Quantum Structures I-III

Anatolij DVUREČENSKIJ

Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, SK-814 73 Bratislava, Slovakia E-mail: dvurecen@mat . savba. sk Department of Algebra and Geometry, Faculty of Sciences, Palacký University, tř. 17. listopadu 1192/12,
The talk given at the SSIU 2012: International Summer School Information and
Uncertainty Palacky Univ. Olomouc, May 4-8, 2012.
meta-QUTE ITMS 26240120022, and by CZ.1.07/2.3.00/20.0051

Uncertainty

Uncertainty

- uncertainty in a common life

Uncertainty

- uncertainty in a common life
- emperor, fortuna teller, Sybile, Delft

Uncertainty

- uncertainty in a common life
- emperor, fortuna teller, Sybile, Delft
- hazard game, New Testament

Uncertainty

- uncertainty in a common life
- emperor, fortuna teller, Sybile, Delft
- hazard game, New Testament
- playing cards, urn games, intuitive probability, combinations, variations, permutations with/without ordering

Uncertainty

- uncertainty in a common life
- emperor, fortuna teller, Sybile, Delft
- hazard game, New Testament
- playing cards, urn games, intuitive probability, combinations, variations, permutations with/without ordering
- false tie

Kolmogorov, probability theory, 1933

($\Omega, \mathcal{S}, P), \Omega \neq \emptyset, \mathcal{S} \sigma$-algebra (i) $\Omega \in \mathcal{S}$, (ii) $A \in \mathcal{S}$, then $\Omega \backslash A \in \mathcal{S}$, (iii) $A_{n} \in \mathcal{S}, n \geq 1$, then $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{S}$.

Kolmogorov, probability theory, 1933

- ($\Omega, \mathcal{S}, P), \Omega \neq \emptyset, \mathcal{S} \sigma$-algebra (i) $\Omega \in \mathcal{S}$, (ii) $A \in \mathcal{S}$, then $\Omega \backslash A \in \mathcal{S}$, (iii) $A_{n} \in \mathcal{S}, n \geq 1$, then $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{S}$.

$$
\begin{aligned}
& -P: \mathcal{S} \rightarrow[0,1] \text { (i) } P(\Omega)=1 \text {, (ii) } \\
& \quad P\left(\bigcup_{n} A_{n}\right)=\sum_{n} P\left(A_{n}\right), A_{i} \cap A_{j}=\emptyset, i \neq j .
\end{aligned}
$$

Kolmogorov, probability theory, 1933

- ($\Omega, \mathcal{S}, P), \Omega \neq \emptyset, \mathcal{S} \sigma$-algebra (i) $\Omega \in \mathcal{S}$, (ii) $A \in \mathcal{S}$, then $\Omega \backslash A \in \mathcal{S}$, (iii) $A_{n} \in \mathcal{S}, n \geq 1$, then $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{S}$.
- $P: \mathcal{S} \rightarrow[0,1]$ (i) $P(\Omega)=1$, (ii) $P\left(\cup_{n} A_{n}\right)=\sum_{n} P\left(A_{n}\right), A_{i} \cap A_{j}=\emptyset, i \neq j$.
- $\delta_{\omega}(A)=1$ iff $\omega \in A$ otherwise $=0$

Kolmogorov, probability theory, 1933

- $(\Omega, \mathcal{S}, P), \Omega \neq \emptyset, \mathcal{S} \sigma$-algebra (i) $\Omega \in \mathcal{S}$, (ii) $A \in \mathcal{S}$, then $\Omega \backslash A \in \mathcal{S}$, (iii) $A_{n} \in \mathcal{S}, n \geq 1$, then $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{S}$.
- $P: \mathcal{S} \rightarrow[0,1]$ (i) $P(\Omega)=1$, (ii) $P\left(\bigcup_{n} A_{n}\right)=\sum_{n} P\left(A_{n}\right), A_{i} \cap A_{j}=\emptyset, i \neq j$.
- $\delta_{\omega}(A)=1$ iff $\omega \in A$ otherwise $=0$
- the set probability measures $\mathcal{P}(\mathcal{S}) \neq \emptyset$

Kolmogorov, probability theory, 1933

- $(\Omega, \mathcal{S}, P), \Omega \neq \emptyset, \mathcal{S} \sigma$-algebra (i) $\Omega \in \mathcal{S}$, (ii) $A \in \mathcal{S}$, then $\Omega \backslash A \in \mathcal{S}$, (iii) $A_{n} \in \mathcal{S}, n \geq 1$, then $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{S}$.
- $P: \mathcal{S} \rightarrow[0,1]$ (i) $P(\Omega)=1$, (ii) $P\left(\cup_{n} A_{n}\right)=\sum_{n} P\left(A_{n}\right), A_{i} \cap A_{j}=\emptyset, i \neq j$.
- $\delta_{\omega}(A)=1$ iff $\omega \in A$ otherwise $=0$
- the set probability measures $\mathcal{P}(\mathcal{S}) \neq \emptyset$
- observable: $f: \Omega \rightarrow \mathbb{R}$, s.t. $f^{-1}(E) \in \mathcal{S}$, $E \in \mathcal{B}(\mathbb{R})$ - measurable
- the mapping $x(E):=f^{-1}(E): \mathcal{B}(\mathbb{R}) \rightarrow \mathcal{S}$ is a σ-homomorphism preserving $\emptyset, x(\mathbb{R})=\Omega$, complements, and countable unions.
- the mapping $x(E):=f^{-1}(E): \mathcal{B}(\mathbb{R}) \rightarrow \mathcal{S}$ is a σ-homomorphism preserving $\emptyset, x(\mathbb{R})=\Omega$, complements, and countable unions.
- Conversely; for every σ-homomorphism $x: \mathcal{B}(\mathbb{R}) \rightarrow \mathcal{S} \exists$! measureblae function f
- the mapping $x(E):=f^{-1}(E): \mathcal{B}(\mathbb{R}) \rightarrow \mathcal{S}$ is a σ-homomorphism preserving $\emptyset, x(\mathbb{R})=\Omega$, complements, and countable unions.
- Conversely; for every σ-homomorphism $x: \mathcal{B}(\mathbb{R}) \rightarrow \mathcal{S} \exists$! measureblae function f
- $x_{t}:=x((-\infty, t), t \in \mathbb{R}$
- the mapping $x(E):=f^{-1}(E): \mathcal{B}(\mathbb{R}) \rightarrow \mathcal{S}$ is a σ-homomorphism preserving $\emptyset, x(\mathbb{R})=\Omega$, complements, and countable unions.
- Conversely; for every σ-homomorphism $x: \mathcal{B}(\mathbb{R}) \rightarrow \mathcal{S} \exists$! measureblae function f
- $x_{t}:=x((-\infty, t), t \in \mathbb{R}$
- r_{1}, r_{2}, \ldots
- the mapping $x(E):=f^{-1}(E): \mathcal{B}(\mathbb{R}) \rightarrow \mathcal{S}$ is a σ-homomorphism preserving $\emptyset, x(\mathbb{R})=\Omega$, complements, and countable unions.
- Conversely; for every σ-homomorphism $x: \mathcal{B}(\mathbb{R}) \rightarrow \mathcal{S} \exists$! measureblae function f
- $x_{t}:=x((-\infty, t), t \in \mathbb{R}$
- r_{1}, r_{2}, \ldots

$$
f(\omega)= \begin{cases}\inf \left\{r_{j}: \omega \in x_{r_{j}}\right\} & \text { if } \omega \in \bigcup_{n} A_{n}, \\ 0 & \text { if } \omega \notin \bigcup_{n} A_{n} .\end{cases}
$$

Quantum Mechanics

Quantum Mechanics

- new physics, beginning 20th century

Quantum Mechanics

- new physics, beginning 20th century
- Newton mechanics fails in the micro world

Quantum Mechanics

- new physics, beginning 20th century
- Newton mechanics fails in the micro world
- Heisenberg Uncertainty Principle

Quantum Mechanics

- new physics, beginning 20th century
- Newton mechanics fails in the micro world
- Heisenberg Uncertainty Principle

$$
\sigma_{s}(x) \sigma_{s}(y) \geq \hbar>0 .
$$

Quantum Mechanics

- new physics, beginning 20th century
- Newton mechanics fails in the micro world
- Heisenberg Uncertainty Principle

$$
\sigma_{s}(x) \sigma_{s}(y) \geq \hbar>0 .
$$

x-momentum, y position of elementary particle, s state -probability measure

Quantum Mechanics

- new physics, beginning 20th century
- Newton mechanics fails in the micro world
- Heisenberg Uncertainty Principle

$$
\sigma_{s}(x) \sigma_{s}(y) \geq \hbar>0 .
$$

x-momentum, y position of elementary particle, s state -probability measure

- for classical mechanics

$$
\inf _{s}\left(\sigma_{s}(x) \sigma_{s}(y)\right)=0
$$

- Hilbert, 1900, inspired by the axiomatical system of geometry by Euclideus, formulated his Sixth Problem as follows:
- Hilbert, 1900, inspired by the axiomatical system of geometry by Euclideus, formulated his Sixth Problem as follows:
- To find a few physical axioms that, similar to the axioms of geometry, can describe a theory for a class of physical events that is as large as possible.
- Hilbert, 1900, inspired by the axiomatical system of geometry by Euclideus, formulated his Sixth Problem as follows:
- To find a few physical axioms that, similar to the axioms of geometry, can describe a theory for a class of physical events that is as large as possible.
- G. Birkhoff and J. von Neumann, 1936 quantum logic

Algebra of Sets: $\mathcal{A} \subseteq 2^{\Omega}$

Algebra of Sets: $\mathcal{A} \subseteq 2^{\Omega}$

- $\Omega \in \mathcal{A}, A \in \mathcal{A}$, if then $\Omega \backslash A \in \mathcal{S}$,
- $A, B \in \mathcal{A}$, then $A \cup B \in \mathcal{S}$.

Algebra of Sets: $\mathcal{A} \subseteq 2^{\Omega}$

- $\Omega \in \mathcal{A}, A \in \mathcal{A}$, if then $\Omega \backslash A \in \mathcal{S}$,
- $A, B \in \mathcal{A}$, then $A \cup B \in \mathcal{S}$.
- Finitely additive probability $P: \mathcal{A} \rightarrow[0,1]$ (i)

$$
\begin{aligned}
& P(\Omega)=1, \text { (ii) } P(A \cup B)=P(A)+P(B), \\
& A \cap B=\emptyset
\end{aligned}
$$

Algebra of Sets: $\mathcal{A} \subseteq 2^{\Omega}$

- $\Omega \in \mathcal{A}, A \in \mathcal{A}$, if then $\Omega \backslash A \in \mathcal{S}$,
- $A, B \in \mathcal{A}$, then $A \cup B \in \mathcal{S}$.
- Finitely additive probability $P: \mathcal{A} \rightarrow[0,1]$ (i)

$$
\begin{aligned}
& P(\Omega)=1, \text { (ii) } P(A \cup B)=P(A)+P(B), \\
& A \cap B=\emptyset
\end{aligned}
$$

- P_{ω}, Dirac measure $\omega \in \Omega$

Algebra of Sets: $\mathcal{A} \subseteq 2^{\Omega}$

- $\Omega \in \mathcal{A}, A \in \mathcal{A}$, if then $\Omega \backslash A \in \mathcal{S}$,
- $A, B \in \mathcal{A}$, then $A \cup B \in \mathcal{S}$.
- Finitely additive probability $P: \mathcal{A} \rightarrow[0,1]$ (i)

$$
\begin{aligned}
& P(\Omega)=1, \text { (ii) } P(A \cup B)=P(A)+P(B), \\
& A \cap B=\emptyset
\end{aligned}
$$

- P_{ω}, Dirac measure $\omega \in \Omega$
- Ω-infinite set, \mathcal{A} the set of finite/cofinite subsets $P(A)=0$ if A finite, $P(A)=1$ if A infinite

Algebra of Sets: $\mathcal{A} \subseteq 2^{\Omega}$

- $\Omega \in \mathcal{A}, A \in \mathcal{A}$, if then $\Omega \backslash A \in \mathcal{S}$,
- $A, B \in \mathcal{A}$, then $A \cup B \in \mathcal{S}$.
- Finitely additive probability $P: \mathcal{A} \rightarrow[0,1]$ (i)
$P(\Omega)=1$, (ii) $P(A \cup B)=P(A)+P(B)$, $A \cap B=\emptyset$
- P_{ω}, Dirac measure $\omega \in \Omega$
- Ω-infinite set, \mathcal{A} the set of finite/cofinite subsets $P(A)=0$ if A finite, $P(A)=1$ if A infinite
- $\mathcal{S}(\mathcal{A})$, convex $P_{1}, P_{2} \in \mathcal{S}(\mathcal{A}), \lambda \in[0,1]$, then $P=\lambda P_{1}+(1-\lambda) \dot{P}_{2} \in \dot{\mathcal{S}}(\dot{\mathcal{A}})$.

