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Uncertainty

• uncertainty in a common life
• emperor, fortuna teller, Sybile, Delft
• hazard game, New Testament
• playing cards, urn games, intuitive probability,

combinations, variations, permutations
with/without ordering

• false tie
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Kolmogorov, probability theory, 1933

• (Ω,S, P ), Ω 6= ∅, S σ-algebra (i) Ω ∈ S, (ii)
A ∈ S, then Ω \ A ∈ S, (iii) An ∈ S, n ≥ 1,
then

⋃∞
n=1An ∈ S.
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Kolmogorov, probability theory, 1933

• (Ω,S, P ), Ω 6= ∅, S σ-algebra (i) Ω ∈ S, (ii)
A ∈ S, then Ω \ A ∈ S, (iii) An ∈ S, n ≥ 1,
then

⋃∞
n=1An ∈ S.

• P : S → [0, 1] (i) P (Ω) = 1, (ii)
P (
⋃

nAn) =
∑

n P (An), Ai ∩ Aj = ∅, i 6= j.

• δω(A) = 1 iff ω ∈ A otherwise = 0

• the set probability measures P(S) 6= ∅

• observable: f : Ω → R, s.t. f−1(E) ∈ S,
E ∈ B(R) - measurable
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• the mapping x(E) := f−1(E) : B(R) → S is a
σ-homomorphism preserving ∅, x(R) = Ω,
complements, and countable unions.
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• the mapping x(E) := f−1(E) : B(R) → S is a
σ-homomorphism preserving ∅, x(R) = Ω,
complements, and countable unions.

• Conversely; for every σ-homomorphism
x : B(R) → S ∃ ! measureblae function f

• xt := x((−∞, t), t ∈ R

• r1, r2, . . .

•

f(ω) =

{

inf{rj : ω ∈ xrj} if ω ∈
⋃

nAn,

0 if ω /∈
⋃

nAn.
Quantum Structures I-III – p. 4



Quantum Mechanics

Quantum Structures I-III – p. 5



Quantum Mechanics

• new physics, beginning 20th century

Quantum Structures I-III – p. 5



Quantum Mechanics

• new physics, beginning 20th century
• Newton mechanics fails in the micro world

Quantum Structures I-III – p. 5



Quantum Mechanics

• new physics, beginning 20th century
• Newton mechanics fails in the micro world
• Heisenberg Uncertainty Principle

Quantum Structures I-III – p. 5



Quantum Mechanics

• new physics, beginning 20th century
• Newton mechanics fails in the micro world
• Heisenberg Uncertainty Principle

σs(x)σs(y) ≥ ~ > 0.

Quantum Structures I-III – p. 5



Quantum Mechanics

• new physics, beginning 20th century
• Newton mechanics fails in the micro world
• Heisenberg Uncertainty Principle

σs(x)σs(y) ≥ ~ > 0.

x-momentum, y position of elementary
particle, s state -probability measure

Quantum Structures I-III – p. 5



Quantum Mechanics

• new physics, beginning 20th century
• Newton mechanics fails in the micro world
• Heisenberg Uncertainty Principle

σs(x)σs(y) ≥ ~ > 0.

x-momentum, y position of elementary
particle, s state -probability measure

• for classical mechanics

inf
s
(σs(x)σs(y)) = 0.
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• Hilbert, 1900, inspired by the axiomatical
system of geometry by Euclideus, formulated
his Sixth Problem as follows:
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• Hilbert, 1900, inspired by the axiomatical
system of geometry by Euclideus, formulated
his Sixth Problem as follows:

• To find a few physical axioms that, similar to the axioms
of geometry, can describe a theory for a class of
physical events that is as large as possible.

• G. Birkhoff and J. von Neumann, 1936
quantum logic

Quantum Structures I-III – p. 6



Algebra of Sets:A ⊆ 2Ω

Quantum Structures I-III – p. 7



Algebra of Sets:A ⊆ 2Ω

• Ω ∈ A, A ∈ A, if then Ω \ A ∈ S,

• A,B ∈ A, then A ∪B ∈ S.

Quantum Structures I-III – p. 7



Algebra of Sets:A ⊆ 2Ω

• Ω ∈ A, A ∈ A, if then Ω \ A ∈ S,

• A,B ∈ A, then A ∪B ∈ S.
• Finitely additive probability P : A → [0, 1] (i)
P (Ω) = 1, (ii) P (A ∪B) = P (A) + P (B),
A ∩B = ∅

Quantum Structures I-III – p. 7



Algebra of Sets:A ⊆ 2Ω

• Ω ∈ A, A ∈ A, if then Ω \ A ∈ S,

• A,B ∈ A, then A ∪B ∈ S.
• Finitely additive probability P : A → [0, 1] (i)
P (Ω) = 1, (ii) P (A ∪B) = P (A) + P (B),
A ∩B = ∅

• Pω, Dirac measure ω ∈ Ω

Quantum Structures I-III – p. 7



Algebra of Sets:A ⊆ 2Ω

• Ω ∈ A, A ∈ A, if then Ω \ A ∈ S,

• A,B ∈ A, then A ∪B ∈ S.
• Finitely additive probability P : A → [0, 1] (i)
P (Ω) = 1, (ii) P (A ∪B) = P (A) + P (B),
A ∩B = ∅

• Pω, Dirac measure ω ∈ Ω

• Ω -infinite set, A the set of finite/cofinite
subsets P (A) = 0 if A finite, P (A) = 1 if A
infinite

Quantum Structures I-III – p. 7



Algebra of Sets:A ⊆ 2Ω

• Ω ∈ A, A ∈ A, if then Ω \ A ∈ S,

• A,B ∈ A, then A ∪B ∈ S.
• Finitely additive probability P : A → [0, 1] (i)
P (Ω) = 1, (ii) P (A ∪B) = P (A) + P (B),
A ∩B = ∅

• Pω, Dirac measure ω ∈ Ω

• Ω -infinite set, A the set of finite/cofinite
subsets P (A) = 0 if A finite, P (A) = 1 if A
infinite

• S(A), convex P1, P2 ∈ S(A), λ ∈ [0, 1], then
P = λP1 + (1− λ)P2 ∈ S(A). Quantum Structures I-III – p. 7



Algebra of Sets:A ⊆ 2Ω

• Ω ∈ A, A ∈ A, if then Ω \ A ∈ S,

• A,B ∈ A, then A ∪B ∈ S.
• Finitely additive probability P : A → [0, 1] (i)
P (Ω) = 1, (ii) P (A ∪B) = P (A) + P (B),
A ∩B = ∅

