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Monotone (generalized) measures

LetX be a finite set. A set functionµ : 2X → [0, 1] is
called a monotone measure if

1. µ(∅) = 0, µ(X) = 1 (norming);

2. A ⊆ B impliesµ(A) 6 µ(B) (monotonicity).

Notation:

• Mmon(X) is the set of all monotone measures on
2X ;

• µ1 6 µ2 for µ1, µ2 ∈ Mmon(X) if µ1(A) 6 µ2(A)

for all A ∈ 2X .
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Examples of monotone measures

Example 1.
Let us assume that we have public opinion poll before
elections and some persons do not determined about
their voting.
Any person can choose a non-empty set of candidates
for which she (he) can vote.
Let we have three candidates 1,2,3 and the
information about the future voting is represented in
Table 1.
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1 2 3 m Bel P l P

0 0 0 0 0 0 0
1 0 0 0.1 0.1 0.7 1/3
0 1 0 0.05 0.05 0.75 1/3
1 1 0 0.1 0.25 0.95 2/3
0 0 1 0.05 0.05 0.75 1/3
1 0 1 0.1 0.25 0.95 2/3
0 1 1 0.2 0.3 0.9 2/3
1 1 1 0.4 1 1 1

Table 1: Results of public opinion poll.
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For estimating these results, we can introduce the
following functions:

Bel(A) =
∑

B|B⊆A

m(A) is the pessimistic estimate of

percentage of voting for candidates from the setA.

Pl(A) =
∑

B|B∩A6=∅

m(A) is the optimistic estimate of

percentage of voting for candidates from the setA.

P is the probability measure, where
P ({i}) =

∑

A|i∈A

m(A)/|A|

is the average estimate of percentage of voting for
candidatei. – p. 5/72



LetMpr be the set of possible probability measures on
the powerset of{1, 2, 3}. Then the set of probability
measures

P = {P ∈ Mpr|Bel(A) 6 P (A) 6 Pl(A) for all A}

describes all predictable results of voting (see Fig. 1).
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Figure 1: Set of probability measures
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Figure 2: Set of probability measures on plane
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The setP is described by the following system of
inequalities:







p1 + p2 + p3 = 1,

0.1 6 p1 6 0.7,

0.05 6 p2 6 0.75,

0.05 6 p3 6 0.75,

and it can be also represented as a convex closure of
probability measuresP1 = (0.7, 0.25, 0.05),
P2 = (0.7, 0.05, 0.25), P3 = (0.25, 0.05, 0.75),
P4 = (0.1, 0.15, 0.75), P5 = (0.1, 0.75, 0.15),
P6 = (0.2, 0.75, 0.05).
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Example 2. It is known that the random valueξ takes
its values in the set{−1, 0, 1}, and
−0.2 6 E[ξ] 6 0.2, 0.3 6 E[ξ2] 6 0.5. What are the
setP of permissible probability measures describing
ξ?
LetPr(ξ = −1) = p1, Pr(ξ = 0) = p2,
Pr(ξ = 1) = p3.
Solution. E[ξ] = −p1 + p3, E[ξ2] = p1 + p3.
Therefore, the setP is described by the following
system of linear inequalities:







p1 + p2 + p3 = 1,

−0.1 6 p1 − p3 6 0.1,

0.3 6 p1 + p3 6 0.5.
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Figure 3: Set of probability measures on plane
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The setP is depicted on Fig. 3. It easy to see thatP is
a blue rectangle on Fig. 3. Its vertices are probability
measuresP1 = (0.3, 0.5, 0.2), P2 = (0.2, 0.5, 0.3),
P3 = (0.1, 0.7, 0.2), P4 = (0.2, 0.7, 0.1). We can also
represent the information about random variableξ
using monotone measures. In this case, measures
giving us exact lower and boundaries of probabilities
are defined as

µ
−

(A) = min
i=1,2,3,4

Pi(A),

µ̄(A) = max
i=1,2,3,4

Pi(A).
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1 2 3 µ
−

µ̄

0 0 0 0 0
1 0 0 0.1 0.3
0 1 0 0.5 0.7
1 1 0 0.7 0.9
0 0 1 0.1 0.3
1 0 1 0.3 0.5
0 1 1 0.7 0.9
1 1 1 1 1