Algebra of Sets: $\mathcal{A} \subseteq 2^{\Omega}$

- $\Omega \in \mathcal{A}, A \in \mathcal{A}$, if then $\Omega \backslash A \in \mathcal{S}$,
- $A, B \in \mathcal{A}$, then $A \cup B \in \mathcal{S}$.
- Finitely additive probability $P: \mathcal{A} \rightarrow[0,1]$ (i)
$P(\Omega)=1$, (ii) $P(A \cup B)=P(A)+P(B)$, $A \cap B=\emptyset$
- P_{ω}, Dirac measure $\omega \in \Omega$
- Ω-infinite set, \mathcal{A} the set of finite/cofinite subsets $P(A)=0$ if A finite, $P(A)=1$ if A infinite
- $\mathcal{S}(\mathcal{A})$, convex $P_{1}, P_{2} \in \mathcal{S}(\mathcal{A}), \lambda \in[0,1]$, then $P=\lambda P_{1}+(1-\lambda) \dot{P}_{2} \in \dot{\mathcal{S}}(\dot{\mathcal{A}})$.

Boolean Algebras

A system $A=\left(A ; \vee, \wedge^{\prime}, 0,1\right)$ is a Boolean algebra if type $(2,2,1,0,0)$ if for all $a, b, c \in A$ we have

1. $a \vee b=b \vee a, a \wedge b=b \wedge a$ (commutativity)
2. $(a \vee b) \vee c=a \vee(b \vee c),(a \wedge b) \wedge c=a \wedge(b \wedge c)$
(associativity)
3. $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$,
$a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$ (distributivity)
4. $a \vee a^{\prime}=1, a \wedge a^{\prime}=0$
5. $a \wedge 1=a=a \vee 0$

partial ordering

on A, \leq : (i) $a \leq a$, (ii) $a \leq b, b \leq a$ then $a=b$, (iii)
$a \leq b, b \leq c, a \leq c$

partial ordering

on A, \leq : (i) $a \leq a$, (ii) $a \leq b, b \leq a$ then $a=b$, (iii) $a \leq b, b \leq c, a \leq c$

- We define $a \leq b \quad \Leftrightarrow \quad a=a \wedge b$

partial ordering

on A, \leq : (i) $a \leq a$, (ii) $a \leq b, b \leq a$ then $a=b$, (iii) $a \leq b, b \leq c, a \leq c$

- We define $a \leq b \quad \Leftrightarrow \quad a=a \wedge b$
- \leq partial ordering on A, (i) $0 \leq a \leq 1$. (ii) $c=a \wedge b$ iff $c \leq a, b$, and if $d \leq a, b$, then $d \leq c$ (greatest lower bound)

partial ordering

on A, \leq : (i) $a \leq a$, (ii) $a \leq b, b \leq a$ then $a=b$, (iii) $a \leq b, b \leq c, a \leq c$

- We define $a \leq b \quad \Leftrightarrow \quad a=a \wedge b$
- \leq partial ordering on A, (i) $0 \leq a \leq 1$. (ii) $c=a \wedge b$ iff $c \leq a, b$, and if $d \leq a, b$, then $d \leq c$ (greatest lower bound)
- $e=a \vee b$ iff $a, b \leq e$, if $a, b \leq f$, then $e \leq f$ (least upper bound)

partial ordering

on A, \leq : (i) $a \leq a$, (ii) $a \leq b, b \leq a$ then $a=b$, (iii) $a \leq b, b \leq c, a \leq c$

- We define $a \leq b \quad \Leftrightarrow \quad a=a \wedge b$
- \leq partial ordering on A, (i) $0 \leq a \leq 1$. (ii) $c=a \wedge b$ iff $c \leq a, b$, and if $d \leq a, b$, then $d \leq c$ (greatest lower bound)
- $e=a \vee b$ iff $a, b \leq e$, if $a, b \leq f$, then $e \leq f$ (least upper bound)
- A is a distributive lattice

partial ordering

on A, \leq : (i) $a \leq a$, (ii) $a \leq b, b \leq a$ then $a=b$, (iii) $a \leq b, b \leq c, a \leq c$

- We define $a \leq b \quad \Leftrightarrow \quad a=a \wedge b$
- \leq partial ordering on A, (i) $0 \leq a \leq 1$. (ii) $c=a \wedge b$ iff $c \leq a, b$, and if $d \leq a, b$, then $d \leq c$ (greatest lower bound)
- $e=a \vee b$ iff $a, b \leq e$, if $a, b \leq f$, then $e \leq f$ (least upper bound)
- A is a distributive lattice
- $(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime},(a \cdot \wedge b)^{\prime}=\cdot a^{\prime} \vee \cdot b^{\prime}($ De Morgan $)$

Examples

- \mathcal{S}, where $\wedge=\cap, \vee=\cup$, ' $=$ set complement, $0=\emptyset, 1=\Omega$.

Examples

- \mathcal{S}, where $\wedge=\cap, \vee=\cup,{ }^{\prime}=$ set complement, $0=\emptyset, 1=\Omega$.
- Let Ω-topological space, \mathcal{A} - the set of all clopen subsets.

Stone Theorem

- state $\mathcal{S}(A) \neq \emptyset$?

Stone Theorem

- state $\mathcal{S}(A) \neq \emptyset$?
- two-valued state=extremal state;
$s=\lambda s_{1}+(1-\lambda) s_{2}$ for $\lambda \in(0,1)$ then $s=s_{1}=s_{2} . \operatorname{Ext}(A)-$ extremal states $\neq \emptyset$

Stone Theorem

- state $\mathcal{S}(A) \neq \emptyset$?
- two-valued state=extremal state;
$s=\lambda s_{1}+(1-\lambda) s_{2}$ for $\lambda \in(0,1)$ then $s=s_{1}=s_{2} . \operatorname{Ext}(A)-\operatorname{extremal}$ states $\neq \emptyset$
- state s is extremal iff $\operatorname{Ker}(s)=$ $\{a \in A: s(a)=0\}$ is a maximal ideal

Stone Theorem

- state $\mathcal{S}(A) \neq \emptyset$?
- two-valued state=extremal state;
$s=\lambda s_{1}+(1-\lambda) s_{2}$ for $\lambda \in(0,1)$ then $s=s_{1}=s_{2} . \operatorname{Ext}(A)-\operatorname{extremal}$ states $\neq \emptyset$
- state s is extremal iff $\operatorname{Ker}(s)=$ $\{a \in A: s(a)=0\}$ is a maximal ideal
- a net $s_{\alpha} \rightarrow s$ iff $s_{\alpha}(a) \rightarrow s(a)$ for any $a \in A$; $\mathrm{S}(A)$ and $\operatorname{Ext}(A)$ are compact Hausdorff topological spaces.

Stone Theorem

- state $\mathcal{S}(A) \neq \emptyset$?
- two-valued state=extremal state;
$s=\lambda s_{1}+(1-\lambda) s_{2}$ for $\lambda \in(0,1)$ then
$s=s_{1}=s_{2}$. Ext (A) - extremal states $\neq \emptyset$
- state s is extremal iff $\operatorname{Ker}(s)=$ $\{a \in A: s(a)=0\}$ is a maximal ideal
- a net $s_{\alpha} \rightarrow s$ iff $s_{\alpha}(a) \rightarrow s(a)$ for any $a \in A$; $\mathrm{S}(A)$ and $\operatorname{Ext}(A)$ are compact Hausdorff topological spaces.
- a topological space Ω is totally disconnected if there exists a base consisting of clop"en sets.

Theorem 0.1 (Stone Theorem) Every Boolean algebra $A=\left(A ; \vee, \wedge,{ }^{\prime}, 0,1\right)$ is isomorphic to the Boolean algebra of clopen subsets of a compact, totally disconnected Hausdorff topological space (= Stone space).

Boolean σ-algebras

- Boolean σ-algebra $\forall\left\{a_{n}\right\}$, there is $\bigvee_{n=1}^{\infty} a_{n}$ (also $\bigwedge_{n=1}^{\infty} a_{n}$). That is $a=\bigvee_{n} a_{n}$ iff $a \geq a_{n}$ for any n and if $b \geq a_{n}$ for any n, then $b \geq a$.

Boolean σ-algebras

- Boolean σ-algebra $\forall\left\{a_{n}\right\}$, there is $\bigvee_{n=1}^{\infty} a_{n}$ (also $\bigwedge_{n=1}^{\infty} a_{n}$). That is $a=\bigvee_{n} a_{n}$ iff $a \geq a_{n}$ for any n and if $b \geq a_{n}$ for any n, then $b \geq a$.

Theorem 0.3 (Loomis-Sikorski) Every Boolean σ-algebra is a σ-homomorphic image of a σ-algebra of sets.

Boolean σ-algebras

- Boolean σ-algebra $\forall\left\{a_{n}\right\}$, there is $\bigvee_{n=1}^{\infty} a_{n}$ (also $\bigwedge_{n=1}^{\infty} a_{n}$). That is $a=\bigvee_{n} a_{n}$ iff $a \geq a_{n}$ for any n and if $b \geq a_{n}$ for any n, then $b \geq a$.

Theorem 0.4 (Loomis-Sikorski) Every Boolean σ-algebra is a σ-homomorphic image of a σ-algebra of sets.

Sketch of the proof:

- Let A be a Boolean σ-algebra and let \mathcal{A} be the algebra of the clopen sets of $\Omega=\operatorname{MaxI}(I)$. For $a \in A$, let $h(A)=a$. If $\left\{a_{n}\right\}$ and $\left\{A_{n}\right\}$, then if $a=\bigvee_{n} a_{n}$ and $h(a)=A$, we have $A \supseteq \bigcup_{n} A_{n}$, and $A \backslash \bigcup_{n} A_{n}$ is a meager set.
- Let A be a Boolean σ-algebra and let \mathcal{A} be the algebra of the clopen sets of $\Omega=\operatorname{MaxI}(I)$. For $a \in A$, let $h(A)=a$. If $\left\{a_{n}\right\}$ and $\left\{A_{n}\right\}$, then if $a=\bigvee_{n} a_{n}$ and $h(a)=A$, we have $A \supseteq \bigcup_{n} A_{n}$, and $A \backslash \bigcup_{n} A_{n}$ is a meager set.
- $\mathcal{S} \sigma$-algebra of subsets of Ω generated by \mathcal{A}
- Let A be a Boolean σ-algebra and let \mathcal{A} be the algebra of the clopen sets of $\Omega=\operatorname{MaxI}(I)$. For $a \in A$, let $h(A)=a$. If $\left\{a_{n}\right\}$ and $\left\{A_{n}\right\}$, then if $a=\bigvee_{n} a_{n}$ and $h(a)=A$, we have $A \supseteq \bigcup_{n} A_{n}$, and $A \backslash \bigcup_{n} A_{n}$ is a meager set.
- $\mathcal{S} \sigma$-algebra of subsets of Ω generated by \mathcal{A}
- \mathcal{S}^{\prime} the set of $A \in \mathcal{S}$ such that there is $b \in A$ such that A and the representation of b in A differs on a meager set.
- Let A be a Boolean σ-algebra and let \mathcal{A} be the algebra of the clopen sets of $\Omega=\operatorname{MaxI}(I)$. For $a \in A$, let $h(A)=a$. If $\left\{a_{n}\right\}$ and $\left\{A_{n}\right\}$, then if $a=\bigvee_{n} a_{n}$ and $h(a)=A$, we have $A \supseteq \bigcup_{n} A_{n}$, and $A \backslash \bigcup_{n} A_{n}$ is a meager set.
- $\mathcal{S} \sigma$-algebra of subsets of Ω generated by \mathcal{A}
- \mathcal{S}^{\prime} the set of $A \in \mathcal{S}$ such that there is $b \in A$ such that A and the representation of b in A differs on a meager set.
- \hat{h} is a σ-homomorphism of \mathcal{S} onto A.
- Every Boolean algebra has lot of states, determining system of states
- Every Boolean algebra has lot of states, determining system of states
- there is a Boolean σ-algebra having plenty finitely additive states but no σ-additive state.
- Every Boolean algebra has lot of states, determining system of states
- there is a Boolean σ-algebra having plenty finitely additive states but no σ-additive state.
- Connection with basically disconnected spaces:
- Every Boolean algebra has lot of states, determining system of states
- there is a Boolean σ-algebra having plenty finitely additive states but no σ-additive state.
- Connection with basically disconnected spaces:
- X is said to be basically disconnected provided the closure of every open F_{σ} subset of X is open.