• Pω, Dirac measure ω ∈ Ω

• Ω -infinite set, A the set of finite/cofinite
subsets P (A) = 0 if A finite, P (A) = 1 if A
infinite

• S(A), convex P1, P2 ∈ S(A), λ ∈ [0, 1], then
P = λP1 + (1− λ)P2 ∈ S(A). Quantum Structures I-III – p. 7



Boolean Algebras

A system A = (A;∨,∧,′ , 0, 1) is a Boolean algebra
if type (2, 2, 1, 0, 0) if for all a, b, c ∈ A we have

1. a ∨ b = b ∨ a, a ∧ b = b ∧ a (commutativity)

2. (a ∨ b) ∨ c = a ∨ (b ∨ c), (a ∧ b) ∧ c = a ∧ (b ∧ c)
(associativity)

3. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (distributivity)

4. a ∨ a′ = 1, a ∧ a′ = 0

5. a ∧ 1 = a = a ∨ 0
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partial ordering

on A, ≤: (i) a ≤ a, (ii) a ≤ b, b ≤ a then a = b, (iii)
a ≤ b, b ≤ c, a ≤ c
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partial ordering

on A, ≤: (i) a ≤ a, (ii) a ≤ b, b ≤ a then a = b, (iii)
a ≤ b, b ≤ c, a ≤ c

• We define a ≤ b ⇔ a = a ∧ b

• ≤ partial ordering on A, (i) 0 ≤ a ≤ 1. (ii)
c = a ∧ b iff c ≤ a, b, and if d ≤ a, b, then d ≤ c
(greatest lower bound)

• e = a ∨ b iff a, b ≤ e, if a, b ≤ f , then e ≤ f
(least upper bound)

• A is a distributive lattice
• (a ∨ b)′ = a′ ∧ b′, (a ∧ b)′ = a′ ∨ b′ (De Morgan )
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• S, where ∧ = ∩, ∨ = ∪, ′= set complement,
0 = ∅, 1 = Ω.
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Examples

•• S, where ∧ = ∩, ∨ = ∪, ′= set complement,
0 = ∅, 1 = Ω.

• Let Ω-topological space, A- the set of all
clopen subsets.
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Stone Theorem

• state S(A) 6= ∅ ?
• two-valued state=extremal state;
s = λs1 + (1− λ)s2 for λ ∈ (0, 1) then
s = s1 = s2. Ext(A) - extremal states 6= ∅

• state s is extremal iff Ker(s) =
{a ∈ A : s(a) = 0} is a maximal ideal

• a net sα → s iff sα(a) → s(a) for any a ∈ A;
S(A) and Ext(A) are compact Hausdorff
topological spaces.

• a topological space Ω is totally disconnected if
there exists a base consisting of clopen sets.
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Theorem 0.1 (Stone Theorem) Every Boolean
algebra A = (A;∨,∧,′ , 0, 1) is isomorphic to the
Boolean algebra of clopen subsets of a compact,
totally disconnected Hausdorff topological space
(= Stone space).
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Booleanσ-algebras

• Boolean σ-algebra ∀ {an}, there is
∨∞

n=1 an
(also

∧∞
n=1 an). That is a =

∨

n an iff a ≥ an for
any n and if b ≥ an for any n, then b ≥ a.
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• Boolean σ-algebra ∀ {an}, there is
∨∞

n=1 an
(also

∧∞
n=1 an). That is a =

∨

n an iff a ≥ an for
any n and if b ≥ an for any n, then b ≥ a.

Theorem 0.3 (Loomis-Sikorski) Every
Boolean σ-algebra is a σ-homomorphic
image of a σ-algebra of sets.
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Booleanσ-algebras

• Boolean σ-algebra ∀ {an}, there is
∨∞

n=1 an
(also

∧∞
n=1 an). That is a =

∨

n an iff a ≥ an for
any n and if b ≥ an for any n, then b ≥ a.

Theorem 0.4 (Loomis-Sikorski) Every
Boolean σ-algebra is a σ-homomorphic
image of a σ-algebra of sets.

Sketch of the proof:
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• Let A be a Boolean σ-algebra and let A be
the algebra of the clopen sets of Ω = MaxI(I).
For a ∈ A, let h(A) = a. If {an} and {An}, then
if a =

∨

n an and h(a) = A, we have
A ⊇

⋃

nAn, and A \
⋃

nAn is a meager set.

Quantum Structures I-III – p. 14



• Let A be a Boolean σ-algebra and let A be
the algebra of the clopen sets of Ω = MaxI(I).
For a ∈ A, let h(A) = a. If {an} and {An}, then
if a =

∨

n an and h(a) = A, we have
A ⊇

⋃

nAn, and A \
⋃

nAn is a meager set.

• S σ-algebra of subsets of Ω generated by A

Quantum Structures I-III – p. 14



• Let A be a Boolean σ-algebra and let A be
the algebra of the clopen sets of Ω = MaxI(I).
For a ∈ A, let h(A) = a. If {an} and {An}, then
if a =

∨

n an and h(a) = A, we have
A ⊇

⋃

nAn, and A \
⋃

nAn is a meager set.

• S σ-algebra of subsets of Ω generated by A

• S ′ the set of A ∈ S such that there is b ∈ A
such that A and the representation of b in A
differs on a meager set.

Quantum Structures I-III – p. 14



• Let A be a Boolean σ-algebra and let A be
the algebra of the clopen sets of Ω = MaxI(I).
For a ∈ A, let h(A) = a. If {an} and {An}, then
if a =

∨

n an and h(a) = A, we have
A ⊇

⋃

nAn, and A \
⋃

nAn is a meager set.

• S σ-algebra of subsets of Ω generated by A

• S ′ the set of A ∈ S such that there is b ∈ A
such that A and the representation of b in A
differs on a meager set.

• ĥ is a σ-homomorphism of S onto A.
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• Every Boolean algebra has lot of states,
determining system of states
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• Every Boolean algebra has lot of states,
determining system of states

• there is a Boolean σ-algebra having plenty
finitely additive states but no σ-additive state.