Table 2: Values of measuresµ
−

andµ̄.
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Convex sets

Any convex set in our context can be represented as a
convex set inRn.
By definition a setM ⊆ R

n is convexif x ∈ M and
y ∈ M impliesax+ (1− a)y ∈ M for anya ∈ [0, 1].
The pointax+ (1− a)y is called aconvex sum(or a
convex linear combination) of x andy.
A point z ∈ M is calledextremefor a convex setM if
z cannot be represented as a convex sum

z = ax+ (1− a)y

of any pointsx,y ∈ M with x 6= z andy 6= z.
On Fig. 1 you can see a convex set inR

2.
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Figure 3: An example of a convex set inRn
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In this casex1 = (1, 3), x2 = (5, 7), x3 = (9, 5),
x4 = (8, 1) are extreme points, and the convex set can
be described by a linear system of inequalities:







x− y + 2 > 0,

−x− 2y + 19 > 0,

−4x+ y + 31 > 0,

2x+ 7y − 23 > 0.
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If the convex setM ⊆ R
n is closed and bounded and

contains a finite number of extreme points
x1,x2, ....,xm, then anyx ∈ M can be represented as
a convex sum ofx1,x2, ....,xm, i.e.

x = a1x1 + a2x2 + .... + amxm,

whereai > 0, i = 1, ...,m and
m∑

i=1

ai = 1.

Let us consider our example. In this case, any point
x ∈ M can be represented as a convex linear
combination of extreme pointsx1,x2,x3,x4. Assume
thatx = (5, 5), thenx can be represented as

x = a1x1 + a2x2 + a3x3 + a4x4,
– p. 17/72



where






a1 = (1/3)− (3/4)a4,

a2 = (1/3) + (5/4)a4,

a3 = (1/3)− (3/2)a4,

0 6 a4 6 (2/9).

It is easy to see that the representation
x = a1x1 + a2x2 + .... + amxm is not unique in
general. For our case, we have different
representations changinga4 in [0, (2/9)].
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The structure of monotone measures
Any monotone measureµ ∈ 2X can be considered as
a point inR2n, because values ofµ can be represented
as a vector

(µ(∅), µ({x1}), ..., µ({xn}), µ({x1, x2}), ..., µ(X)) .

Therefore, we can define a convex sum of monotone
measuresµ1 andµ2 as

µ = aµ1 + (1− a)µ2 for a ∈ [0, 1] if

µ(A) = aµ1(A) + (1− a)µ2(A) for all A ∈ 2X .

It is easy to see thatMmon is a convex set.
Question: What are the extreme points ofMmon?
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Extreme points ofMmon

A µ ∈ Mmon is called{0, 1}-valuediff µ(A) ∈ {0, 1}
for all A ∈ 2X .
Theorem. The set of all extreme points for a convex
setMmon consists of{0, 1}-valued measures.

The description of{0, 1}-valued measures
Algebra2X can be considered as a partially ordered
set w.r.t. the set-theoretical inclusion.
A subsetf of 2X is filter if A ∈ f andA ⊆ B implies
B ∈ f . By definition, no filter contains∅.
Proposition. Any{0, 1}-valued measure is a
charactectic function of some filter.
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A setA is minimal in f if {B ∈ f |B ⊆ A} = {A}.
Each filterf is generated by a set of its minimal
elements{A1, ..., Ak} in a way

f =
{
A ∈ 2X |∃Ai ⊆ A

}
.

This fact is denoted byf = 〈A1, ..., Ak〉.
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The algorithm of finding representationµ =
∑

i

aiηi

of µ ∈ Mmon through {0, 1}-valued measuresηi.

0. ν := µ, i = 1.

1. ηi(A) =

{
1, µ(A) > 0,

0, µ(A) = 0,
ai = min

A|µ(A)>0
µ(A).