Quantum Structures

1. orthomodular poset $L=(L ; \leq, \perp, 0,1)$ and a unary operation ${ }^{\perp}$, called an orthocomplementation such that, for all $a, b \in L$, we have

Quantum Structures

1. orthomodular poset $L=\left(L ; \leq,{ }^{\perp}, 0,1\right)$ and a unary operation ${ }^{\perp}$, called an orthocomplementation such that, for all $a, b \in L$, we have
(i) $a^{\perp \perp}=a$;

Quantum Structures

1. orthomodular poset $L=\left(L ; \leq,{ }^{\perp}, 0,1\right)$ and a unary operation ${ }^{\perp}$, called an orthocomplementation such that, for all $a, b \in L$, we have
(i) $a^{\perp \perp}=a$;
(ii) $b^{\perp} \leq a^{\perp}$ whenever $a \leq b$;

Quantum Structures

1. orthomodular poset $L=\left(L ; \leq,{ }^{\perp}, 0,1\right)$ and a unary operation ${ }^{\perp}$, called an orthocomplementation such that, for all $a, b \in L$, we have
(i) $a^{\perp \perp}=a$;
(ii) $b^{\perp} \leq a^{\perp}$ whenever $a \leq b$;
(iii) $a \vee a^{\perp}=1$;

Quantum Structures

1. orthomodular poset $L=(L ; \leq, \perp, 0,1)$ and a unary operation ${ }^{\perp}$, called an orthocomplementation such that, for all $a, b \in L$, we have
(i) $a^{\perp \perp}=a$;
(ii) $b^{\perp} \leq a^{\perp}$ whenever $a \leq b$;
(iii) $a \vee a^{\perp}=1$;
(iv) $a \vee b \in L$ whenever $a \leq b^{\perp}$;

Quantum Structures

1. orthomodular poset $L=\left(L ; \leq,{ }^{\perp}, 0,1\right)$ and a unary operation ${ }^{\perp}$, called an orthocomplementation such that, for all $a, b \in L$, we have
(i) $a^{\perp \perp}=a$;
(ii) $b^{\perp} \leq a^{\perp}$ whenever $a \leq b$;
(iii) $a \vee a^{\perp}=1$;
(iv) $a \vee b \in L$ whenever $a \leq b^{\perp}$;
(v) $b=a \vee\left(b \wedge a^{\perp}\right)$ whenever $a \leq b$ (orthomodular law).

- H-Hilbert space,

$$
\begin{gathered}
L(H)=\{M \subseteq H: M \text {-closed subspace of } H\} \\
M \wedge N=M \cap N, \quad M \vee N, \\
M^{\perp}=\{x \in H: x \perp y, \forall y \in M\}
\end{gathered}
$$

- H-Hilbert space,

$$
L(H)=\{M \subseteq H: M \text {-closed subspace of } H\}
$$

$$
\begin{gathered}
M \wedge N=M \cap N, \quad M \vee N, \\
M^{\perp}=\{x \in H: x \perp y, \forall y \in M\}
\end{gathered}
$$

- $L(H)$ complete orthomodular lattice
- H-Hilbert space,

$$
L(H)=\{M \subseteq H: M \text {-closed subspace of } H\}
$$

$$
\begin{gathered}
M \wedge N=M \cap N, \quad M \vee N, \\
M^{\perp}=\{x \in H: x \perp y, \forall y \in M\}
\end{gathered}
$$

- $L(H)$ complete orthomodular lattice
- state

$$
s_{x}(M)=\left\|x_{M}\right\|^{2}, \quad x=x_{M}+x_{M^{\perp}} .
$$

- H-Hilbert space,

$$
L(H)=\{M \subseteq H: M \text {-closed subspace of } H\}
$$

$$
\begin{gathered}
M \wedge N=M \cap N, \quad M \vee N, \\
M^{\perp}=\{x \in H: x \perp y, \forall y \in M\}
\end{gathered}
$$

- $L(H)$ complete orthomodular lattice
- state

$$
s_{x}(M)=\left\|x_{M}\right\|^{2}, \quad x=x_{M}+x_{M^{\perp}} .
$$

- Gleason's Theorem, $2 .<\operatorname{dim} H \leq \aleph_{0}$.
- S-prehilbert space

$$
\begin{gathered}
E(S)=\left\{M \subseteq S: M+M^{\perp}=S\right\} \\
F(S)=\left\{M \subseteq S: M^{\perp \perp}=M\right\}
\end{gathered}
$$

- S-prehilbert space

$$
\begin{gathered}
E(S)=\left\{M \subseteq S: M+M^{\perp}=S\right\} \\
F(S)=\left\{M \subseteq S: M^{\perp \perp}=M\right\}
\end{gathered}
$$

- S is complete iff $E(S)=F(S)$
- S-prehilbert space

$$
\begin{gathered}
E(S)=\left\{M \subseteq S: M+M^{\perp}=S\right\} \\
F(S)=\left\{M \subseteq S: M^{\perp \perp}=M\right\}
\end{gathered}
$$

- S is complete iff $E(S)=F(S)$
- S is complete iff $E(S)$ admits a σ-additive state
- S-prehilbert space

$$
\begin{gathered}
E(S)=\left\{M \subseteq S: M+M^{\perp}=S\right\} \\
F(S)=\left\{M \subseteq S: M^{\perp \perp}=M\right\}
\end{gathered}
$$

- S is complete iff $E(S)=F(S)$
- S is complete iff $E(S)$ admits a σ-additive state
- S is complete iff $F(S)$ admits a σ-additive state

Compatibility

- orthomodular poset L is not necessarily distributive

Compatibility

- orthomodular poset L is not necessarily distributive
- it is distributive iff L is a Boolean algebra

Compatibility

- orthomodular poset L is not necessarily distributive
- it is distributive iff L is a Boolean algebra
- a and b are orthogonal, $a \perp b$, if $a \leq b^{\perp}$

Compatibility

- orthomodular poset L is not necessarily distributive
- it is distributive iff L is a Boolean algebra
- a and b are orthogonal, $a \perp b$, if $a \leq b^{\perp}$
- a and b are compatible, $a \leftrightarrow b$, if there are three mutually orthogonal elements a_{1}, b_{1}, c such that $a=a_{1} \vee c$ and $b=b_{1} \vee c$

Compatibility

- orthomodular poset L is not necessarily distributive
- it is distributive iff L is a Boolean algebra
- a and b are orthogonal, $a \perp b$, if $a \leq b^{\perp}$
- a and b are compatible, $a \leftrightarrow b$, if there are three mutually orthogonal elements a_{1}, b_{1}, c such that $a=a_{1} \vee c$ and $b=b_{1} \vee c$
- given a system of mutually orthogonal elements, there is a maximal system of mutually orthogonal elements of L - it is a Boolean algebra
- Every orthomodular poset can be covered by a system of Boolean algebras
- Every orthomodular poset can be covered by a system of Boolean algebras
- Greechie diagrams - pasting of Boolean algebras
- Every orthomodular poset can be covered by a system of Boolean algebras
- Greechie diagrams - pasting of Boolean algebras
- observable: $x: \mathcal{B}(\mathbb{R}) \rightarrow L, L$ (σ-complete OML
- Every orthomodular poset can be covered by a system of Boolean algebras
- Greechie diagrams - pasting of Boolean algebras
- observable: $x: \mathcal{B}(\mathbb{R}) \rightarrow L, L$ (σ-complete OML
- $x(\mathbb{R})=1, x(\mathbb{R} \backslash E)=x(E)^{\perp}$, $x\left(\bigcup_{n} E_{n}\right)=\bigvee_{n} x\left(E_{n}\right), \mathcal{R}(x)$-range
- Every orthomodular poset can be covered by a system of Boolean algebras
- Greechie diagrams - pasting of Boolean algebras
- observable: $x: \mathcal{B}(\mathbb{R}) \rightarrow L, L$ (σ-complete OML
- $x(\mathbb{R})=1, x(\mathbb{R} \backslash E)=x(E)^{\perp}$, $x\left(\bigcup_{n} E_{n}\right)=\bigvee_{n} x\left(E_{n}\right), \mathcal{R}(x)$-range
- two observable x and y are compatible iff $x(E) \leftrightarrow y(F), E, F \in \mathcal{B}(\mathbb{R})$.
- s-state, x-observable, $s_{x}(E):=s(x(E))$ probability measure of x
- s-state, x-observable, $s_{x}(E):=s(x(E))$ probability measure of x
- $s(x)=\int_{\mathbb{R}} t d s_{x}(t)$ - mean value
- s-state, x-observable, $s_{x}(E):=s(x(E))$ probability measure of x
- $s(x)=\int_{\mathbb{R}} t d s_{x}(t)$ - mean value
- f - Borel function, $f(x)(E):=x\left(f^{-1}(E)\right)$, $E \in \mathcal{B}(\mathbb{R})$
- s-state, x-observable, $s_{x}(E):=s(x(E))$ probability measure of x
- $s(x)=\int_{\mathbb{R}} t d s_{x}(t)$ - mean value
- f - Borel function, $f(x)(E):=x\left(f^{-1}(E)\right)$, $E \in \mathcal{B}(\mathbb{R})$
- $s(f(x))=\int_{\mathbb{R}} f(t) d s_{x}(t)$
- s-state, x-observable, $s_{x}(E):=s(x(E))$ probability measure of x
- $s(x)=\int_{\mathbb{R}} t d s_{x}(t)$ - mean value
- f - Borel function, $f(x)(E):=x\left(f^{-1}(E)\right)$, $E \in \mathcal{B}(\mathbb{R})$
- $s(f(x))=\int_{\mathbb{R}} f(t) d s_{x}(t)$
- $\sigma(x)=\bigcap\{C: C$ closed, $x(C)=1\}$ spectrum
- s-state, x-observable, $s_{x}(E):=s(x(E))$ probability measure of x
- $s(x)=\int_{\mathbb{R}} t d s_{x}(t)$ - mean value
- f - Borel function, $f(x)(E):=x\left(f^{-1}(E)\right)$, $E \in \mathcal{B}(\mathbb{R})$
- $s(f(x))=\int_{\mathbb{R}} f(t) d s_{x}(t)$
- $\sigma(x)=\bigcap\{C: C$ closed, $x(C)=1\}$ spectrum
- x bounded if $\sigma(x)$ - compact set
- $a^{1}:=a, a^{0}=a^{\perp}$
- $a^{1}:=a, a^{0}=a^{\perp}$
- $\operatorname{com}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\bigvee\left(\left\{a_{1}^{j_{1}} \wedge \cdots \wedge a_{n}^{j_{n}}\right):\right.$ $\left.j_{1}, \ldots, j_{n} \in\{0,1\}\right)$ commutator
- $a^{1}:=a, a^{0}=a^{\perp}$
- $\operatorname{com}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\bigvee\left(\left\{a_{1}^{j_{1}} \wedge \cdots \wedge a_{n}^{j_{n}}\right):\right.$ $\left.j_{1}, \ldots, j_{n} \in\{0,1\}\right)$ commutator
- $\operatorname{com}(x, y)=\bigwedge\left\{\operatorname{com}\left(a_{1}, \ldots, a_{n}\right): a_{1}, \ldots, a_{n} \in\right.$ $\mathcal{R}(x) \cup \mathcal{R}(y), n \geq 1\}=0,=1$, strictly between 0 and 1
- $a^{1}:=a, a^{0}=a^{\perp}$
- $\operatorname{com}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\bigvee\left(\left\{a_{1}^{j_{1}} \wedge \cdots \wedge a_{n}^{j_{n}}\right):\right.$
$\left.j_{1}, \ldots, j_{n} \in\{0,1\}\right)$ commutator
- $\operatorname{com}(x, y)=\bigwedge\left\{\operatorname{com}\left(a_{1}, \ldots, a_{n}\right): a_{1}, \ldots, a_{n} \in\right.$ $\mathcal{R}(x) \cup \mathcal{R}(y), n \geq 1\}=0,=1$, strictly between 0 and 1
- x, y are compatible iff $\operatorname{com}(x, y)=1$, totally incompatible if $\operatorname{com}(x, y)=0$, partially compatible iff $0 \neq \operatorname{com}(x, y) \neq 1$
- $a^{1}:=a, a^{0}=a^{\perp}$
- $\operatorname{com}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\bigvee\left(\left\{a_{1}^{j_{1}} \wedge \cdots \wedge a_{n}^{j_{n}}\right):\right.$
$\left.j_{1}, \ldots, j_{n} \in\{0,1\}\right)$ commutator
- $\operatorname{com}(x, y)=\bigwedge\left\{\operatorname{com}\left(a_{1}, \ldots, a_{n}\right): a_{1}, \ldots, a_{n} \in\right.$ $\mathcal{R}(x) \cup \mathcal{R}(y), n \geq 1\}=0,=1$, strictly between 0 and 1
- x, y are compatible iff $\operatorname{com}(x, y)=1$, totally incompatible if $\operatorname{com}(x, y)=0$, partially compatible iff $0 \neq \operatorname{com}(x, y) \neq 1$
- s state σ-additive state
joint distribution of x, y in a state s :
$m: \mathcal{B}\left(\mathbb{R}^{2}\right) \rightarrow[0,1]$ s.t.
$m(E \times F)=s(x(E) \wedge y(F)) E, F \in \mathcal{B}(\mathbb{R})$
- joint distribution of x, y in a state s : $m: \mathcal{B}\left(\mathbb{R}^{2}\right) \rightarrow[0,1]$ s.t. $m(E \times F)=s(x(E) \wedge y(F)) E, F \in \mathcal{B}(\mathbb{R})$
- joint distribution of x, y exists in a state s iff $s(\operatorname{com}(x, y))=1$
- joint distribution of x, y in a state s : $m: \mathcal{B}\left(\mathbb{R}^{2}\right) \rightarrow[0,1]$ s.t. $m(E \times F)=s(x(E) \wedge y(F)) E, F \in \mathcal{B}(\mathbb{R})$
- joint distribution of x, y exists in a state s iff $s(\operatorname{com}(x, y))=1$
- $L(H), A \leftrightarrow B$ iff $P_{A} P_{B}=P_{B} P_{A}$
- joint distribution of x, y in a state s : $m: \mathcal{B}\left(\mathbb{R}^{2}\right) \rightarrow[0,1]$ s.t. $m(E \times F)=s(x(E) \wedge y(F)) E, F \in \mathcal{B}(\mathbb{R})$
- joint distribution of x, y exists in a state s iff $s(\operatorname{com}(x, y))=1$
- $L(H), A \leftrightarrow B$ iff $P_{A} P_{B}=P_{B} P_{A}$
- observable for $L(H)$ - spectral measure, corresponds to Hermitian operators (bounded observable) or self-adjoint operators
- joint distribution of x, y in a state s : $m: \mathcal{B}\left(\mathbb{R}^{2}\right) \rightarrow[0,1]$ s.t. $m(E \times F)=s(x(E) \wedge y(F)) E, F \in \mathcal{B}(\mathbb{R})$
- joint distribution of x, y exists in a state s iff $s(\operatorname{com}(x, y))=1$
- $L(H), A \leftrightarrow B$ iff $P_{A} P_{B}=P_{B} P_{A}$
- observable for $L(H)$ - spectral measure, corresponds to Hermitian operators (bounded observable) or self-adjoint operators
- A, B hermitian operators are compatible iff $A B=B A$

