32 f (i) ((Bk) — p(Br-1)).

X k=1
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Example. X = {1'1, ZL‘Q,CL’g}, f([L‘l) = 0.25,
f(ZL‘Q) =" f(l’g) = 0.5.
fx2) > f(a3) > f (@)

By = {z2}, By = {72, 23}, B3 = {71, T2, T3}
Bel(B;) = 0.05, Bel(Bs) = 0.3, Bel(B3) = 1.
Pl(B,) = 0.75, PI(B,) = 0.9, PI(B;) = 1.

[ f(x)dBel =1-0.1+0.5-0.25+0.25-0.7 = 0.4.
X

[ f(z)dPl =1-0.754+0.5-0.254+0.25-0.05 = 0.8875.
X
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Sugeno Integral
Let u € M,,., then the Sugeno integral is a functional

on the set of all functiong : X — |0, 1] defined by

(Sug))j; flz)dp = . (tAp({z e X[f(z) >1t})).

Theorem. A functional F' on the set of all functions
f: X —|0,1] is a Sugeno integral for some

e M, Iff it satisfies the following properties:

1. F(1x) = 1.

2. F (cN1y) =cNF(1y).

3. f < gimpliesF(f) < F(g).

4. 1f f andg are comonotonic, then
F(fVg)=F(f)VF(g)
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Computing of Sugeno Integral

Let f € F and we order the elements &f such that

Flan) = f(2,) > > f (@)

Let us consider the sequence of sets

Bl — {LL‘il},Bl — {1'7;1,1'7;2} S o000
Bn — {ZEil, 7377,”} =p.¢

Thenf = V (f(x;) Alp,) and

gf@Muz

| <3

(f (i) A p(Br)).

k=1
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Example. X = {1'1, ZL‘Q,CL’g}, f([L‘l) = 0.25,
f(ZL‘Q) =" f(l’g) = 0.5.
fx2) > f(a3) > f (@)

B1 = {x9}, Bo = {9, 23}, B3 = {21, 22, x3}.
Bel(B;) = 0.05, Bel(Bs) = 0.3, Bel(B3) = 1.
PIl(B1) = 0.75, Pl(By) = 0.9, Pl(B3) = 1.

[ f(z)dBel = (1A0.1)V (0.5A0.3)V (0.25-1) = 0.3.
7f )dPL = (1LA0.75)V(0.5A0.9)V (0.25A1) = 0.75.

X




Belief and plausibility measures

Belief and plausibility measures are defined by means
of a basic probability assignment. A basic probability

assignmentn is a non-negative set function arn
such that

1. m(0) = 0;
2. > m(A) =1 (norming).
Ae2X
Then
Bel(A) = > m(B)andPIl(B)= )_  m(A).
BCA BNA(

The setA is called focal ifm(A) > 0.
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Some times, it Is useful to represent belief functions
using{0, 1}-valued measures:

1, BCA,
0, otherw:ise.

np)(A) = {

Then
Bel(A) = Y2 m(B)is)(A).

Be2X

The sense oi g Is the following. It describes the

situation when we know that the random variable
definitely takes values from the sBt but we don’t
know any additional information.

Clearly, Pl = Bel.
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Dempster-Shafer theory

Let we have an experiment in which we cannot fix
elementary events and the only information is that

some event occurred (s#/ € 2*). In this case a
monotone measure

By (A) = {
describes events that occured necessarily, a measure

1, ANB#0
d - ) ’
iy (A) = { 0, ANB =0,

describes events that occurred possibly.

1, BCA,
0, otherw:ise.
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Let m(B) be a frequency of fixing3 € 2*. Then a

measure
Bel(B) = 3" m(B)n(B)

gives an exact lower bound of the probability of event
B, and a measure

PIB) = Y m(B)n(B)

gives an exact upper bound of the probabillity of event
B.
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Possibility and necessity measures

A possibility measurd’os Is such thatPos € Mo,
Pos(AU B) = max{Pos(A), Pos(B)} A, B € 2%,

A necessity measur®ec Is such thatVec € M,
Nec(AN B) = min{Nec(A), Nec(B)} A, B € 2%,

The dual of a necessity measure is a possibility
measure. Any necessity measure is a belief measure.
A belief measure Is a necessity measure if focal
elements form a chain.
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M oObius transform

The set of all set functions dit* is a linear space and
the system of set functions) p) } ,_, is the basis of
It. We can find the representation

pw= >, m(B)np
Be2Xx

of anyp : 2% — R using the M6bius transform:

m(B) = ¥ (~1)"u(4)
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The representation of the Choquet integral
through the M obius transform

Let m be the Mébius transform of € M,,,,,,. Then
p= 2, m(B)np,

Be2X
h) | f(x)dp = > m(B) [ f(x)ns),
X Be2X X

Slnceff x)dn gy = CC/\Bf(%'),
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Decision theory

Assume that you decided to invest money for election
campaign and your gain depends on the candidate
v = 1,2, 3, who will win. These gains are described in

the following table.