• Connection with basically disconnected
spaces:

• X is said to be basically disconnected provided
the closure of every open Fσ subset of X is
open.
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Quantum Structures

1. orthomodular poset L = (L;≤,⊥ , 0, 1) and a
unary operation ⊥, called an
orthocomplementation such that, for all
a, b ∈ L, we have
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unary operation ⊥, called an
orthocomplementation such that, for all
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Quantum Structures
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Quantum Structures

1. orthomodular poset L = (L;≤,⊥ , 0, 1) and a
unary operation ⊥, called an
orthocomplementation such that, for all
a, b ∈ L, we have

(i) a⊥⊥ = a;

(ii) b⊥ ≤ a⊥ whenever a ≤ b;

(iii) a ∨ a⊥ = 1;

(iv) a ∨ b ∈ L whenever a ≤ b⊥;

(v) b = a∨ (b ∧ a⊥) whenever a ≤ b (orthomodular
law).
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• H- Hilbert space,

L(H) = {M ⊆ H : M−closed subspace of H}

M ∧N = M ∩N, M ∨N,

M⊥ = {x ∈ H : x ⊥ y,∀y ∈ M}

Quantum Structures I-III – p. 17



• H- Hilbert space,

L(H) = {M ⊆ H : M−closed subspace of H}

M ∧N = M ∩N, M ∨N,

M⊥ = {x ∈ H : x ⊥ y,∀y ∈ M}

• L(H) complete orthomodular lattice

Quantum Structures I-III – p. 17



• H- Hilbert space,

L(H) = {M ⊆ H : M−closed subspace of H}

M ∧N = M ∩N, M ∨N,

M⊥ = {x ∈ H : x ⊥ y,∀y ∈ M}

• L(H) complete orthomodular lattice
• state

sx(M) =‖ xM ‖2, x = xM + xM⊥.

Quantum Structures I-III – p. 17



• H- Hilbert space,

L(H) = {M ⊆ H : M−closed subspace of H}

M ∧N = M ∩N, M ∨N,

M⊥ = {x ∈ H : x ⊥ y,∀y ∈ M}

• L(H) complete orthomodular lattice
• state

sx(M) =‖ xM ‖2, x = xM + xM⊥.

• Gleason’s Theorem, 2 < dimH ≤ ℵ0

∑
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• S-prehilbert space

E(S) = {M ⊆ S : M +M⊥ = S}

F (S) = {M ⊆ S : M⊥⊥ = M}
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Compatibility

• orthomodular poset L is not necessarily
distributive
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Compatibility

• orthomodular poset L is not necessarily
distributive

• it is distributive iff L is a Boolean algebra

• a and b are orthogonal, a ⊥ b, if a ≤ b⊥

• a and b are compatible, a ↔ b, if there are
three mutually orthogonal elements a1, b1, c
such that a = a1 ∨ c and b = b1 ∨ c
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Compatibility

• orthomodular poset L is not necessarily
distributive

• it is distributive iff L is a Boolean algebra

• a and b are orthogonal, a ⊥ b, if a ≤ b⊥

• a and b are compatible, a ↔ b, if there are
three mutually orthogonal elements a1, b1, c
such that a = a1 ∨ c and b = b1 ∨ c

• given a system of mutually orthogonal
elements, there is a maximal system of
mutually orthogonal elements of L - it is a
Boolean algebra
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• Every orthomodular poset can be covered by
a system of Boolean algebras
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• Every orthomodular poset can be covered by
a system of Boolean algebras

• Greechie diagrams - pasting of Boolean
algebras
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a system of Boolean algebras

• Greechie diagrams - pasting of Boolean
algebras

• observable: x : B(R) → L, L (σ-complete
OML
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• Every orthomodular poset can be covered by
a system of Boolean algebras

• Greechie diagrams - pasting of Boolean
algebras

• observable: x : B(R) → L, L (σ-complete
OML

• x(R) = 1, x(R \ E) = x(E)⊥,
x(
⋃

nEn) =
∨

n x(En), R(x)-range
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• Every orthomodular poset can be covered by
a system of Boolean algebras

• Greechie diagrams - pasting of Boolean
algebras

• observable: x : B(R) → L, L (σ-complete
OML

• x(R) = 1, x(R \ E) = x(E)⊥,
x(
⋃

nEn) =
∨

n x(En), R(x)-range

• two observable x and y are compatible iff
x(E) ↔ y(F ), E, F ∈ B(R).
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• s -state, x-observable, sx(E) := s(x(E))
probability measure of x
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• s -state, x-observable, sx(E) := s(x(E))
probability measure of x

• s(x) =
∫

R
tdsx(t) - mean value
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• s -state, x-observable, sx(E) := s(x(E))
probability measure of x

• s(x) =
∫

R
tdsx(t) - mean value

• f - Borel function, f(x)(E) := x(f−1(E)),
E ∈ B(R)
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• s -state, x-observable, sx(E) := s(x(E))
probability measure of x

• s(x) =
∫

R
tdsx(t) - mean value

• f - Borel function, f(x)(E) := x(f−1(E)),
E ∈ B(R)

• s(f(x)) =
∫

R
f(t)dsx(t)
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• s -state, x-observable, sx(E) := s(x(E))
probability measure of x

• s(x) =
∫

R
tdsx(t) - mean value

• f - Borel function, f(x)(E) := x(f−1(E)),
E ∈ B(R)

• s(f(x)) =
∫

R
f(t)dsx(t)

• σ(x) =
⋂

{C : C closed, x(C) = 1} spectrum
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• s -state, x-observable, sx(E) := s(x(E))
probability measure of x

• s(x) =
∫

R
tdsx(t) - mean value

• f - Borel function, f(x)(E) := x(f−1(E)),
E ∈ B(R)

• s(f(x)) =
∫

R
f(t)dsx(t)

• σ(x) =
⋂

{C : C closed, x(C) = 1} spectrum

• x bounded if σ(x) - compact set
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• a1 := a, a0 = a⊥
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• a1 := a, a0 = a⊥

• com(a1, a2, . . . , an) =
∨

({aj11 ∧ · · · ∧ ajnn ) :
j1, . . . , jn ∈ {0, 1}) commutator
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• a1 := a, a0 = a⊥

• com(a1, a2, . . . , an) =
∨

({aj11 ∧ · · · ∧ ajnn ) :
j1, . . . , jn ∈ {0, 1}) commutator

• com(x, y) =
∧

{com(a1, . . . , an) : a1, . . . , an ∈
R(x)∪R(y), n ≥ 1} =0, = 1, strictly between 0
and 1
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• a1 := a, a0 = a⊥

• com(a1, a2, . . . , an) =
∨

({aj11 ∧ · · · ∧ ajnn ) :
j1, . . . , jn ∈ {0, 1}) commutator

• com(x, y) =
∧

{com(a1, . . . , an) : a1, . . . , an ∈
R(x)∪R(y), n ≥ 1} =0, = 1, strictly between 0
and 1

• x, y are compatible iff com(x, y) = 1, totally
incompatible if com(x, y) = 0, partially
compatible iff 0 6= com(x, y) 6= 1
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• a1 := a, a0 = a⊥