States and Greechie Diagrams

- $s: L \rightarrow[0,1]$ is a state if $s(1)=1$ and $s(a \vee b)=s(a)+s(b)$ if $a \perp b$.

States and Greechie Diagrams

- $s: L \rightarrow[0,1]$ is a state if $s(1)=1$ and $s(a \vee b)=s(a)+s(b)$ if $a \perp b$.
- $\mathcal{S}(L)$ is it nonempty ?

States and Greechie Diagrams

- $s: L \rightarrow[0,1]$ is a state if $s(1)=1$ and $s(a \vee b)=s(a)+s(b)$ if $a \perp b$.
- $\mathcal{S}(L)$ is it nonempty ?
- \mathcal{B} - the system of finite Boolean algebras s.t. if $A \neq B$ then $A \cap B=\{0,1\}$ or $A \cap B=\left\{0, x, x^{\perp}, 1\right\} x$ - atom, is said to be almost disjoint

States and Greechie Diagrams

- $s: L \rightarrow[0,1]$ is a state if $s(1)=1$ and $s(a \vee b)=s(a)+s(b)$ if $a \perp b$.
- $\mathcal{S}(L)$ is it nonempty ?
- \mathcal{B} - the system of finite Boolean algebras s.t. if $A \neq B$ then $A \cap B=\{0,1\}$ or $A \cap B=\left\{0, x, x^{\perp}, 1\right\} x$ - atom, is said to be almost disjoint
- finite sequence $\left\{B_{0}, \ldots, B_{n-1}\right\}$ from \mathcal{B} is a loop of order $n(n \geq 3)$ if

States and Greechie Diagrams

- $s: L \rightarrow[0,1]$ is a state if $s(1)=1$ and $s(a \vee b)=s(a)+s(b)$ if $a \perp b$.
- $\mathcal{S}(L)$ is it nonempty ?
- \mathcal{B} - the system of finite Boolean algebras s.t. if $A \neq B$ then $A \cap B=\{0,1\}$ or $A \cap B=\left\{0, x, x^{\perp}, 1\right\} x$ - atom, is said to be almost disjoint
- finite sequence $\left\{B_{0}, \ldots, B_{n-1}\right\}$ from \mathcal{B} is a loop of order $n(n \geq 3)$ if
- (i) $\forall i \in\{0,1, \ldots, n-1\}$ we have
$B_{i} \cap B_{i+1}=\left\{0,1, x^{\circ}, x^{\perp}\right\} x$ àtom in both BAAs
(ii) if $j \notin\{i-1, i, i+1\}, B_{i} \cap B_{j}=\{0,1\}$
- (ii) if $j \notin\{i-1, i, i+1\}, B_{i} \cap B_{j}=\{0,1\}$
- $B_{i} \cap B_{j} \cap B_{k}=\{0,1$,
(ii) if $j \notin\{i-1, i, i+1\}, B_{i} \cap B_{j}=\{0,1\}$
- $B_{i} \cap B_{j} \cap B_{k}=\{0,1$,
- Theorem 0.7 If \mathcal{B} is a system of almost disjoint system of BAs, then $L=\bigcup\{B: B \in \mathcal{B}\}$ is (1) an OMP iff \mathcal{B} doesn't contain any loop of order 3
- (ii) if $j \notin\{i-1, i, i+1\}, B_{i} \cap B_{j}=\{0,1\}$
- $B_{i} \cap B_{j} \cap B_{k}=\{0,1$,
- Theorem 0.8 If B is a system of almost disjoint system of BAs, then $L=\bigcup\{B: B \in \mathcal{B}\}$ is (1) an OMP iff \mathcal{B} doesn't contain any loop of order 3
- (2) is an OML iff \mathcal{B} does not contain neither a loop of order 3 nor a loop of order 4.
- (ii) if $j \notin\{i-1, i, i+1\}, B_{i} \cap B_{j}=\{0,1\}$
- $B_{i} \cap B_{j} \cap B_{k}=\{0,1$,
- Theorem 0.9 If \mathcal{B} is a system of almost disjoint system of BAs, then $L=\bigcup\{B: B \in \mathcal{B}\}$ is (1) an OMP iff \mathcal{B} doesn't contain any loop of order 3
- (2) is an OML iff \mathcal{B} does not contain neither a loop of order 3 nor a loop of order 4.
- There is a finite stateless OMP

Orthoalgebras

- orthoalgebra $(A ;+, 0,1$,

Orthoalgebras

- orthoalgebra $(A ;+, 0,1$,
- If $a+b$ is defined, then $b+a$ is defined and $a+b=b+a$ (commutativity).

Orthoalgebras

- orthoalgebra $(A ;+, 0,1$,
- If $a+b$ is defined, then $b+a$ is defined and $a+b=b+a$ (commutativity).
- $\mathrm{f} a+b$ and $(a+b)+c$ are defined, then $b+c$ and $a+(b+c)$ are defined, and $(a+b)+c=a+(b+c)$ (associativity).

Orthoalgebras

- orthoalgebra $(A ;+, 0,1$,
- If $a+b$ is defined, then $b+a$ is defined and $a+b=b+a$ (commutativity).
- $\mathrm{f} a+b$ and $(a+b)+c$ are defined, then $b+c$ and $a+(b+c)$ are defined, and $(a+b)+c=a+(b+c)$ (associativity).
- For every $a \in A$ there is a unique $b \in A$ such that $a+b$ is defined and $a+b=1$ (orthocomplementation).

Orthoalgebras

- orthoalgebra $(A ;+, 0,1$,
- If $a+b$ is defined, then $b+a$ is defined and $a+b=b+a$ (commutativity).
- $f a+b$ and $(a+b)+c$ are defined, then $b+c$ and $a+(b+c)$ are defined, and $(a+b)+c=a+(b+c)$ (associativity).
- For every $a \in A$ there is a unique $b \in A$ such that $a+b$ is defined and $a+b=1$ (orthocomplementation).
- If $a+a$ is defined, then $a=0$ (consistency).
- if $a+b=1, a^{\prime}:=b$ orthocomplement
- if $a+b=1, a^{\prime}:=b$ orthocomplement
- $a \leq b$ iff $a+c=b$ for some $c \in A$
- if $a+b=1, a^{\prime}:=b$ orthocomplement
- $a \leq b$ iff $a+c=b$ for some $c \in A$
- An orthoalgebra is an OMP iff
- if $a+b=1, a^{\prime}:=b$ orthocomplement
- $a \leq b$ iff $a+c=b$ for some $c \in A$
- An orthoalgebra is an OMP iff
- $a+b$ exists, then so does $a \vee b$, and
$a+b=a \vee b$
- if $a+b=1, a^{\prime}:=b$ orthocomplement
- $a \leq b$ iff $a+c=b$ for some $c \in A$
- An orthoalgebra is an OMP iff
- $a+b$ exists, then so does $a \vee b$, and $a+b=a \vee b$
- or iff $a+b, b+c$ and $a+c$ exist, then $a+b+c$ is defined in A

Firefly Examples of quantum structures

Fig. 4.1

Firefly Examples of quantum structures

Fig. 4.1

- The experiment A: Look at the front window. The experiment B: Look at the side window. The outcomes of A and B are:
- See a light in the left half $\left(l_{A}, l_{B}\right)$, right half $\left(r_{A}, r_{B}\right)$ of the window or see no light $\left(n_{A}, n_{B}\right)$. It is clear that $n_{A}=n_{B}=: n$ and we put $l_{A}=: l, r_{A}=: r, l_{B}=: f, r_{B}=: b$ (f for the front, b for the back)
- See a light in the left half $\left(l_{A}, l_{B}\right)$, right half (r_{A}, r_{B}) of the window or see no light $\left(n_{A}, n_{B}\right)$. It is clear that $n_{A}=n_{B}=: n$ and we put $l_{A}=: l, r_{A}=: r, l_{B}=: f, r_{B}=: b$ (f for the front, b for the back)

Fig. 4.2

Quantum Structures I-III - p. 30

Three-chamber box

Fig. 4.5

Three-chamber box

Fig. 4.5

- three experiments, corresponding to the three windows A, B and C. we record l_{E}, r_{E}, n_{E} if we see, respectively, a light to the left, right, of the center line or no light.