2. µ := µ− aiηi, i := i+ 1.
3. if µ ≡ 0, thenµ =

∑

i

aiηi; else go to 1.
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Example. Let P be a probability measure on2X ,
whereX = {x1, x2, x3}, such thatP ({xi}) = 1/3,
i = 1, 2, 3. Then

P =
1

3
η〈{x1}〉 +

1

3
η〈{x2}〉 +

1

3
η〈{x3}〉.

If we use the algorithm, then

P =
1

3
η〈{x1},{x2},{x3}〉+

1

3
η〈{x1,x2},{x1,x3},{x2,x3}〉+

1

3
η〈{x2,x3,x3}〉.
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Basic concepts of imprecise probabilities

• Classical probability theory works with single
probability measures.

• The theory of imprecise probabilities works with
sets of probability measures.

In this lecture we consider probability measures
defined on the powerset2X of a finite set
X = {x1, ..., xn}.

Mpr(X) is the set of all probability measures on2X .
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Credal sets

In this lecture a credal set is understood as a closed
convex set of probability measures with a finite
number of extreme points. IfP is a credal set and
Pk ∈ Mpr(X), k = 1, ...,m, are its extreme points
then

P =

{
m∑

k=1

aiPi|ai > 0,
m∑

k=1

ai = 1

}

.
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LetX = {x1, x2, x3}, then any credal set is convex
subset of triangle consisting of points(p1, p2, p3):
pi > 0, p1 + p2 + p3 = 1.
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Lower probabilities

A monotone measureµ is called alower probabilityif
there is aP ∈ Mpr such thatµ 6 P .

Any lower probabilityµ defines a credal set

P(µ) = {P ∈ Mpr(X)|P > µ}.
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Let µ be a lower probability on2X , where
X = {x1, x2, x3}, then extreme points ofP(µ) can be
found by solving the following inequalities:







p1 > µ ({x1}) ,

p2 > µ ({x2}) ,

p3 > µ ({x3}) ,

p1 + p2 > µ ({x1, x2}) ,

p1 + p3 > µ ({x1, x3}) ,

p2 + p3 > µ ({x2, x3}) ,

p1 + p2 + p3 = 1.

Clearly lower probabilities are less general than credal
sets.
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Upper probabilities

A monotone measureµ is called anupper probability
if there is aP ∈ Mpr such thatµ > P .

Any upper probability generate a credal set
{P ∈ Mpr(X)|P 6 µ}.

It is possible to consider only lower probabilities. Let
µ be an upper probability. Introduce into
consideration a measureµd(A) = 1− µ(Ac). The
measureµd is called dual ofµ. Clearlyµd andµ
generate the same credal set
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Coherent lower probabilities

A lower probabilityµ is called acoherent lower
probability if for any A ∈ 2X there is aP ∈ Mpr such
thatµ 6 P andµ(A) = P (A).

Any coherent lower probability can be generated as
follows: if P is a credal set then

µ(A) = min
P∈P

P (A), A ∈ 2X ,

is a coherent lower probability.
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Coherent upper probabilities

An upper probabilityµ is called acoherent upper
probability if for any A ∈ 2X there is aP ∈ Mpr such
thatµ > P andµ(A) = P (A).

Any coherent upper probability can be generated as
follows: if P is a credal set then

µ(A) = max
P∈P

P (A), A ∈ 2X ,

is a coherent upper probability.
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2-monotone measures

A monotone measure is called2-monotoneif the
following inequality holds:

µ(A) + µ(B) 6 µ(A ∩ B) + µ(A ∪B).

for the dual measure the following inequality holds:

µd(A) + µd(B) > µd(A ∩ B) + µd(A ∪ B).

This measure is called2-alternative. It is known that
any 2-monotone measure is a coherent lower
probability, and any 2-alternative measure is a
coherent upper probability.
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Example. Let µ is a lower envelope of probability
measuresP1 andP2 with values
P1 ({x1}) = 1/4, P1 ({x2}) = 0, P1 ({x3}) = 3/4,

P1 ({x4}) = 0,
P2 ({x1}) = 0, P2 ({x2}) = 1/2, P2 ({x3}) = 0,

P2 ({x4}) = 1/2,
i.e. µ(A) = min

i=1,2
Pi(A). Then

µ ({x1, x4})
︸ ︷︷ ︸

1/4

+µ ({x3, x4})
︸ ︷︷ ︸

1/2

> µ ({x4})
︸ ︷︷ ︸

0

+µ ({x1, x3, x4})
︸ ︷︷ ︸

1/2

.