• com(a1, a2, . . . , an) =
∨

({aj11 ∧ · · · ∧ ajnn ) :
j1, . . . , jn ∈ {0, 1}) commutator

• com(x, y) =
∧

{com(a1, . . . , an) : a1, . . . , an ∈
R(x)∪R(y), n ≥ 1} =0, = 1, strictly between 0
and 1

• x, y are compatible iff com(x, y) = 1, totally
incompatible if com(x, y) = 0, partially
compatible iff 0 6= com(x, y) 6= 1

• s state σ-additive state
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• joint distribution of x, y in a state s:
m : B(R2) → [0, 1] s.t.
m(E × F ) = s(x(E) ∧ y(F )) E,F ∈ B(R)
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• joint distribution of x, y in a state s:
m : B(R2) → [0, 1] s.t.
m(E × F ) = s(x(E) ∧ y(F )) E,F ∈ B(R)

• joint distribution of x, y exists in a state s iff
s(com(x, y)) = 1
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• joint distribution of x, y in a state s:
m : B(R2) → [0, 1] s.t.
m(E × F ) = s(x(E) ∧ y(F )) E,F ∈ B(R)

• joint distribution of x, y exists in a state s iff
s(com(x, y)) = 1

• L(H), A ↔ B iff PAPB = PBPA

Quantum Structures I-III – p. 23



• joint distribution of x, y in a state s:
m : B(R2) → [0, 1] s.t.
m(E × F ) = s(x(E) ∧ y(F )) E,F ∈ B(R)

• joint distribution of x, y exists in a state s iff
s(com(x, y)) = 1

• L(H), A ↔ B iff PAPB = PBPA

• observable forL(H) - spectral measure,
corresponds to Hermitian operators (bounded
observable) or self-adjoint operators
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• joint distribution of x, y in a state s:
m : B(R2) → [0, 1] s.t.
m(E × F ) = s(x(E) ∧ y(F )) E,F ∈ B(R)

• joint distribution of x, y exists in a state s iff
s(com(x, y)) = 1

• L(H), A ↔ B iff PAPB = PBPA

• observable forL(H) - spectral measure,
corresponds to Hermitian operators (bounded
observable) or self-adjoint operators

• A,B hermitian operators are compatible iff
AB = BA

Quantum Structures I-III – p. 23



States and Greechie Diagrams

• s : L → [0, 1] is a state if s(1) = 1 and
s(a ∨ b) = s(a) + s(b) if a ⊥ b.
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States and Greechie Diagrams

• s : L → [0, 1] is a state if s(1) = 1 and
s(a ∨ b) = s(a) + s(b) if a ⊥ b.

• S(L) is it nonempty ?
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States and Greechie Diagrams

• s : L → [0, 1] is a state if s(1) = 1 and
s(a ∨ b) = s(a) + s(b) if a ⊥ b.

• S(L) is it nonempty ?
• B - the system of finite Boolean algebras s.t.

if A 6= B then A ∩B = {0, 1} or
A ∩B = {0, x, x⊥, 1} x - atom, is said to be
almost disjoint
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• s : L → [0, 1] is a state if s(1) = 1 and
s(a ∨ b) = s(a) + s(b) if a ⊥ b.

• S(L) is it nonempty ?
• B - the system of finite Boolean algebras s.t.

if A 6= B then A ∩B = {0, 1} or
A ∩B = {0, x, x⊥, 1} x - atom, is said to be
almost disjoint

• finite sequence {B0, . . . , Bn−1} from B is a
loop of order n (n ≥ 3) if
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States and Greechie Diagrams

• s : L → [0, 1] is a state if s(1) = 1 and
s(a ∨ b) = s(a) + s(b) if a ⊥ b.

• S(L) is it nonempty ?
• B - the system of finite Boolean algebras s.t.

if A 6= B then A ∩B = {0, 1} or
A ∩B = {0, x, x⊥, 1} x - atom, is said to be
almost disjoint

• finite sequence {B0, . . . , Bn−1} from B is a
loop of order n (n ≥ 3) if

• (i) ∀ i ∈ {0, 1, . . . , n− 1} we have
Bi ∩ Bi+1 = {0, 1, x, x⊥} x atom in both BAs
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• (ii) if j /∈ {i− 1, i, i + 1}, Bi ∩ Bj = {0, 1}
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• (ii) if j /∈ {i− 1, i, i + 1}, Bi ∩ Bj = {0, 1}

• Bi ∩ Bj ∩Bk = {0, 1, }
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• (ii) if j /∈ {i− 1, i, i + 1}, Bi ∩ Bj = {0, 1}

• Bi ∩ Bj ∩Bk = {0, 1, }

• Theorem 0.7 If B is a system of almost
disjoint system of BAs, then
L =

⋃

{B : B ∈ B} is (1) an OMP iff B doesn’t
contain any loop of order 3
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• (ii) if j /∈ {i− 1, i, i + 1}, Bi ∩ Bj = {0, 1}

• Bi ∩ Bj ∩Bk = {0, 1, }

• Theorem 0.8 If B is a system of almost
disjoint system of BAs, then
L =

⋃

{B : B ∈ B} is (1) an OMP iff B doesn’t
contain any loop of order 3

• (2) is an OML iff B does not contain neither a
loop of order 3 nor a loop of order 4.
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• (ii) if j /∈ {i− 1, i, i + 1}, Bi ∩ Bj = {0, 1}

• Bi ∩ Bj ∩Bk = {0, 1, }

• Theorem 0.9 If B is a system of almost
disjoint system of BAs, then
L =

⋃

{B : B ∈ B} is (1) an OMP iff B doesn’t
contain any loop of order 3

• (2) is an OML iff B does not contain neither a
loop of order 3 nor a loop of order 4.

• There is a finite stateless OMP
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Orthoalgebras

• orthoalgebra (A; +, 0, 1, )
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Orthoalgebras

• orthoalgebra (A; +, 0, 1, )

• If a+ b is defined, then b+ a is defined and
a+ b = b+ a (commutativity).
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Orthoalgebras

• orthoalgebra (A; +, 0, 1, )

• If a+ b is defined, then b+ a is defined and
a+ b = b+ a (commutativity).

• f a+ b and (a+ b) + c are defined, then b+ c
and a+ (b+ c) are defined, and
(a+ b) + c = a+ (b+ c) (associativity).
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Orthoalgebras

• orthoalgebra (A; +, 0, 1, )

• If a+ b is defined, then b+ a is defined and
a+ b = b+ a (commutativity).