Fig. 4.6 Wright triangle

Effect algebra $E=(E ;+, 0,1)$

(EAi) if $a+b \in L$, then $b+a \in L$ and $a+b=b+a$ (commutativity);

Effect algebra $E=(E ;+, 0,1)$

(EAi) if $a+b \in L$, then $b+a \in L$ and $a+b=b+a$ (commutativity);
(EAii) if $b+c \in L$ and $a+(b+c) \in L$, then
$a+b \in L$ and $(a+b)+c \in L$, and
$a+(b+c)=(a+b)+c$ (associativity);

Effect algebra $E=(E ;+, 0,1)$

(EAi) if $a+b \in L$, then $b+a \in L$ and $a+b=b+a$ (commutativity);
(EAii) if $b+c \in L$ and $a+(b+c) \in L$, then $a+b \in L$ and $(a+b)+c \in L$, and $a+(b+c)=(a+b)+c$ (associativity);
(EAiii) for any $a \in L$ there is a unique $b \in L$ such that $a+b$ is defined, and $a+b=1$ (orthocomplementation)

Effect algebra $E=(E ;+, 0,1)$

(EAi) if $a+b \in L$, then $b+a \in L$ and $a+b=b+a$ (commutativity);
(EAii) if $b+c \in L$ and $a+(b+c) \in L$, then
$a+b \in L$ and $(a+b)+c \in L$, and
$a+(b+c)=(a+b)+c$ (associativity);
(EAiii) for any $a \in L$ there is a unique $b \in L$ such that $a+b$ is defined, and $a+b=1$ (orthocomplementation)
(EAiv) if $1+a$ is defined, then $a=0$ (zero-one law).

Examples

$[0,1]+$ restricted from $[0,1]$
po-group ($G ; \leq,+,-, 0$)

$$
a \leq b \quad \rightarrow \quad a+c \leq b+c
$$

$$
E=([0, u] ;+, 0, u)
$$

interval EA: $E:=\Gamma(G, u)$

Examples

$[0,1]+$ restricted from $[0,1]$
po-group ($G ; \leq,+,-, 0$)

$$
\begin{gathered}
a \leq b \quad \rightarrow \quad a+c \leq b+c \\
E=([0, u] ;+, 0, u),
\end{gathered}
$$

interval EA: $E:=\Gamma(G, u)$
state $s(a+b)=s(a)+s(b)$ if $a+b \in E$,

$$
s(1)=1 \text {. }
$$

RDP

(RDP): If $c \leq a+b \exists a_{1}, b_{1} \in M$ such that $a_{1} \leq a, b_{1} \leq b$ and $c=a_{1}+b_{1}$.

RDP

- (RDP): If $c \leq a+b \exists a_{1}, b_{1} \in M$ such that $a_{1} \leq a, b_{1} \leq b$ and $c=a_{1}+b_{1}$.
- $a_{1}+a_{2}=b_{1}+b_{2}, \exists c_{11}, c_{12}, c_{21}, c_{22} \in M$ s.t. $a_{1}=c_{11}+c_{12}, a_{2}=c_{21}+c_{22}, b_{1}=c_{11}+c_{21}$, and $b_{2}=c_{21}+c_{22}$.

RDP

- (RDP): If $c \leq a+b \exists a_{1}, b_{1} \in M$ such that $a_{1} \leq a, b_{1} \leq b$ and $c=a_{1}+b_{1}$.
- $a_{1}+a_{2}=b_{1}+b_{2}, \exists c_{11}, c_{12}, c_{21}, c_{22} \in M$ s.t. $a_{1}=c_{11}+c_{12}, a_{2}=c_{21}+c_{22}, b_{1}=c_{11}+c_{21}$, and $b_{2}=c_{21}+c_{22}$.
- $u \in G^{+}$is a strong unit if, $\forall g \in G, \exists n \geq 1$, s.t. $g \leq n u,(G, u)$-unital po-group

RDP

- (RDP): If $c \leq a+b \exists a_{1}, b_{1} \in M$ such that $a_{1} \leq a, b_{1} \leq b$ and $c=a_{1}+b_{1}$.
- $a_{1}+a_{2}=b_{1}+b_{2}, \exists c_{11}, c_{12}, c_{21}, c_{22} \in M$ s.t. $a_{1}=c_{11}+c_{12}, a_{2}=c_{21}+c_{22}, b_{1}=c_{11}+c_{21}$, and $b_{2}=c_{21}+c_{22}$.
- $u \in G^{+}$is a strong unit if, $\forall g \in G, \exists n \geq 1$, s.t. $g \leq n u,(G, u)$-unital po-group
- equivalently: $G=\bigcup_{n}[-n u, n u]$

RDP

- (RDP): If $c \leq a+b \exists a_{1}, b_{1} \in M$ such that $a_{1} \leq a, b_{1} \leq b$ and $c=a_{1}+b_{1}$.
- $a_{1}+a_{2}=b_{1}+b_{2}, \exists c_{11}, c_{12}, c_{21}, c_{22} \in M$ s.t. $a_{1}=c_{11}+c_{12}, a_{2}=c_{21}+c_{22}, b_{1}=c_{11}+c_{21}$, and $b_{2}=c_{21}+c_{22}$.
- $u \in G^{+}$is a strong unit if, $\forall g \in G, \exists n \geq 1$, s.t. $g \leq n u,(G, u)$-unital po-group
- equivalently: $G=\bigcup_{n}[-n u, n u]$
- G - interpolation group whenever

$$
a_{1}, a_{2} \leq b_{1}, b_{2} \exists c \in G \text { s.t. } a_{1}, a_{2} \leq c \leq b_{1}, b_{2}
$$

- Ravindran: if EA M satisfies RDP, then there is a unique unital interpolation po-group (G, u) s.t. $M=\Gamma(G, u)$,
- Ravindran: if EA M satisfies RDP, then there is a unique unital interpolation po-group (G, u) s.t. $M=\Gamma(G, u)$,
- Moreover, there is a categorical equivalence between the category of AEs with RDP and interpolation Abelian unital po-groups (G, u)
- Ravindran: if EA M satisfies RDP, then there is a unique unital interpolation po-group (G, u) s.t. $M=\Gamma(G, u)$,
- Moreover, there is a categorical equivalence between the category of AEs with RDP and interpolation Abelian unital po-groups (G, u)
- state s on $(G, u): s: G \rightarrow \mathbb{R}$ s.t. $s\left(G^{+}\right) \subseteq \mathbb{R}^{+}$, $s(u)=1, s\left(g_{1}+g_{2}\right)=s\left(g_{1}\right)+s\left(g_{2}\right)$
- Ravindran: if EA M satisfies RDP, then there is a unique unital interpolation po-group (G, u) s.t. $M=\Gamma(G, u)$,
- Moreover, there is a categorical equivalence between the category of AEs with RDP and interpolation Abelian unital po-groups (G, u)
- state s on $(G, u): s: G \rightarrow \mathbb{R}$ s.t. $s\left(G^{+}\right) \subseteq \mathbb{R}^{+}$, $s(u)=1, s\left(g_{1}+g_{2}\right)=s\left(g_{1}\right)+s\left(g_{2}\right)$
- $\mathcal{S}(G, u)$, there is 1-1 correspondence between $\mathcal{S}(\Gamma(G, u))$ and $\mathcal{S}(G, u)$
- Ravindran: if EA M satisfies RDP, then there is a unique unital interpolation po-group (G, u) s.t. $M=\Gamma(G, u)$,
- Moreover, there is a categorical equivalence between the category of AEs with RDP and interpolation Abelian unital po-groups (G, u)
- state s on $(G, u): s: G \rightarrow \mathbb{R}$ s.t. $s\left(G^{+}\right) \subseteq \mathbb{R}^{+}$, $s(u)=1, s\left(g_{1}+g_{2}\right)=s\left(g_{1}\right)+s\left(g_{2}\right)$
- $\mathcal{S}(G, u)$, there is 1-1 correspondence between $\mathcal{S}(\Gamma(G, u))$ and $\mathcal{S}(G, u)$
- every interval EA has a state •

Many-valued Reasoning

- Ulam-game, Pinocchio, Game with black-and white marbles, error correcting codes.
- set, fuzzy set $f: \Omega \rightarrow[0,1], f: \Omega \rightarrow\{0,1\}$.

Many-valued Reasoning

- Ulam-game, Pinocchio, Game with black-and white marbles, error correcting codes.
- set, fuzzy set $f: \Omega \rightarrow[0,1], f: \Omega \rightarrow\{0,1\}$. is an algebra $M=\left(M ; \oplus, \odot,{ }^{*}, 0,1\right)$ of type $(2,2,1,0,0)$ such that, for all $a, b, c \in M$, we have
(i) $a \oplus b=b \oplus a$;
(ii) $(a \oplus b) \oplus c=a \oplus(b \oplus c)$;
(iii) $a \oplus 0=a$;
(iv) $a \oplus 1=1$;
(v) $\left(a^{*}\right)^{*}=a$;
(vi) $a \oplus a^{*}=1$;
(vii) $0^{*}=1$;
(viii) $\left(a^{*} \oplus b\right)^{*} \oplus b=\left(a \oplus b^{*}\right)^{*} \oplus a$.
(i) $a \oplus b=b \oplus a$;
(ii) $(a \oplus b) \oplus c=a \oplus(b \oplus c)$;
(iii) $a \oplus 0=a$;
(iv) $a \oplus 1=1$;
(v) $\left(a^{*}\right)^{*}=a$;
(vi) $a \oplus a^{*}=1$;
(vii) $0^{*}=1$;
(viii) $\left(a^{*} \oplus b\right)^{*} \oplus b=\left(a \oplus b^{*}\right)^{*} \oplus a$.

1. $a \vee b=\left(a^{*} \oplus b\right)^{*} \oplus b . M$ is a distributive lattice

- If $A=\left(A ; \vee, \wedge,,^{\prime}, 0,1\right)$ is a Boolean algebra, then $\left(A ; \oplus, \odot,^{*}, 0,1\right)$, where $\oplus=\vee, \odot=\wedge$, * $=^{\prime}$, is an MV -algebra
- If $A=\left(A ; \vee, \wedge,{ }^{\prime}, 0,1\right)$ is a Boolean algebra, then $\left(A ; \oplus, \odot,^{*}, 0,1\right)$, where $\oplus=\vee, \odot=\wedge$, * $=^{\prime}$, is an MV-algebra
- Bold algebra $\mathcal{F} \subseteq[0,1]^{\Omega}$ (i) $1 \in \mathcal{F}$, (ii) $f \in \mathcal{F}$, then $1-f \in \mathcal{F}$, (iii) $f, g \in \mathcal{F}$, and

$$
(f \oplus g)(\omega):=\min \{f(\omega)+g(\omega), 1\}, \omega \in \Omega,
$$

then $f \oplus g \in \mathcal{F}$.

$$
(f \odot g)(\omega):=\max \{0,(f(\omega)+g(\omega)-1)\}
$$

- Let $(G,+, 0, \leq)$ be an ℓ-group, i.e. a group such that if $a \leq b, a, b \in G$, then for any $c \in G$, $c+a \leq c+b$, and G is a lattice.
- Let $(G,+, 0, \leq)$ be an ℓ-group, i.e. a group such that if $a \leq b, a, b \in G$, then for any $c \in G$, $c+a \leq c+b$, and G is a lattice.
- $u>0$ is strong unit if given $g \in G$, there is $n \geq 1$ such that $g \leq n u$.
- Let $(G,+, 0, \leq)$ be an ℓ-group, i.e. a group such that if $a \leq b, a, b \in G$, then for any $c \in G$, $c+a \leq c+b$, and G is a lattice.
- $u>0$ is strong unit if given $g \in G$, there is $n \geq 1$ such that $g \leq n u$.
- (G, u) l-group with strong unit.
- Let $(G,+, 0, \leq)$ be an ℓ-group, i.e. a group such that if $a \leq b, a, b \in G$, then for any $c \in G$, $c+a \leq c+b$, and G is a lattice.
- $u>0$ is strong unit if given $g \in G$, there is $n \geq 1$ such that $g \leq n u$.
- (G, u) l-group with strong unit.
- $\Gamma(G, u)=[0, u]$

$$
\begin{gathered}
a \oplus b=(a+b) \wedge u, a, b \in \Gamma(G, u), \\
a \odot b=0 \vee(a+b-u), a, b \in \Gamma(G, u)
\end{gathered}
$$

$\left(\Gamma(G, u) ; \oplus, \odot,{ }^{*}, 0, u\right)$ is an MV-algebra, where $a^{*}=u-a$.
$\left(\Gamma(G, u) ; \oplus, \odot,{ }^{*}, 0, u\right)$ is an MV-algebra, where $a^{*}=u-a$.