Therefore,µ is a coherent lower probability, but it is
not 2-monotone.
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Properties of 2-monotone measures

Theorem 1.A µ ∈ Mmon on2X (|X| = n) is
2-monotone if for anyB ∈ 2X (|B| 6 n− 2) and any
x, y ∈ X\B (x 6= y) the following inequality is
fulfilled:
µ(B ∪ {x}) + µ(B ∪ {y}) 6 µ(B ∪ {x, y}) + µ(B).

Theorem 2.Let µ ∈ Mmon, |X| = n, and let
{B0, B1, ..., Bn} be a complete chain in2X , i.e.
∅ = B0 ⊂ B1 ⊂ ... ⊂ Bn = X and|Bi+1\Bi| = 1,
i = 0, ..., n − 1.
Then aP ∈ Mpr with P (Bi) = µ(Bi), i = 0, ..., n, is
an extreme point ofP(µ) and any extreme point of
P(µ) is described as above. – p. 34/72



Example. Consider a 2-monotone measureBel,
which we got for describing a public opinion poll. Let
us find the extreme points ofBel, using Theorem 2:
if B1 = {1}, B2 = {2, 3}, B3 = {1, 2, 3}, then
P1({1}) = µ(B1) = 0.1,
P1({2}) = µ(B2)− µ(B1) = 0.25− 0.1 = 0.15,
P1({3}) = µ(B3)− µ(B2) = 1− 0.25 = 0.75.
if B1 = {2}, B2 = {2, 3}, B3 = {1, 2, 3}, then
P2({2}) = µ(B2) = 0.05,
P2({3}) = µ(B2)− µ(B1) = 0.2− 0.05 = 0.15,
P2({1}) = µ(B3)− µ(B2) = 1− 0.2 = 0.8.
P1 = (0.1, 0.15, 0.75), P2 = (0.8, 0.05, 0.15).
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Conditioning of coherent lower probabilities

Let P ∈ Mpr and an eventB occurred. Then the
probability ofA givenB is calculated as

P (A|B) = P (A ∩ B)/P (B).

Let us denote the conditional probability measurePB.
In case of imprecise probabilities we have a credal set
P and the same conditioning leads to a credal set

PB = {PB|P ∈ P}.

Let µ be a coherent lower probability. Then the
conditional measureµB can be calculated as

µB(A) = inf {PB(A)|P ∈ P(µ)}.
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Conditioning of 2-monotone measures

Theorem. Let µ be 2-monotone. Then

µB(A) =
µ(A ∩ B)

µ(A ∩B) + µd(B\A)
.

Proof. By definition

µB(A) = inf
P>µ

P (A ∩ B)
P (A ∩B) + P (B ∩ Ā)

. (1)

Notice that the functionf(α, β) = α
α+β is increasing

w.r.t. α and decreasing w.r.t.β. Therefore, in the right
part of (1) we must choose the smallestα and the
biggestβ.
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It is so, ifP (A ∩ B) = µ(A ∩ B) and
P (B ∩ Ā) = µd(B ∩ Ā). Therefore,

µB(A) >
µ(A ∩ B)

µ(A ∩B) + µd(B\A)
.

Let us show thatP ∈ P(µ) with
P (A ∩B) = µ(A ∩ B) andP (B ∩ Ā) = µd(B ∩ Ā)
exists.
Notice thatµd(B ∩ Ā) = 1− µ(A ∪ B̄) and
A ∩B ⊆ A ∪ B̄. Thus, 2-monotonicity ofµ implies
that∃P ∈ P(µ) with P (A ∩B) = µ(A ∩B) and
P (A ∪ B̄) = µ(A ∪ B̄).�
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Upper and lower expectations (previsions)

LetX = {x1, x2, ..., xn} be a finite set andP is a
probability measure on2X . In classical probability
theory a random valueξ is a mappingξ : X → R and
its expectation is defined by

EP [ξ] =
n∑

i=1

ξ(xi)P ({xi}).