• f a+ b and (a+ b) + c are defined, then b+ c
and a+ (b+ c) are defined, and
(a+ b) + c = a+ (b+ c) (associativity).

• For every a ∈ A there is a unique b ∈ A such
that a+ b is defined and a+ b = 1
(orthocomplementation).
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Orthoalgebras

• orthoalgebra (A; +, 0, 1, )

• If a+ b is defined, then b+ a is defined and
a+ b = b+ a (commutativity).

• f a+ b and (a+ b) + c are defined, then b+ c
and a+ (b+ c) are defined, and
(a+ b) + c = a+ (b+ c) (associativity).

• For every a ∈ A there is a unique b ∈ A such
that a+ b is defined and a+ b = 1
(orthocomplementation).

• If a+ a is defined, then a = 0 (consistency).
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• if a+ b = 1, a′ := b orthocomplement
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• if a+ b = 1, a′ := b orthocomplement
• a ≤ b iff a+ c = b for some c ∈ A
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• if a+ b = 1, a′ := b orthocomplement
• a ≤ b iff a+ c = b for some c ∈ A

• An orthoalgebra is an OMP iff
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• if a+ b = 1, a′ := b orthocomplement
• a ≤ b iff a+ c = b for some c ∈ A

• An orthoalgebra is an OMP iff
• a+ b exists, then so does a ∨ b, and
a+ b = a ∨ b
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• if a+ b = 1, a′ := b orthocomplement
• a ≤ b iff a+ c = b for some c ∈ A

• An orthoalgebra is an OMP iff
• a+ b exists, then so does a ∨ b, and
a+ b = a ∨ b

• or iff a+ b, b+ c and a+ c exist, then a+ b+ c
is defined in A

Quantum Structures I-III – p. 27



Firefly Examples of quantum structures

•

f

b

l r
Fig. 4.1
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Firefly Examples of quantum structures

•

f

b

l r
Fig. 4.1

• The experiment A: Look at the front window.
The experiment B: Look at the side window.
The outcomes of A and B are:
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• See a light in the left half (lA, lB), right half
(rA, rB) of the window or see no light
(nA, nB). It is clear that nA = nB =: n and we
put lA =: l, rA =: r, lB =: f, rB =: b (f for the
front, b for the back)

Quantum Structures I-III – p. 29



• See a light in the left half (lA, lB), right half
(rA, rB) of the window or see no light
(nA, nB). It is clear that nA = nB =: n and we
put lA =: l, rA =: r, lB =: f, rB =: b (f for the
front, b for the back)

•
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Fig. 4.2
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Three-chamber box

•
lA rA

lC

rClB

rB

Fig. 4.5
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Three-chamber box

•
lA rA

lC

rClB

rB

Fig. 4.5

��HH
HH��

• three experiments, corresponding to the three
windows A, B and C. we record lE, rE, nE if
we see, respectively, a light to the left, right,
of the center line or no light.
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•
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Fig. 4.6 Wright triangle
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Effect algebraE = (E; +, 0, 1)

(EAi) if a+ b ∈ L, then b+ a ∈ L and a+ b = b+ a
(commutativity);
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Effect algebraE = (E; +, 0, 1)

(EAi) if a+ b ∈ L, then b+ a ∈ L and a+ b = b+ a
(commutativity);

(EAii) if b+ c ∈ L and a+ (b+ c) ∈ L, then
a+ b ∈ L and (a+ b) + c ∈ L, and
a+ (b+ c) = (a+ b) + c (associativity);
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Effect algebraE = (E; +, 0, 1)

(EAi) if a+ b ∈ L, then b+ a ∈ L and a+ b = b+ a
(commutativity);

(EAii) if b+ c ∈ L and a+ (b+ c) ∈ L, then
a+ b ∈ L and (a+ b) + c ∈ L, and
a+ (b+ c) = (a+ b) + c (associativity);

(EAiii) for any a ∈ L there is a unique b ∈ L such
that a+ b is defined, and a+ b = 1
(orthocomplementation)
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Effect algebraE = (E; +, 0, 1)

(EAi) if a+ b ∈ L, then b+ a ∈ L and a+ b = b+ a
(commutativity);

(EAii) if b+ c ∈ L and a+ (b+ c) ∈ L, then
a+ b ∈ L and (a+ b) + c ∈ L, and
a+ (b+ c) = (a+ b) + c (associativity);

(EAiii) for any a ∈ L there is a unique b ∈ L such
that a+ b is defined, and a+ b = 1
(orthocomplementation)

(EAiv) if 1 + a is defined, then a = 0 (zero-one
law).
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Examples

[0, 1] + restricted from [0, 1]

po-group (G;≤,+,−, 0)

a ≤ b → a+ c ≤ b+ c

E = ([0, u]; +, 0, u),

interval EA: E := Γ(G, u)
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Examples

[0, 1] + restricted from [0, 1]

po-group (G;≤,+,−, 0)

a ≤ b → a+ c ≤ b+ c

E = ([0, u]; +, 0, u),

interval EA: E := Γ(G, u)

state s(a+ b) = s(a) + s(b) if a+ b ∈ E,
s(1) = 1.
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RDP

• (RDP): If c ≤ a+ b ∃ a1, b1 ∈ M such that
a1 ≤ a, b1 ≤ b and c = a1 + b1.
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RDP

• (RDP): If c ≤ a+ b ∃ a1, b1 ∈ M such that
a1 ≤ a, b1 ≤ b and c = a1 + b1.

• a1 + a2 = b1 + b2, ∃ c11, c12, c21, c22 ∈ M s.t.
a1 = c11 + c12, a2 = c21 + c22, b1 = c11 + c21, and
b2 = c21 + c22.
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RDP

• (RDP): If c ≤ a+ b ∃ a1, b1 ∈ M such that
a1 ≤ a, b1 ≤ b and c = a1 + b1.

• a1 + a2 = b1 + b2, ∃ c11, c12, c21, c22 ∈ M s.t.
a1 = c11 + c12, a2 = c21 + c22, b1 = c11 + c21, and
b2 = c21 + c22.

• u ∈ G+ is a strong unit if, ∀ g ∈ G, ∃ n ≥ 1, s.t.
g ≤ nu, (G, u)-unital po-group
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RDP

• (RDP): If c ≤ a+ b ∃ a1, b1 ∈ M such that
a1 ≤ a, b1 ≤ b and c = a1 + b1.

• a1 + a2 = b1 + b2, ∃ c11, c12, c21, c22 ∈ M s.t.
a1 = c11 + c12, a2 = c21 + c22, b1 = c11 + c21, and
b2 = c21 + c22.