- Mundici, $M \cong \Gamma(G, u)$.
- $\left(\Gamma(G, u) ; \oplus, \odot,{ }^{*}, 0, u\right)$ is an MV-algebra, where $a^{*}=u-a$.
- Mundici, $M \cong \Gamma(G, u)$.

- $\left(\Gamma(G, u) ; \oplus, \odot,{ }^{*}, 0, u\right)$ is an MV-algebra, where $a^{*}=u-a$.
- Mundici, $M \cong \Gamma(G, u)$.

- $\left(\Gamma(G, u) ; \oplus, \odot,{ }^{*}, 0, u\right)$ is an MV-algebra, where $a^{*}=u-a$.
- Mundici, $M \cong \Gamma(G, u)$.

- M MV-algebra, partial addition $a+b$ is defined in M iff $a \leq b^{*}$ iff $a \odot b=0$, then $a+b:=a \oplus b$
- M MV-algebra, partial addition $a+b$ is defined in M iff $a \leq b^{*}$ iff $a \odot b=0$, then $a+b:=a \oplus b$
- $\left(M ;+,{ }^{*}, 0,1\right)$ is an effect algebra (MV-effect algebra) with RDP which is lattice ordered (and distributive)
- M MV-algebra, partial addition $a+b$ is defined in M iff $a \leq b^{*}$ iff $a \odot b=0$, then $a+b:=a \oplus b$
- ($M ;+,^{*}, 0,1$) is an effect algebra (MV-effect algebra) with RDP which is lattice ordered (and distributive)
- Every lattice ordered EA with RDP is an MV-effect algebra
- M MV-algebra, partial addition $a+b$ is defined in M iff $a \leq b^{*}$ iff $a \odot b=0$, then $a+b:=a \oplus b$
- ($M ;+{ }^{*}, 0,1$) is an effect algebra (MV-effect algebra) with RDP which is lattice ordered (and distributive)
- Every lattice ordered EA with RDP is an MV-effect algebra
- a, b EA compatible: $\exists a_{1}, b_{1}, c$ such that $a=a_{1}+c, b=b_{1}+c$ and $a_{1}+b_{1}+c$ exists in E, block
- M MV-algebra, partial addition $a+b$ is defined in M iff $a \leq b^{*}$ iff $a \odot b=0$, then $a+b:=a \oplus b$
- ($M ;+{ }^{*}, 0,1$) is an effect algebra (MV-effect algebra) with RDP which is lattice ordered (and distributive)
- Every lattice ordered EA with RDP is an MV-effect algebra
- a, b EA compatible: $\exists a_{1}, b_{1}, c$ such that $a=a_{1}+c, b=b_{1}+c$ and $a_{1}+b_{1}+c$ exists in E, block
- Every lattice ordered EA can be covered by

States on MV-algebras

- state $s: M \rightarrow[0,1]$ such that (i) $s(1)=1$ and (ii) $s(a+b)=s(a)+s(b)$ if $a \leq b^{*}$.

States on MV-algebras

- state $s: M \rightarrow[0,1]$ such that (i) $s(1)=1$ and
(ii) $s(a+b)=s(a)+s(b)$ if $a \leq b^{*}$.
- s is extremal iff

$$
s(a \wedge b)=\min \{s(a), s(b)\} .
$$

States on MV-algebras

- state $s: M \rightarrow[0,1]$ such that (i) $s(1)=1$ and
(ii) $s(a+b)=s(a)+s(b)$ if $a \leq b^{*}$.
- s is extremal iff

$$
s(a \wedge b)=\min \{s(a), s(b)\} .
$$

- $\mathcal{S}(M), \partial_{e} \mathcal{S}(M) \neq \emptyset$

States on MV-algebras

- state $s: M \rightarrow[0,1]$ such that (i) $s(1)=1$ and
(ii) $s(a+b)=s(a)+s(b)$ if $a \leq b^{*}$.
- s is extremal iff

$$
s(a \wedge b)=\min \{s(a), s(b)\}
$$

- $\mathcal{S}(M), \partial_{e} \mathcal{S}(M) \neq \emptyset$
- $s_{\alpha} \rightarrow s, \mathcal{S}(M), \partial_{e} \mathcal{S}$ compact, Hausdorff topological space.

Affine Functions

- K-convex, compact Hausdorff topol. space

Affine Functions

- K-convex, compact Hausdorff topol. space
- Aff(K) - continuous affine functions

Affine Functions

- K-convex, compact Hausdorff topol. space
- Aff (K) - continuous affine functions
- f-affine: $x, y \in K$ and any $\lambda \in[0,1]$, we have $f(\lambda x+(1-\lambda) y)=\lambda f(x)+(1-\lambda) f(y)$.

Affine Functions

- K-convex, compact Hausdorff topol. space
- Aff (K) - continuous affine functions
- f-affine: $x, y \in K$ and any $\lambda \in[0,1]$, we have $f(\lambda x+(1-\lambda) y)=\lambda f(x)+(1-\lambda) f(y)$.
- $\partial_{e} K, K=$ cl conhull $\partial_{e} K$

Affine Functions

- K-convex, compact Hausdorff topol. space
- Aff (K) - continuous affine functions
- f-affine: $x, y \in K$ and any $\lambda \in[0,1]$, we have $f(\lambda x+(1-\lambda) y)=\lambda f(x)+(1-\lambda) f(y)$.
- $\partial_{e} K, K=\mathrm{cl}$ conhull $\partial_{e} K$
- (Aff $(K), 1)$ po-group

Affine Functions

- K-convex, compact Hausdorff topol. space
- Aff (K) - continuous affine functions
- f-affine: $x, y \in K$ and any $\lambda \in[0,1]$, we have $f(\lambda x+(1-\lambda) y)=\lambda f(x)+(1-\lambda) f(y)$.
- $\partial_{e} K, K=\mathrm{cl}$ conhull $\partial_{e} K$
- (Aff $(K), 1)$ po-group
- $\mathcal{S}(E) \cong \mathcal{S}(\operatorname{Aff}(\mathcal{S}(E)), 1), s \mapsto f(s)$, $f \in \operatorname{Aff}(\mathcal{S}(E))$

Simplices vs EAs

- convex cone- in a real linear space V is any subset C of V such that (i) $0 \in C$, (ii) if $x_{1}, x_{2} \in C$, then $\alpha_{1} x_{1}+\alpha_{2} x_{2} \in C$ for any $\alpha_{1}, \alpha_{2} \in \mathbb{R}^{+}$.

Simplices vs EAs

- convex cone- in a real linear space V is any subset C of V such that (i) $0 \in C$, (ii) if $x_{1}, x_{2} \in C$, then $\alpha_{1} x_{1}+\alpha_{2} x_{2} \in C$ for any $\alpha_{1}, \alpha_{2} \in \mathbb{R}^{+}$.
- strict cone- is any convex cone C such that $C \cap-C=\{0\}$,

Simplices vs EAs

- convex cone- in a real linear space V is any subset C of V such that (i) $0 \in C$, (ii) if $x_{1}, x_{2} \in C$, then $\alpha_{1} x_{1}+\alpha_{2} x_{2} \in C$ for any $\alpha_{1}, \alpha_{2} \in \mathbb{R}^{+}$.
- strict cone- is any convex cone C such that $C \cap-C=\{0\}$,
- base- for a convex cone C is any convex subset K of $C y \in C \backslash\{0\}$ may be uniquely expressed in the form $y=\alpha x$ for some $\alpha \in \mathbb{R}^{+}, x \in K$
- strict cone C of V defines \leq_{C} via $x \leq_{C} y$ iff $y-x \in C$.
- strict cone C of V defines \leq_{C} via $x \leq_{C} y$ iff $y-x \in C$.
- lattice cone- strict convex cone C in V such that C is a lattice under \leq_{C}.
- strict cone C of V defines \leq_{C} via $x \leq_{C} y$ iff $y-x \in C$.
- lattice cone- strict convex cone C in V such that C is a lattice under \leq_{C}.
- simplex:- is any convex subset K of V that is affinely isomorphic to a base for a lattice cone in some real linear space V
- strict cone C of V defines \leq_{C} via $x \leq_{C} y$ iff $y-x \in C$.
- lattice cone- strict convex cone C in V such that C is a lattice under \leq_{C}.
- simplex:- is any convex subset K of V that is affinely isomorphic to a base for a lattice cone in some real linear space V
- Choquet simplex: if K is compact
- strict cone C of V defines \leq_{C} via $x \leq_{C} y$ iff $y-x \in C$.
- lattice cone- strict convex cone C in V such that C is a lattice under \leq_{C}.
- simplex:- is any convex subset K of V that is affinely isomorphic to a base for a lattice cone in some real linear space V
- Choquet simplex: if K is compact
- Bauer simplex: K and $\partial_{e} K$ are compact
- If $H=\mathbb{R}^{2}$, the $\mathcal{S}\left(\mathcal{L}\left(\mathbb{R}^{2}\right)\right)$ corresponding to von Neumann operators can be identified with the convex set of all positive trace-one matrices in $M_{2}(\mathbb{R})$.
- If $H=\mathbb{R}^{2}$, the $\mathcal{S}\left(\mathcal{L}\left(\mathbb{R}^{2}\right)\right)$ corresponding to von Neumann operators can be identified with the convex set of all positive trace-one matrices in $M_{2}(\mathbb{R})$.
- $\left(\begin{array}{cc}\beta_{1} & \beta_{2} \\ \beta_{2} & 1-\beta_{1}\end{array}\right)$, the parameters β_{1} and β_{2} must satisfy the inequality $\left(\beta_{1}-\frac{1}{2}\right)^{2}+\beta_{2}^{2} \leq \frac{1}{4}$, and vice-versa. Hence, the state space is affinely isomorphic with the latter circle. The state space for $H=\mathbb{C}^{2}$ is affinely homeomorphic with a three-dimensional real sphere•
- E with (RDP) - $\mathcal{S}(E)$ Choquet simplex
- E with (RDP) - $\mathcal{S}(E)$ Choquet simplex
- E - MV-algebra, $\mathcal{S}(E)$ Bauer simplex
- E with (RDP) - $\mathcal{S}(E)$ Choquet simplex
- E - MV-algebra, $\mathcal{S}(E)$ Bauer simplex
- K - Choquet simplex iff Aff(K)- interpolation po-group
- E with (RDP) - $\mathcal{S}(E)$ Choquet simplex
- E - MV-algebra, $\mathcal{S}(E)$ Bauer simplex
- K - Choquet simplex iff Aff(K)- interpolation po-group
- K - Bauer simplex iff Aff(K) - ℓ-group
- E with (RDP) - $\mathcal{S}(E)$ Choquet simplex
- E - MV-algebra, $\mathcal{S}(E)$ Bauer simplex
- K - Choquet simplex iff Aff(K)- interpolation po-group
- K - Bauer simplex iff Aff(K) - ℓ-group
- $\mathcal{S}(\mathcal{E}(H))$ is no simplex
- E with (RDP) - $\mathcal{S}(E)$ Choquet simplex
- E - MV-algebra, $\mathcal{S}(E)$ Bauer simplex
- K - Choquet simplex iff Aff(K)- interpolation po-group
- K - Bauer simplex iff Aff(K) - ℓ-group
- $\mathcal{S}(\mathcal{E}(H))$ is no simplex
- $\operatorname{dim} H=2$, regular states \cong unit ball in \mathbb{R}^{2}

Structure of the state space

- E EA- the state space $\mathcal{S}(E)$ - (i) empty, (ii) singleton, (iii) infinite

Structure of the state space

- E EA- the state space $\mathcal{S}(E)$ - (i) empty, (ii) singleton, (iii) infinite
- extremal state: $s=\lambda s_{1}+(1-\lambda) s_{2}$, then

$$
s=s_{1}=s_{2},
$$

Structure of the state space

- EA- the state space $\mathcal{S}(E)$ - (i) empty, (ii) singleton, (iii) infinite
- extremal state: $s=\lambda s_{1}+(1-\lambda) s_{2}$, then $s=s_{1}=s_{2}$,
- Schultz, Navara: every compact convex set is affinely homeomorphic to the state space of an orthomodular lattice.