If probabilities are defined imprecise, then instead of a
probability measure we have a credal setP and we
can define lower and upper expectations using
formulas:

EP [ξ] = inf
P∈P

EP [ξ], ĒP [ξ] = sup
P∈P

EP [ξ].
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Clearly, the functionalsEP andĒP can be defined on
the setF of all bounded functions onX.
Notation:
0 is a function onX that is equal to zero;
1 is a function onX that is equal to one.

Theorem. The functionalsEP andĒP are lower and
upper expectations of some non-empty credal setP iff

1. EP [0] = 0, EP [1] = 1;

2. EP [af + c] = aEP [f ] + c, a, c ∈ R, f ∈ F ;

3. EP [f1] + EP [f2] 6 EP [f1 + f2] for any
f1, f2 ∈ F ;

4. ĒP = −EP(−f) for anyf ∈ F .
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Upper and lower expectations for 2-monotone
measures

Lemma. Let P ∈ Mpr and letf a be non-negative
function onX. Then

EP [f ] =
∞∫

0

P ({x ∈ X|f(x) > t}) dt (1)

Proof. Let χ(y) =

{
1, y > 0,

0, y 6 0.
Then the right part

of (1) can be transformed to
∞∫

0

(
∫

X

χ(f(x)− t)dP

)

dt.
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Changing the order of integration we get
∫

X

(
∞∫

0

χ(f(x)− t)dt

)

dP =
∫

X

f(x)dP = EP [f ] .

Theorem 1.Let µ ∈ M2−mon and letf be a
non-negative function onX. Then

EP(µ) [f ] =
∞∫

0

µ ({x ∈ X|f(x) > t}) dt.

Proof. Clearly,

EP(µ) [f ] = inf
P∈P(µ)

∞∫

0

P ({x ∈ X|f(x) > t}) dt >

∞∫

0

µ ({x ∈ X|f(x) > t}) dt.
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Since sets{x ∈ X|f(x) > t} form a chain and
µ ∈ M2−mon, ∃P ∈ P(µ) with
µ ({x ∈ X|f(x) > t}) = P ({x ∈ X|f(x) > t}) .

for all t ∈ [0,+∞). This implies the result.
Theorem 2.Let µ ∈ M2−mon andf ∈ F . Let
f = f+ − f−, where

f+(x) =

{
f(x), x > 0,

0, x 6 0,

Then

EP(µ) [f ] =
∞∫

0

µ ({x ∈ X|f+(x) > t}) dt−

∞∫

0

µd ({x ∈ X|f−(x) > t}) dt.
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Choquet Integral

Let µ ∈ Mmon, then the Choquet integral is a
functional defined by

(Choquet)
∫

X

f(x)dµ =

∞∫

0

µ ({x ∈ X|f+(x) > t}) dt−

∞∫

0

µd ({x ∈ X|f−(x) > t}) dt.

Definition. Functionsf1, f2 ∈ F are called
comonotonicif f1(x) 6 f1(y) impliesf2(x) 6 f2(y)
for anyx, y ∈ X.

– p. 44/72



Properties of Choquet Integral

1.
∫

X

1A(x)dµ = µ(A).

2.
∫

X

cf(x)dµ = c
∫

X

f(x)dµ, c ∈ R.

3.
∫

X

−f(x)dµ = −
∫

X

f(x)dµd.

4.
∫

X

(f(x) + c)dµ =
∫

X

f(x)dµ+ c, c ∈ R.

5. f(x) 6 g(x) for all x ∈ X implies
∫

X

f(x)dµ 6
∫

X

g(x)dµ.

6. if f andg are comonotonic, then
∫

X

(f(x) + g(x)dµ =
∫

X

f(x)dµ+
∫

X

g(x)dµ.
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7. if µ ∈ M2−mon, thenEP(µ) [f ] =
∫

X

f(x)dµ and

ĒP(µ) [f ] =
∫

X

f(x)dµ.