• u ∈ G+ is a strong unit if, ∀ g ∈ G, ∃ n ≥ 1, s.t.
g ≤ nu, (G, u)-unital po-group

• equivalently: G =
⋃

n[−nu, nu]
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RDP

• (RDP): If c ≤ a+ b ∃ a1, b1 ∈ M such that
a1 ≤ a, b1 ≤ b and c = a1 + b1.

• a1 + a2 = b1 + b2, ∃ c11, c12, c21, c22 ∈ M s.t.
a1 = c11 + c12, a2 = c21 + c22, b1 = c11 + c21, and
b2 = c21 + c22.

• u ∈ G+ is a strong unit if, ∀ g ∈ G, ∃ n ≥ 1, s.t.
g ≤ nu, (G, u)-unital po-group

• equivalently: G =
⋃

n[−nu, nu]

• G - interpolation group whenever
a1, a2 ≤ b1, b2 ∃ c ∈ G s.t. a1, a2 ≤ c ≤ b1, b2
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• Ravindran: if EA M satisfies RDP, then there
is a unique unital interpolation po-group
(G, u) s.t. M = Γ(G, u),
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• Ravindran: if EA M satisfies RDP, then there
is a unique unital interpolation po-group
(G, u) s.t. M = Γ(G, u),

• Moreover, there is a categorical equivalence
between the category of AEs with RDP and
interpolation Abelian unital po-groups (G, u)
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• Ravindran: if EA M satisfies RDP, then there
is a unique unital interpolation po-group
(G, u) s.t. M = Γ(G, u),

• Moreover, there is a categorical equivalence
between the category of AEs with RDP and
interpolation Abelian unital po-groups (G, u)

• state s on (G, u): s : G → R s.t. s(G+) ⊆ R
+,

s(u) = 1, s(g1 + g2) = s(g1) + s(g2)
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• Ravindran: if EA M satisfies RDP, then there
is a unique unital interpolation po-group
(G, u) s.t. M = Γ(G, u),

• Moreover, there is a categorical equivalence
between the category of AEs with RDP and
interpolation Abelian unital po-groups (G, u)

• state s on (G, u): s : G → R s.t. s(G+) ⊆ R
+,

s(u) = 1, s(g1 + g2) = s(g1) + s(g2)

• S(G, u), there is 1-1 correspondence between
S(Γ(G, u)) and S(G, u)
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• Ravindran: if EA M satisfies RDP, then there
is a unique unital interpolation po-group
(G, u) s.t. M = Γ(G, u),

• Moreover, there is a categorical equivalence
between the category of AEs with RDP and
interpolation Abelian unital po-groups (G, u)

• state s on (G, u): s : G → R s.t. s(G+) ⊆ R
+,

s(u) = 1, s(g1 + g2) = s(g1) + s(g2)

• S(G, u), there is 1-1 correspondence between
S(Γ(G, u)) and S(G, u)

• every interval EA has a state
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Many-valued Reasoning

• Ulam-game, Pinocchio, Game with black-and
white marbles, error correcting codes.

• set, fuzzy set f : Ω → [0, 1], f : Ω → {0, 1}.
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Many-valued Reasoning

• Ulam-game, Pinocchio, Game with black-and
white marbles, error correcting codes.

• set, fuzzy set f : Ω → [0, 1], f : Ω → {0, 1}.

MV-algebra is an algebra M = (M ;⊕,⊙,∗ , 0, 1) of
type (2,2,1,0,0) such that, for all a, b, c ∈ M , we
have
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(i) a⊕ b = b⊕ a;
(ii) (a⊕ b)⊕ c = a⊕ (b⊕ c);
(iii) a⊕ 0 = a;
(iv) a⊕ 1 = 1;
(v) (a∗)∗ = a;
(vi) a⊕ a∗ = 1;
(vii) 0∗ = 1;
(viii) (a∗ ⊕ b)∗ ⊕ b = (a⊕ b∗)∗ ⊕ a.
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(i) a⊕ b = b⊕ a;
(ii) (a⊕ b)⊕ c = a⊕ (b⊕ c);
(iii) a⊕ 0 = a;
(iv) a⊕ 1 = 1;
(v) (a∗)∗ = a;
(vi) a⊕ a∗ = 1;
(vii) 0∗ = 1;
(viii) (a∗ ⊕ b)∗ ⊕ b = (a⊕ b∗)∗ ⊕ a.

1. a ∨ b = (a∗ ⊕ b)∗ ⊕ b. M is a distributive lattice
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• If A = (A;∨,∧,′ , 0, 1) is a Boolean algebra,
then (A;⊕,⊙,∗ , 0, 1), where ⊕ = ∨, ⊙ = ∧,
∗ =′, is an MV-algebra
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• If A = (A;∨,∧,′ , 0, 1) is a Boolean algebra,
then (A;⊕,⊙,∗ , 0, 1), where ⊕ = ∨, ⊙ = ∧,
∗ =′, is an MV-algebra

• Bold algebra F ⊆ [0, 1]Ω (i) 1 ∈ F , (ii) f ∈ F ,
then 1− f ∈ F , (iii) f, g ∈ F , and

(f ⊕ g)(ω) := min{f(ω) + g(ω), 1}, ω ∈ Ω,

then f ⊕ g ∈ F .

(f ⊙ g)(ω) := max{0, (f(ω) + g(ω)− 1)}

Quantum Structures I-III – p. 40



• Let (G,+, 0,≤) be an ℓ-group, i.e. a group
such that if a ≤ b, a, b ∈ G, then for any c ∈ G,
c+ a ≤ c+ b, and G is a lattice.
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• Let (G,+, 0,≤) be an ℓ-group, i.e. a group
such that if a ≤ b, a, b ∈ G, then for any c ∈ G,
c+ a ≤ c+ b, and G is a lattice.

• u > 0 is strong unit if given g ∈ G, there is
n ≥ 1 such that g ≤ nu.
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• Let (G,+, 0,≤) be an ℓ-group, i.e. a group
such that if a ≤ b, a, b ∈ G, then for any c ∈ G,
c+ a ≤ c+ b, and G is a lattice.

• u > 0 is strong unit if given g ∈ G, there is
n ≥ 1 such that g ≤ nu.

• (G, u) ℓ-group with strong unit.
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• Let (G,+, 0,≤) be an ℓ-group, i.e. a group
such that if a ≤ b, a, b ∈ G, then for any c ∈ G,
c+ a ≤ c+ b, and G is a lattice.