Structure of the state space

- EA- the state space $\mathcal{S}(E)$ - (i) empty, (ii) singleton, (iii) infinite
- extremal state: $s=\lambda s_{1}+(1-\lambda) s_{2}$, then $s=s_{1}=s_{2}$,
- Schultz, Navara: every compact convex set is affinely homeomorphic to the state space of an orthomodular lattice.
- A convex compact Hausdorff space $K \neq \emptyset$ is affinely isomorphic to the state space of some MV-algebra iff K is a Bauer simplex.
- A convex compact Hausdorff space $K \neq \emptyset$ is affinely isomorphic to the state space of some EA with (RDP) iff K is a Choquet simplex
- A convex compact Hausdorff space $K \neq \emptyset$ is affinely isomorphic to the state space of some EA with (RDP) iff K is a Choquet simplex
- there is no MV-algebra whose state space is affinely isomorphic to the closed square or to the closed unit circle
- $\mathcal{B}(K)$ - Borel σ-algebra of K generated by all open subsets of K
- $\mathcal{B}(K)$ - Borel σ-algebra of K generated by all open subsets of K
- Borel measure μ - regular if $\inf \{\mu(O): Y \subseteq O, O$ open $\}=\mu(Y)=$
$\sup \{\mu(C): C \subseteq Y, C$ closed $\}, Y \in \mathcal{B}(K)$.
- $\mathcal{B}(K)$ - Borel σ-algebra of K generated by all open subsets of K
- Borel measure μ - regular if $\inf \{\mu(O): Y \subseteq O, O$ open $\}=\mu(Y)=$ $\sup \{\mu(C): C \subseteq Y, C$ closed $\}, Y \in \mathcal{B}(K)$.
- δ_{x} - Dirac measure - regular Borel measure.
- $\mathcal{B}(K)$ - Borel σ-algebra of K generated by all open subsets of K
- Borel measure μ - regular if $\inf \{\mu(O): Y \subseteq O, O$ open $\}=\mu(Y)=$ $\sup \{\mu(C): C \subseteq Y, C$ closed $\}, Y \in \mathcal{B}(K)$.
- δ_{x} - Dirac measure - regular Borel measure.
- $\mu \sim \lambda$ iff $\mu(f)=\lambda(f), f \in \operatorname{Aff}(K)$.
- $\mathcal{B}(K)$ - Borel σ-algebra of K generated by all open subsets of K
- Borel measure μ - regular if $\inf \{\mu(O): Y \subseteq O, O$ open $\}=\mu(Y)=$ $\sup \{\mu(C): C \subseteq Y, C$ closed $\}, Y \in \mathcal{B}(K)$.
- δ_{x} - Dirac measure - regular Borel measure.
- $\mu \sim \lambda$ iff $\mu(f)=\lambda(f), f \in \operatorname{Aff}(K)$.
- $\mu \prec \lambda$ iff $\mu(f) \leq \lambda(f), f \in \operatorname{Con}(K)$,
- $\mathcal{B}(K)$ - Borel σ-algebra of K generated by all open subsets of K
- Borel measure μ - regular if $\inf \{\mu(O): Y \subseteq O, O$ open $\}=\mu(Y)=$ $\sup \{\mu(C): C \subseteq Y, C$ closed $\}, Y \in \mathcal{B}(K)$.
- δ_{x} - Dirac measure - regular Borel measure.
- $\mu \sim \lambda$ iff $\mu(f)=\lambda(f), f \in \operatorname{Aff}(K)$.
- $\mu \prec \lambda$ iff $\mu(f) \leq \lambda(f), f \in \operatorname{Con}(K)$,
- continuous convex functions f on $K-$ $f\left(\alpha x_{1}+(1-\alpha) x_{2}\right) . \leq \alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right):$

States vs Integrals

- $\hat{a}: \mathcal{S}(E) \rightarrow[0,1], \hat{a}(s):=s(a), s \in \mathcal{S}(E)$

States vs Integrals

- $\hat{a}: \mathcal{S}(E) \rightarrow[0,1], \hat{a}(s):=s(a), s \in \mathcal{S}(E)$
- Theorem 0.11 Let E be an effect algebra with RDP and let s be a state on E. Then there is a unique maximal regular Borel probability measure $\mu_{s} \sim \delta_{s}$ on $\mathcal{B}(\mathcal{S}(E)$) such that

$$
s(a)=\int_{\mathcal{S}(E)} \hat{a}(x) \mathrm{d} \mu_{s}(x), \quad a \in E .
$$

Theorem 0.12 Let $E=\Gamma(G, u)$ be an interval effect algebra where (G, u) is a unigroup, and let $\mathcal{S}(E)$ be a simplex. If s is σ-additive, then its unique extension, \hat{s}, on (G, u) is σ-additive.

Theorem 0.13 Let E be an MV-algebra and let s be a state on E. Then there is a unique regular Borel probability measure, μ_{s}, on $\mathcal{B}(\mathcal{S}(E))$ such that $\mu_{s}\left(\partial_{e} \mathcal{S}(E)\right)=1$ and

$$
s(a)=\int_{\partial_{e} \mathcal{S}(E)} \hat{a}(x) \mathrm{d} \mu_{s}(x), \quad a \in E
$$

- Corollary 0.14 Let s be a state on an effect algebra E. There is a regular Borel probability measure, μ_{s}, on the Borel σ-algebra $\mathcal{B}(\mathcal{S}(E))$ such that

$$
s(a)=\int_{\mathcal{S}(E)} \hat{a}(x) \mathrm{d} \mu_{s}(x), \quad a \in E .
$$

- Corollary 0.15 Let s be a state on an effect algebra E. There is a regular Borel probability measure, μ_{s}, on the Borel σ-algebra $\mathcal{B}(\mathcal{S}(E))$ such that

$$
s(a)=\int_{\mathcal{S}(E)} \hat{a}(x) \mathrm{d} \mu_{s}(x), \quad a \in E .
$$

- Kolmogorov $(\Omega, \mathcal{S}, P) P$ - σ-additive probability
- Corollary 0.16 Let s be a state on an effect algebra E. There is a regular Borel probability measure, μ_{s}, on the Borel σ-algebra $\mathcal{B}(\mathcal{S}(E))$ such that

$$
s(a)=\int_{\mathcal{S}(E)} \hat{a}(x) \mathrm{d} \mu_{s}(x), \quad a \in E .
$$

- Kolmogorov $(\Omega, \mathcal{S}, P) P-\sigma$-additive probability
- de Finetti - finitely additive probability

σ-MV-algebras

- M is a σ-MV-algebra if M is σ-lattice.

σ-MV-algebras

- M is a σ-MV-algebra if M is σ-lattice. on $\Omega \neq \emptyset$ is a collection \mathcal{T} of fuzzy sets from $[0,1]^{\Omega}$ such that (i) $1 \in \mathcal{T}$, (ii) if $f \in \mathcal{T}$, then $1-f \in \mathcal{T}$, and (iii) if $\left\{f_{n}\right\}_{n}$ is a sequence from \mathcal{T}, then

$$
\min \left\{\sum_{n=1}^{\infty} f_{n}, 1\right\} \in \mathcal{T} \text {. }
$$

σ-MV-algebras

- M is a σ-MV-algebra if M is σ-lattice. on $\Omega \neq \emptyset$ is a collection \mathcal{T} of fuzzy sets from $[0,1]^{\Omega}$ such that (i) $1 \in \mathcal{T}$, (ii) if $f \in \mathcal{T}$, then $1-f \in \mathcal{T}$, and (iii) if $\left\{f_{n}\right\}_{n}$ is a sequence from \mathcal{T}, then

$$
\min \left\{\sum_{n=1}^{\infty} f_{n}, 1\right\} \in \mathcal{T} \text {. }
$$

$\min \left\{\sum_{n=1}^{\infty} \chi_{A_{n}}, 1\right\}=\chi \cup_{n} A_{n}$.

σ-MV-algebras

- M is a σ-MV-algebra if M is σ-lattice. on $\Omega \neq \emptyset$ is a collection \mathcal{T} of fuzzy sets from $[0,1]^{\Omega}$ such that (i) $1 \in \mathcal{T}$, (ii) if $f \in \mathcal{T}$, then $1-f \in \mathcal{T}$, and (iii) if $\left\{f_{n}\right\}_{n}$ is a sequence from \mathcal{T}, then

$$
\min \left\{\sum_{n=1}^{\infty} f_{n}, 1\right\} \in \mathcal{T} \text {. }
$$

$\min \left\{\sum_{n=1}^{\infty} \chi_{A_{n}}, 1\right\}=\chi \mathrm{U}_{n} A_{n}$.

- tribe is a σ-MV-algebra.

Monotone σ-complete EAs

- PEA E is monotone σ-complete provided that every ascending sequence $x_{1} \leqslant x_{2} \leqslant \cdots$ of elements in E has a supremum $x=\bigvee_{n} x_{n}$.

Monotone σ-complete EAs

- PEA E is monotone σ-complete provided that every ascending sequence $x_{1} \leqslant x_{2} \leqslant \cdots$ of elements in E has a supremum $x=\bigvee_{n} x_{n}$.
- A tribe is a collection $\mathcal{T} \subseteq[0,1]^{\Omega}$ s.t. (i) $1 \in \mathcal{T}$, (ii) if $f \in \mathcal{T}$, then $1-f \in \mathcal{T}$, and (iii) if $\left\{f_{n}\right\}$ is a sequence from \mathcal{T}, then $\min \left\{\sum_{n=1}^{\infty} f_{n}, 1\right\} \in \mathcal{T}$.

Monotone σ-complete EAs

- PEA E is monotone σ-complete provided that every ascending sequence $x_{1} \leqslant x_{2} \leqslant \cdots$ of elements in E has a supremum $x=\bigvee_{n} x_{n}$.
- A tribe is a collection $\mathcal{T} \subseteq[0,1]^{\Omega}$ s.t. (i) $1 \in \mathcal{T}$, (ii) if $f \in \mathcal{T}$, then $1-f \in \mathcal{T}$, and (iii) if $\left\{f_{n}\right\}$ is a sequence from \mathcal{T}, then $\min \left\{\sum_{n=1}^{\infty} f_{n}, 1\right\} \in \mathcal{T}$.
- $\mathcal{E}(H)$ is isomorphic to an effect-tribe: $\mathcal{E}(H)$ no RDP

Monotone σ-complete EAs

- PEA E is monotone σ-complete provided that every ascending sequence $x_{1} \leqslant x_{2} \leqslant \cdots$ of elements in E has a supremum $x=\bigvee_{n} x_{n}$.
- A tribe is a collection $\mathcal{T} \subseteq[0,1]^{\Omega}$ s.t. (i) $1 \in \mathcal{T}$, (ii) if $f \in \mathcal{T}$, then $1-f \in \mathcal{T}$, and (iii) if $\left\{f_{n}\right\}$ is a sequence from \mathcal{T}, then $\min \left\{\sum_{n=1}^{\infty} f_{n}, 1\right\} \in \mathcal{T}$.
- $\mathcal{E}(H)$ is isomorphic to an effect-tribe: $\mathcal{E}(H)$ no RDP
- $\Omega(H)=\{\phi \in H:\|\phi\|=1\}, A \in \mathcal{E}(H)$,
$\mu_{A}(\phi):=(A \phi, \phi), \phi \in \Omega(H)$.
$\mathcal{T}(H)=\left\{\mu_{A}: A \in \mathcal{E}(H \cdot)\right\} \cdot \cdot$

Loomis-Sikorski theorems

Theorem 0.17 Every σ-MV-algebra is a σ-homomorphic image of a tribe of fuzzy sets.