8.
∫

X

f(x)d(aµ1 + bµ2) = a
∫

X

f(x)dµ1 + b
∫

X

f(x)dµ2,

a, b ≥ 0, a+ b = 1.

Theorem. A functionalF onF is a Choquet integral
for someµ ∈ Mmon iff
1) F (1X) = 1;
2) F (c1A) = cF (1A) for anyc ∈ R;
3) f 6 g impliesF (f) 6 F (g);
4) if f andg are comonotonic, then
F (f + g) = F (f) + F (g).

– p. 46/72



Computing of Choquet Integral

Let f ∈ F and we order the elements ofX such that

f (xi1) > f (xi2) > ... > f (xin) .

Let us consider the sequence of sets

B0 = ∅, B1 = {xi1} , B1 = {xi1, xi2} , ...,

Bn = {xi1, ..., xin} = X.

Then
∫

X

f(x)dµ =
n∑

k=1

f (xik) (µ(Bk)− µ(Bk−1)).
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Example.X = {x1, x2, x3}, f(x1) = 0.25,
f(x2) = 1, f(x3) = 0.5.

f (x2) > f (x3) > f (x1).

B1 = {x2}, B2 = {x2, x3}, B3 = {x1, x2, x3}.

Bel(B1) = 0.05, Bel(B2) = 0.3, Bel(B3) = 1.

Pl(B1) = 0.75, Pl(B2) = 0.9, Pl(B3) = 1.
∫

X

f(x)dBel = 1 · 0.1 + 0.5 · 0.25 + 0.25 · 0.7 = 0.4.

∫

X

f(x)dP l = 1·0.75+0.5·0.25+0.25·0.05 = 0.8875.
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Sugeno Integral
Letµ ∈ Mmon, then the Sugeno integral is a functional
on the set of all functionsf : X → [0, 1] defined by
(Sug)

∫

X

f(x)dµ = ∨
t∈[0,1]

(t ∧ µ ({x ∈ X|f(x) > t})) .

Theorem. A functionalF on the set of all functions
f : X → [0, 1] is a Sugeno integral for some
µ ∈ Mmon iff it satisfies the following properties:
1. F (1X) = 1.
2. F (c ∧ 1A) = c ∧ F (1A).
3. f 6 g impliesF (f) 6 F (g).
4. if f andg are comonotonic, then
F (f ∨ g) = F (f) ∨ F (g).
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Computing of Sugeno Integral

Let f ∈ F and we order the elements ofX such that

f (xi1) > f (xi2) > ... > f (xin).

Let us consider the sequence of sets

B1 = {xi1} , B1 = {xi1, xi2} , ....,

Bn = {xi1, ..., xin} = X.

Thenf =
n
∨
k=1

(f(xik) ∧ 1Bk
) and

∫

X

f(x)dµ =
n
∨
k=1

(f(xik) ∧ µ(Bk)).
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Example.X = {x1, x2, x3}, f(x1) = 0.25,
f(x2) = 1, f(x3) = 0.5.

f (x2) > f (x3) > f (x1).

B1 = {x2}, B2 = {x2, x3}, B3 = {x1, x2, x3}.

Bel(B1) = 0.05, Bel(B2) = 0.3, Bel(B3) = 1.

Pl(B1) = 0.75, Pl(B2) = 0.9, Pl(B3) = 1.
∫

X

f(x)dBel = (1∧0.1)∨(0.5∧0.3)∨(0.25 ·1) = 0.3.
∫

X

f(x)dP l = (1∧0.75)∨(0.5∧0.9)∨(0.25∧1) = 0.75.
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Belief and plausibility measures

Belief and plausibility measures are defined by means
of a basic probability assignment. A basic probability
assignmentm is a non-negative set function on2X

such that

1. m(∅) = 0;

2.
∑

A∈2X
m(A) = 1 (norming).

Then
Bel(A) =

∑

B⊆A

m(B) andPl(B) =
∑

B∩A6=∅

m(A).

The setA is called focal ifm(A) > 0.
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Some times, it is useful to represent belief functions
using{0, 1}-valued measures:

η〈B〉(A) =

{
1, B ⊆ A,

0, otherwise.