• u > 0 is strong unit if given g ∈ G, there is
n ≥ 1 such that g ≤ nu.

• (G, u) ℓ-group with strong unit.

• Γ(G, u) = [0, u]

a⊕ b = (a+ b) ∧ u, a, b ∈ Γ(G, u),

a⊙ b = 0 ∨ (a+ b− u), a, b ∈ Γ(G, u)

Quantum Structures I-III – p. 41



• (Γ(G, u);⊕,⊙,∗ , 0, u) is an MV-algebra, where
a∗ = u− a.
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• (Γ(G, u);⊕,⊙,∗ , 0, u) is an MV-algebra, where
a∗ = u− a.

• Mundici, M ∼= Γ(G, u).
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• Mundici, M ∼= Γ(G, u).
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• (Γ(G, u);⊕,⊙,∗ , 0, u) is an MV-algebra, where
a∗ = u− a.

• Mundici, M ∼= Γ(G, u).

G+

c u
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• (Γ(G, u);⊕,⊙,∗ , 0, u) is an MV-algebra, where
a∗ = u− a.

• Mundici, M ∼= Γ(G, u).

G+

c u
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• M MV-algebra, partial addition a+ b is defined
in M iff a ≤ b∗ iff a⊙ b = 0, then a+ b := a⊕ b
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• M MV-algebra, partial addition a+ b is defined
in M iff a ≤ b∗ iff a⊙ b = 0, then a+ b := a⊕ b

• (M ; +,∗ , 0, 1) is an effect algebra (MV-effect
algebra) with RDP which is lattice ordered
(and distributive)

Quantum Structures I-III – p. 43



• M MV-algebra, partial addition a+ b is defined
in M iff a ≤ b∗ iff a⊙ b = 0, then a+ b := a⊕ b

• (M ; +,∗ , 0, 1) is an effect algebra (MV-effect
algebra) with RDP which is lattice ordered
(and distributive)

• Every lattice ordered EA with RDP is an
MV-effect algebra
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• M MV-algebra, partial addition a+ b is defined
in M iff a ≤ b∗ iff a⊙ b = 0, then a+ b := a⊕ b

• (M ; +,∗ , 0, 1) is an effect algebra (MV-effect
algebra) with RDP which is lattice ordered
(and distributive)

• Every lattice ordered EA with RDP is an
MV-effect algebra

• a, b EA compatible: ∃ a1, b1, c such that
a = a1 + c, b = b1 + c and a1 + b1 + c exists in
E, block
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• M MV-algebra, partial addition a+ b is defined
in M iff a ≤ b∗ iff a⊙ b = 0, then a+ b := a⊕ b

• (M ; +,∗ , 0, 1) is an effect algebra (MV-effect
algebra) with RDP which is lattice ordered
(and distributive)

• Every lattice ordered EA with RDP is an
MV-effect algebra

• a, b EA compatible: ∃ a1, b1, c such that
a = a1 + c, b = b1 + c and a1 + b1 + c exists in
E, block

• Every lattice ordered EA can be covered by
sub MV-effect algebras, not true for every EA
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States on MV-algebras

• state s : M → [0, 1] such that (i) s(1) = 1 and
(ii) s(a+ b) = s(a) + s(b) if a ≤ b∗.
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States on MV-algebras

• state s : M → [0, 1] such that (i) s(1) = 1 and
(ii) s(a+ b) = s(a) + s(b) if a ≤ b∗.

• s is extremal iff

s(a ∧ b) = min{s(a), s(b)}.
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• state s : M → [0, 1] such that (i) s(1) = 1 and
(ii) s(a+ b) = s(a) + s(b) if a ≤ b∗.

• s is extremal iff

s(a ∧ b) = min{s(a), s(b)}.

• S(M), ∂eS(M) 6= ∅
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States on MV-algebras

• state s : M → [0, 1] such that (i) s(1) = 1 and
(ii) s(a+ b) = s(a) + s(b) if a ≤ b∗.

• s is extremal iff

s(a ∧ b) = min{s(a), s(b)}.

• S(M), ∂eS(M) 6= ∅

• sα → s, S(M), ∂eS compact, Hausdorff
topological space.
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Affine Functions

• K-convex, compact Hausdorff topol. space
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Affine Functions

• K-convex, compact Hausdorff topol. space
• Aff(K) - continuous affine functions
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Affine Functions

• K-convex, compact Hausdorff topol. space
• Aff(K) - continuous affine functions

• f -affine: x, y ∈ K and any λ ∈ [0, 1], we have
f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y).
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• ∂eK, K = cl conhull ∂eK

Quantum Structures I-III – p. 45



Affine Functions

• K-convex, compact Hausdorff topol. space
• Aff(K) - continuous affine functions

• f -affine: x, y ∈ K and any λ ∈ [0, 1], we have
f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y).

• ∂eK, K = cl conhull ∂eK
• (Aff(K), 1) po-group

Quantum Structures I-III – p. 45



Affine Functions

• K-convex, compact Hausdorff topol. space
• Aff(K) - continuous affine functions

• f -affine: x, y ∈ K and any λ ∈ [0, 1], we have
f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y).

• ∂eK, K = cl conhull ∂eK
• (Aff(K), 1) po-group

• S(E) ∼= S(Aff(S(E)), 1), s 7→ f(s),
f ∈ Aff(S(E))
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Simplices vs EAs

• convex cone- in a real linear space V is any
subset C of V such that (i) 0 ∈ C, (ii) if
x1, x2 ∈ C, then α1x1 + α2x2 ∈ C for any
α1, α2 ∈ R

+.
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Simplices vs EAs

• convex cone- in a real linear space V is any
subset C of V such that (i) 0 ∈ C, (ii) if
x1, x2 ∈ C, then α1x1 + α2x2 ∈ C for any
α1, α2 ∈ R

+.

• strict cone- is any convex cone C such that
C ∩ −C = {0},
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Simplices vs EAs

• convex cone- in a real linear space V is any
subset C of V such that (i) 0 ∈ C, (ii) if
x1, x2 ∈ C, then α1x1 + α2x2 ∈ C for any
α1, α2 ∈ R

+.

• strict cone- is any convex cone C such that
C ∩ −C = {0},

• base- for a convex cone C is any convex
subset K of C y ∈ C \ {0} may be uniquely
expressed in the form y = αx for some
α ∈ R

+, x ∈ K
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• strict cone C of V defines ≤C via x ≤C y iff
y − x ∈ C.
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• strict cone C of V defines ≤C via x ≤C y iff
y − x ∈ C.