State 1 State 2 State 3
Act 1 U(Al Sl) U(Al SQ) U(Al Sg)
Act2 wu(As|S1) u(As|Ss) wu(As|S3)
Act3 u(A3|S1) wu(A3|S) wu(As|S3)
Act: (A;), 7 = 1,2,3 means that you choose to invest

the campaign of candidaieand State (.S;) means
that candidate will win.
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Let us assume that information about future elections
IS presented by probabilitieg3(.S;). Then you choose
the actA4; with the highest expected gain:

Imprecise probability model

If your beliefs cannot be expressed by a probability
measure, we can add uncertainty assuming that the
future elections results are described by a credal set
P. Then we have lower and upper bounds of the
expected gain:

—n. 60/72




3

u(A;) = inf > w(A;|Sk)P(Sk),

PeP k=1
3

PeP k=1

=g
=
|

In this case, ifu(A;) > u(A4,) andu(4;) > u(A4;),
9 =1, 2,3, you should definitely choose the a¢t In
other situations it depends on behavior of a decision

maker. For example, the cautious behavior means tha
he choose act; with u(A;) > u(4;),7 =1,2,3.
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Multi-criteria decision making

In this case each agt; is characterized by a vector

(uq, ..., u,) Of criteria utilities. It is assumed that

u; € 10,1],7 =1, ...,n. For decision making it is
necessary to aggregate criteria in a one global criteria
with the utility u = p(uy, ..., u,), where

¢ : 10, 1]™ — |0, 1] is an aggregation function with the
following properties:

1) ¢ (0,...,0) =0, p(1,..,1) = 1;

2)x <y impliesp(x) < ¢(y)-
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It Is well known that the aggregation function based
on simple average

U = a;U;, Whereai > 0, Z u; = 1,
1=1 1=1
IS not good If criteria interact to each other. Therefore,
aggregation functions based on Choguet integral or

Sugeno integral are used.
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Choice of aggregation function

Given a learning samplexy, ..., xy ), for which we

know that for ideal aggregation functignit should
be fulfilled

p(xi) < p(x;) If 1 < 7.
Denote byyp,(f) = [ fdu the aggregation function
based on Choqguet integral or Sugeno integral. Then
the optimal choice of aggregation function is
connected with seeking a monotone meagutieat
properly classifies vectors in a sense that

pu(Xi) < @u(x;) If ¢ < .
It Is easy to show that for the case of Choquet integral,
this leads to solving the system of linear inequalities.
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Image processing

Let we have a set of classifiers that give us the
answer that on the picture it is depicted a building or
not. Assume that this answer they give by numbers

ui,t=1,...,n,In [O, 1]

 If u; = 1, then classifief definitely says that
there is a building on the picture;

* If u; = 0 then there Is no.

The problem is how to aggregate information from the
set of all classifiers. This can be done by aggregation
functions based on Choquet integral or Sugeno
Integral.
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Solution

Given a learning samplexy, ..., xy ), for which we
know the right answer for any;. Assume that

* c(x;) = 1 if the picture: contains a building;
* ¢(x;) = —1 otherwise.

Then the aggregation functigs), can be chosen such
that it minimizes the number of false inequalities:

c(x;)(pu(x;) —0.5) > 0,7 =1,...,N.
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Information measures in image processing

Let Images be characterized by a set of features

X =A{x1,29,...,x,}. SOmMetimes, these features are
redundant, and it Is necessary to choose a subsgt of
that characterize the image with the sufficient
precision. For this purpose, the information measure
124 — [0, +00) is introduced that reflects the
amount of information of any subsdtC X. Clearly,

It should have the following properties:

1. w(@)=0;
2. A C Bimpliesu(A) C u(B).
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An Information measure based on the Shannon
plife]0)Y;

Assume that we can describe the occurrence of
Images and their features by a random vector

¢ = (&, ...,&,). Denote a random vector consisting of

random variables;, i € A, by £4. Then we introduce
the information measure

u(A) = 5 (€a),
whereS Is the Shannon entropy.

Proposition. The information measure based on the
Shannon entropy Is 2-monotone.
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Information measures of polygonal representations

In Image processing we need to analyze closed
contours.

Thelir simplest representations are polygons.

Any polygon can be represented as a ordered set
X = {x1,x9,...,xy } Of its vertices.

After contour extraction, each contour has a huge
number of vertices.

Problem: how to reduce a number of vertices?to
find subcontouB of X (see Fig. 1) that preserve
Information about the initial contous.
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Figure 1. ContourX = {x;,...,x15} and contour
B = {X27 ooy X5y X8y X9, X12, '“7X157X177X18}
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For choosing the optimal representation we can use
Information measures.

One way to use information measure based on
contour length. It is defined as

ir(B) = 2, Iyi = Yie

whereB = {y1,¥2, -, Ym } aNdyo = Y-
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The choice of optimal contour

Let A Is the set of admissible polygonal
representations.

For example, it can be a set of contours, in which a
number of vertices is lower or equal tharn Is a
parameter).

Then anA-optimal contour3,,; Is a solution of the
following optimization problem:

pr(Bopt) = 1}1163:35 nr(A).
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