Then
Bel(A) =

∑

B∈2X
m(B)η〈B〉(A).

The sense ofη〈B〉 is the following. It describes the
situation when we know that the random variable
definitely takes values from the setB, but we don’t
know any additional information.
Clearly,Pl = Beld.
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Dempster-Shafer theory

Let we have an experiment in which we cannot fix
elementary events and the only information is that
some event occurred (sayB ∈ 2X). In this case a
monotone measure

η〈B〉(A) =

{
1, B ⊆ A,

0, otherwise.

describes events that occured necessarily, a measure

ηd〈B〉(A) =

{
1, A ∩B 6= ∅,
0, A ∩B = ∅,

describes events that occurred possibly.
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Letm(B) be a frequency of fixingB ∈ 2X . Then a
measure

Bel(B) =
∑

B∈2X

m(B)η(B)

gives an exact lower bound of the probability of event
B, and a measure

Pl(B) =
∑

B∈2X

m(B)ηd(B)

gives an exact upper bound of the probability of event
B.
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Possibility and necessity measures

A possibility measurePos is such thatPos ∈ Mmon,

Pos(A ∪ B) = max{Pos(A), Pos(B)} A,B ∈ 2X .

A necessity measureNec is such thatNec ∈ Mmon,

Nec(A ∩B) = min{Nec(A), Nec(B)} A,B ∈ 2X .

The dual of a necessity measure is a possibility
measure. Any necessity measure is a belief measure.
A belief measure is a necessity measure if focal
elements form a chain.
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Möbius transform

The set of all set functions on2X is a linear space and
the system of set functions

{
η〈B〉

}

B∈2X
is the basis of

it. We can find the representation

µ =
∑

B∈2X
m(B)η〈B〉

of anyµ : 2X → R using the Möbius transform:

m(B) =
∑

A⊆B

(−1)|B\A|µ(A).
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The representation of the Choquet integral
through the Möbius transform

Letm be the Möbius transform ofµ ∈ Mmon. Then

µ =
∑

B∈2X
m(B)η〈B〉,

(Ch)
∫

X

f(x)dµ =
∑

B∈2X
m(B)

∫

X

f(x)η〈B〉,

Since
∫

X

f(x)dη〈B〉 = ∧
xi∈B

f(xi),

(Ch)
∫

X

f(x)dµ =
∑

B∈2X
m(B)

(

∧
xi∈B

f(xi)

)

.
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Decision theory

Assume that you decided to invest money for election
campaign and your gain depends on the candidate
i = 1, 2, 3, who will win. These gains are described in
the following table.

State 1 State 2 State 3
Act 1 u(A1|S1) u(A1|S2) u(A1|S3)

Act 2 u(A2|S1) u(A2|S2) u(A2|S3)

Act 3 u(A3|S1) u(A3|S2) u(A3|S3)

Act i (Ai), i = 1, 2, 3 means that you choose to invest
the campaign of candidatei, and Statei (Si) means
that candidatei will win.
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Let us assume that information about future elections
is presented by probabilitiesP (Si). Then you choose
the actAi with the highest expected gain:

u(Ai) =
3∑

k=1

u(Ai|Sk)P (Sk).

Imprecise probability model

If your beliefs cannot be expressed by a probability
measure, we can add uncertainty assuming that the
future elections results are described by a credal set
P. Then we have lower and upper bounds of the
expected gain:
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u(Ai) = inf
P∈P

3∑

k=1

u(Ai|Sk)P (Sk),

ū(Ai) = sup
P∈P

3∑

k=1

u(Ai|Sk)P (Sk).