Loomis-Sikorski theorems

Theorem 0.19 Every σ-MV-algebra is a σ-homomorphic image of a tribe of fuzzy sets.

- Theorem 0.20 For every monotone σ-complete effect algebra E with RDP, there are a nonempty set Ω, an effect-tribe $\mathcal{T} \subseteq[0,1]^{\Omega}$ with RDP, and a σ-homomorphism h from \mathcal{T} onto E.

New Trends

New Trends

- We don't assume that + has to be commutative

New Trends

- We don't assume that + has to be commutative
- pseudo MV-algebras, pseudo effect algebras

New Trends

- We don't assume that + has to be commutative
- pseudo MV-algebras, pseudo effect algebras
- (non-Abelian) po-groups, ℓ-groups

GMV-algebras

GMV-algebras

- Georgescu and lorgulescu [Gelo] (pseudo MV-algebras), Rachunek [Rac] (generalized MV-algebras) - 1999

GMV-algebras

- Georgescu and lorgulescu [Gelo] (pseudo MV-algebras), Rachunek [Rac] (generalized MV-algebras) - 1999
- PMV-algebra or GMV-algebra is an algebra $(M ; \oplus,-, \sim, 0,1)$ of type $(2,1,1,0,0)$ with an additional binary operation \odot defined via

$$
y \odot x=\left(x^{-} \oplus y^{-}\right)^{\sim}
$$

(A1) $x \oplus(y \oplus z)=(x \oplus y) \oplus z$;
(A2) $x \oplus 0=0 \oplus x=x$;
(A3) $x \oplus 1=1 \oplus x=1$;
(A4) $1^{\sim}=0 ; 1^{-}=0$;
(A5) $\left(x^{-} \oplus y^{-}\right)^{\sim}=\left(x^{\sim} \oplus y^{\sim}\right)^{-}$;
(A6) $x \oplus\left(x^{\sim} \odot y\right)=y \oplus\left(y^{\sim} \odot x\right)=\left(x \odot y^{-}\right) \oplus y=$ $\left(y \odot x^{-}\right) \oplus x$
(A7) $x \odot\left(x^{-} \oplus y\right)=\left(x \oplus y^{\sim}\right) \odot y$;
(A8) $\left(x^{-}\right)^{\sim}=x$.

$$
x \leq y \quad \text { iff } \quad x^{-} \oplus y=1
$$

$$
x \leq y \quad \text { iff } \quad x^{-} \oplus y=1
$$

- M - distributive lattice

$$
x \leq y \quad \text { iff } \quad x^{-} \oplus y=1
$$

- M - distributive lattice
- $x \vee y=x \oplus\left(x^{\sim} \odot y\right)$ and $x \wedge y=x \odot\left(x^{-} \oplus y\right)$.

$$
x \leq y \quad \text { iff } \quad x^{-} \oplus y=1
$$

- M - distributive lattice
- $x \vee y=x \oplus\left(x^{\sim} \odot y\right)$ and $x \wedge y=x \odot\left(x^{-} \oplus y\right)$.
- GMV-algebra M is an MV-algebra iff $x \oplus y=y \oplus x$ for all $x, y \in M$.

(G, u) unital ℓ-group, u strong unit

(G, u) unital ℓ-group, u strong unit

$$
\Gamma(G, u):=[0, u]
$$

(G, u) unital ℓ-group, u strong unit

$$
\begin{aligned}
& \Gamma(G, u):=[0, u] \\
& x \oplus y:=(x+y) \wedge u, \\
& x^{-}:=u-x, \\
& x^{\sim}:=-x+u, \\
& x \odot y:=(x-u+y) \vee 0,
\end{aligned}
$$

(G, u) unital ℓ-group, u strong unit

$$
\begin{aligned}
& \Gamma(G, u):=[0, u] \\
& x \oplus y:=(x+y) \wedge u, \\
& x^{-}:=u-x, \\
& x^{\sim}:=-x+u, \\
& x \odot y:=(x-u+y) \vee 0,
\end{aligned}
$$

$\left(\Gamma(G, u) ; \oplus,-{ }^{\sim}, 0, u\right)$ is a GMV-algebra.

Theorem 0.21 [Dvu 2002] For any GMV-algebra M, there exists a unique (up to isomorphism) unital ℓ-group G with a strong unit u such that $M \cong \Gamma(G, u)$.
The functor Γ defines a categorical equivalence between the category of GMV-algebras and the category of unital l-groups.

Theorem 0.22 [Dvu 2002] For any GMV-algebra M, there exists a unique (up to isomorphism) unital ℓ-group G with a strong unit u such that $M \cong \Gamma(G, u)$.
The functor Γ defines a categorical equivalence between the category of GMV-algebras and the category of unital l-groups.

- $\Gamma(\mathbb{Z} \overrightarrow{\times} G,(1,0))$ - GMV-algebra such that $x^{\sim}=x^{-}$(symmetric) but not necessarily MV-algebra
- Let u be the translation $u(t)=t+1, t \in \mathbb{R}$,
$\operatorname{BAut}(\mathbb{R})=\left\{g \in \operatorname{Aut}(\mathbb{R}): \exists n \in \mathbb{N}, u^{-n} \leq g \leq u^{n}\right\}$.
Then $\Gamma(\operatorname{BAut}(\mathbb{R}), u))$ is stateless - it is a generator of the variety GMV-algebras
- Let u be the translation $u(t)=t+1, t \in \mathbb{R}$,
$\operatorname{BAut}(\mathbb{R})=\left\{g \in \operatorname{Aut}(\mathbb{R}): \exists n \in \mathbb{N}, u^{-n} \leq g \leq u^{n}\right\}$.
Then $\Gamma(\operatorname{BAut}(\mathbb{R}), u))$ is stateless - it is a generator of the variety GMV-algebras
- Komori: The lattice of varieties of MV-algebras is countable
- Let u be the translation $u(t)=t+1, t \in \mathbb{R}$,
$\operatorname{BAut}(\mathbb{R})=\left\{g \in \operatorname{Aut}(\mathbb{R}): \exists n \in \mathbb{N}, u^{-n} \leq g \leq u^{n}\right\}$.
Then $\Gamma(\operatorname{BAut}(\mathbb{R}), u))$ is stateless - it is a generator of the variety GMV-algebras
- Komori: The lattice of varieties of MV-algebras is countable
- The lattice of varieties of GMV-algebras is uncountable

Pseudo Effect Algebras

- AD+ Vetterlein- noncommutative generalization of EAs

Pseudo Effect Algebras

- AD+ Vetterlein- noncommutative generalization of EAs
- $a+b$ and $(a+b)+c$ exist if and only if $b+c$ and $a+(b+c)$ exist, and in this case, $(a+b)+c=a+(b+c)$.

Pscudo Effect Algebras

- AD+ Vetterlein- noncommutative generalization of EAs
- $a+b$ and $(a+b)+c$ exist if and only if $b+c$ and $a+(b+c)$ exist, and in this case, $(a+b)+c=a+(b+c)$.
- If $a+b$ exists, there are elements $d, e \in E$ such that $a+b=d+a=b+e$.

Pseudo Effect Algebras

- AD+ Vetterlein- noncommutative generalization of EAs
- $a+b$ and $(a+b)+c$ exist if and only if $b+c$ and $a+(b+c)$ exist, and in this case, $(a+b)+c=a+(b+c)$.
- If $a+b$ exists, there are elements $d, e \in E$ such that $a+b=d+a=b+e$.
- If $a+b$ and $a+c$ exist and are equal, then $b=c$. If $b+a$ and $c+a$ exist and are equal, then $b=c$.

Pseudo Effect Algebras

- AD+ Vetterlein- noncommutative generalization of EAs
- $a+b$ and $(a+b)+c$ exist if and only if $b+c$ and $a+(b+c)$ exist, and in this case, $(a+b)+c=a+(b+c)$.
- If $a+b$ exists, there are elements $d, e \in E$ such that $a+b=d+a=b+e$.
- If $a+b$ and $a+c$ exist and are equal, then $b=c$. If $b+a$ and $c+a$ exist and are equal, then $b=c$.
- If $a+b$ exists and $a+b=0$, then $a=b=0$.
- $a+0$ and $0+a$ exist and both are equal to a.
- $a+0$ and $0+a$ exist and both are equal to a.
- $a \leqslant b$ iff $\exists c \in E$ such that $a+c=b$.
- $a+0$ and $0+a$ exist and both are equal to a.
- $a \leqslant b$ iff $\exists c \in E$ such that $a+c=b$.
- PEA is an EA iff + is commutative
- $a+0$ and $0+a$ exist and both are equal to a.
- $a \leqslant b$ iff $\exists c \in E$ such that $a+c=b$.
- PEA is an EA iff + is commutative
- RDP: $a_{1}+a_{2}=b_{1}+b_{2}$, there are four elements $c_{11}, c_{12}, c_{21}, c_{22}$ such that $a_{1}=c_{11}+c_{12}$, $a_{2}=c_{21}+c_{22}, b_{1}=c_{11}+c_{21}$, and $b_{2}=c_{21}+c_{22}$.
- $a+0$ and $0+a$ exist and both are equal to a.
- $a \leqslant b$ iff $\exists c \in E$ such that $a+c=b$.
- PEA is an EA iff + is commutative
- RDP: $a_{1}+a_{2}=b_{1}+b_{2}$, there are four elements $c_{11}, c_{12}, c_{21}, c_{22}$ such that $a_{1}=c_{11}+c_{12}$, $a_{2}=c_{21}+c_{22}, b_{1}=c_{11}+c_{21}$, and $b_{2}=c_{21}+c_{22}$.
- (RDP) $)_{1}$ RDP $+x \leqslant c_{12}$ and $y \leqslant c_{21}$, we have $x+y, y+x$ exists in E and $x+y=y+x$,
- $\mathrm{RDP}_{2}: \mathrm{RDP}+d_{2} \wedge d_{3}=0$ - pseudo MV-algebra
- $\mathrm{RDP}_{2}: \mathrm{RDP}+d_{2} \wedge d_{3}=0-$ pseudo MV-algebra
- (G,u) - unital po-group not necessarily Abelian
- $\mathrm{RDP}_{2}: \mathrm{RDP}+d_{2} \wedge d_{3}=0-$ pseudo MV-algebra
- (G, u) - unital po-group not necessarily Abelian
- AD+Vetterlein: The category of pseudo effect algebras with RDP $_{1}$ is categorically equivalent with the category of unital po-group with RDP $_{1}$

States on PEAs

- Theorem 0.23 If E is a pseudo effect algebra with (RDP), then either $\mathcal{S}(E)$ is empty or it is a nonempty Choquet simplex. If, in addition, E satisfies (RDP) $)_{2}$, then either $\mathcal{S}(E)$ is empty or it is a nonempty Bauer simplex.

States on PEAs

- Theorem 0.24 If E is a pseudo effect algebra with (RDP), then either $\mathcal{S}(E)$ is empty or it is a nonempty Choquet simplex.
If, in addition, E satisfies (RDP) $)_{2}$, then either $\mathcal{S}(E)$ is empty or it is a nonempty Bauer simplex.
- Extremal states for GMV-algebras similar as those for MV-algebras

States on PEAs

- Theorem 0.25 If E is a pseudo effect algebra with (RDP), then either $\mathcal{S}(E)$ is empty or it is a nonempty Choquet simplex.
If, in addition, E satisfies (RDP) ${ }_{2}$, then either $\mathcal{S}(E)$ is empty or it is a nonempty Bauer simplex.
- Extremal states for GMV-algebras similar as those for MV-algebras
- Representation of states by integral as those for states on EAs