In this case, ifu(Ai) > u(Aj) andū(Ai) > ū(Aj),
j = 1, 2, 3, you should definitely choose the actAi. In
other situations it depends on behavior of a decision
maker. For example, the cautious behavior means that
he choose actAi with u(Ai) > u(Aj), j = 1, 2, 3.
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Multi-criteria decision making

In this case each actAi is characterized by a vector
(u1, ..., un) of criteria utilities. It is assumed that
ui ∈ [0, 1], i = 1, ..., n. For decision making it is
necessary to aggregate criteria in a one global criteria
with the utility u = ϕ(u1, ..., un), where
ϕ : [0, 1]n → [0, 1] is an aggregation function with the
following properties:

1)ϕ (0, ..., 0) = 0, ϕ (1, ..., 1) = 1;

2) x 6 y impliesϕ(x) 6 ϕ(y).
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It is well known that the aggregation function based
on simple average

u =
n∑

i=1

aiui, whereai > 0,
n∑

i=1

ui = 1,

is not good if criteria interact to each other. Therefore,
aggregation functions based on Choquet integral or
Sugeno integral are used.
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Choice of aggregation function

Given a learning sample(x1, ...,xN ), for which we
know that for ideal aggregation functionϕ it should
be fulfilled

ϕ(xi) < ϕ(xj) if i < j.
Denote byϕµ(f) =

∫
fdµ the aggregation function

based on Choquet integral or Sugeno integral. Then
the optimal choice of aggregation functionϕµ is
connected with seeking a monotone measureµ that
properly classifies vectors in a sense that

ϕµ(xi) < ϕµ(xj) if i < j.
It is easy to show that for the case of Choquet integral,
this leads to solving the system of linear inequalities.
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Image processing

Let we have a set ofn classifiers that give us the
answer that on the picture it is depicted a building or
not. Assume that this answer they give by numbers

ui, i = 1, ..., n, in [0, 1]:

• if ui = 1, then classifieri definitely says that
there is a building on the picture;

• if ui = 0 then there is no.

The problem is how to aggregate information from the
set of all classifiers. This can be done by aggregation
functions based on Choquet integral or Sugeno
integral.
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Solution

Given a learning sample(x1, ...,xN ), for which we
know the right answer for anyxi. Assume that

• c(xi) = 1 if the picturei contains a building;
• c(xi) = −1 otherwise.

Then the aggregation functionϕµ can be chosen such
that it minimizes the number of false inequalities:

c(xi)(ϕµ(xi)− 0.5) > 0, i = 1, ..., N .
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Information measures in image processing

Let images be characterized by a set of features
X = {x1, x2, ..., xn}. Sometimes, these features are
redundant, and it is necessary to choose a subset ofX
that characterize the image with the sufficient
precision. For this purpose, the information measure
µ : 2X → [0,+∞) is introduced that reflects the
amount of information of any subsetA ⊆ X. Clearly,
it should have the following properties:

1. µ(∅) = 0;

2. A ⊆ B impliesµ(A) ⊆ µ(B).
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An information measure based on the Shannon
entropy

Assume that we can describe the occurrence of
images and their features by a random vector
ξ = (ξ1, ..., ξn). Denote a random vector consisting of
random variablesξi, i ∈ A, by ξA. Then we introduce
the information measure

µ(A) = S (ξA),

whereS is the Shannon entropy.

Proposition. The information measure based on the
Shannon entropy is 2-monotone.

– p. 68/72



Information measures of polygonal representations

In image processing we need to analyze closed
contours.

Their simplest representations are polygons.

Any polygon can be represented as a ordered set
X = {x1,x2, ...,xN} of its vertices.

After contour extraction, each contour has a huge
number of vertices.

Problem: how to reduce a number of vertices?⇒ to
find subcontourB of X (see Fig. 1) that preserve
information about the initial contourB.
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Figure 1: ContourX = {x1, ...,x18} and contour
B = {x2, ...,x5,x8,x9,x12, ...,x15,x17,x18}
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For choosing the optimal representation we can use
information measures.

One way to use information measure based on
contour length. It is defined as

µL(B) =
m∑

i=0

|yi − yi−1|,

whereB = {y1, y2, ..., ym} andy0 = ym.
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The choice of optimal contour

LetA is the set of admissible polygonal
representations.

For example, it can be a set of contours, in which a
number of vertices is lower or equal thann (n is a
parameter).

Then anA-optimal contourBopt is a solution of the
following optimization problem:

µL(Bopt) = max
A∈A

µL(A).
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