• lattice cone- strict convex cone C in V such
that C is a lattice under ≤C .
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• strict cone C of V defines ≤C via x ≤C y iff
y − x ∈ C.

• lattice cone- strict convex cone C in V such
that C is a lattice under ≤C .

• simplex:- is any convex subset K of V that is
affinely isomorphic to a base for a lattice cone
in some real linear space V
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• strict cone C of V defines ≤C via x ≤C y iff
y − x ∈ C.

• lattice cone- strict convex cone C in V such
that C is a lattice under ≤C .

• simplex:- is any convex subset K of V that is
affinely isomorphic to a base for a lattice cone
in some real linear space V

• Choquet simplex: if K is compact
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• strict cone C of V defines ≤C via x ≤C y iff
y − x ∈ C.

• lattice cone- strict convex cone C in V such
that C is a lattice under ≤C .

• simplex:- is any convex subset K of V that is
affinely isomorphic to a base for a lattice cone
in some real linear space V

• Choquet simplex: if K is compact
• Bauer simplex: K and ∂eK are compact

Quantum Structures I-III – p. 47



• If H = R
2, the S(L(R2)) corresponding to von

Neumann operators can be identified with the
convex set of all positive trace-one matrices
in M2(R).
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• If H = R
2, the S(L(R2)) corresponding to von

Neumann operators can be identified with the
convex set of all positive trace-one matrices
in M2(R).

•

(

β1 β2
β2 1− β1

)

, the parameters β1 and β2 must

satisfy the inequality (β1 −
1
2)

2 + β2
2 ≤ 1

4 , and
vice-versa. Hence, the state space is affinely
isomorphic with the latter circle. The state
space for H = C

2 is affinely homeomorphic
with a three-dimensional real sphere
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• E with (RDP) - S(E) Choquet simplex
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• E with (RDP) - S(E) Choquet simplex

• E - MV-algebra, S(E) Bauer simplex
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• K - Choquet simplex iff Aff(K)- interpolation
po-group
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• E with (RDP) - S(E) Choquet simplex

• E - MV-algebra, S(E) Bauer simplex

• K - Choquet simplex iff Aff(K)- interpolation
po-group

• K - Bauer simplex iff Aff(K)- ℓ-group

• S(E(H)) is no simplex
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• E with (RDP) - S(E) Choquet simplex

• E - MV-algebra, S(E) Bauer simplex

• K - Choquet simplex iff Aff(K)- interpolation
po-group

• K - Bauer simplex iff Aff(K)- ℓ-group

• S(E(H)) is no simplex

• dimH = 2, regular states ∼= unit ball in R
2
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Structure of the state space

• E EA- the state space S(E) - (i) empty, (ii)
singleton, (iii) infinite
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Structure of the state space

• E EA- the state space S(E) - (i) empty, (ii)
singleton, (iii) infinite

• extremal state: s = λs1 + (1− λ)s2, then
s = s1 = s2,
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Structure of the state space

• E EA- the state space S(E) - (i) empty, (ii)
singleton, (iii) infinite

• extremal state: s = λs1 + (1− λ)s2, then
s = s1 = s2,

• Schultz, Navara: every compact convex set is
affinely homeomorphic to the state space of
an orthomodular lattice.
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Structure of the state space

• E EA- the state space S(E) - (i) empty, (ii)
singleton, (iii) infinite

• extremal state: s = λs1 + (1− λ)s2, then
s = s1 = s2,

• Schultz, Navara: every compact convex set is
affinely homeomorphic to the state space of
an orthomodular lattice.

• A convex compact Hausdorff space K 6= ∅ is
affinely isomorphic to the state space of some
MV-algebra iff K is a Bauer simplex.
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• A convex compact Hausdorff space K 6= ∅ is
affinely isomorphic to the state space of some
EA with (RDP) iff K is a Choquet simplex
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• A convex compact Hausdorff space K 6= ∅ is
affinely isomorphic to the state space of some
EA with (RDP) iff K is a Choquet simplex

• there is no MV-algebra whose state space is
affinely isomorphic to the closed square or to
the closed unit circle
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• B(K)- Borel σ-algebra of K generated by all
open subsets of K
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• B(K)- Borel σ-algebra of K generated by all
open subsets of K

• Borel measure µ - regular if
inf{µ(O) : Y ⊆ O, O open} = µ(Y ) =
sup{µ(C) : C ⊆ Y, C closed}, Y ∈ B(K).
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open subsets of K

• Borel measure µ - regular if
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sup{µ(C) : C ⊆ Y, C closed}, Y ∈ B(K).

• δx - Dirac measure - regular Borel measure.
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• Borel measure µ - regular if
inf{µ(O) : Y ⊆ O, O open} = µ(Y ) =
sup{µ(C) : C ⊆ Y, C closed}, Y ∈ B(K).

• δx - Dirac measure - regular Borel measure.
• µ ∼ λ iff µ(f) = λ(f), f ∈ Aff(K).
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• B(K)- Borel σ-algebra of K generated by all
open subsets of K

• Borel measure µ - regular if
inf{µ(O) : Y ⊆ O, O open} = µ(Y ) =
sup{µ(C) : C ⊆ Y, C closed}, Y ∈ B(K).

• δx - Dirac measure - regular Borel measure.
• µ ∼ λ iff µ(f) = λ(f), f ∈ Aff(K).

• µ ≺ λ iff µ(f) ≤ λ(f), f ∈ Con(K),
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• B(K)- Borel σ-algebra of K generated by all
open subsets of K

• Borel measure µ - regular if
inf{µ(O) : Y ⊆ O, O open} = µ(Y ) =
sup{µ(C) : C ⊆ Y, C closed}, Y ∈ B(K).

• δx - Dirac measure - regular Borel measure.
• µ ∼ λ iff µ(f) = λ(f), f ∈ Aff(K).

• µ ≺ λ iff µ(f) ≤ λ(f), f ∈ Con(K),

• continuous convex functions f on K –
f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) .
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States vs Integrals

• â : S(E) → [0, 1], â(s) := s(a), s ∈ S(E)
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States vs Integrals

• â : S(E) → [0, 1], â(s) := s(a), s ∈ S(E)

• Theorem 0.11 Let E be an effect algebra
with RDP and let s be a state on E. Then
there is a unique maximal regular Borel
probability measure µs ∼ δs on B(S(E)) such
that

s(a) =

∫

S(E)

â(x) dµs(x), a ∈ E.
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• Theorem 0.12 Let E = Γ(G, u) be an interval
effect algebra where (G, u) is a unigroup, and
let S(E) be a simplex. If s is σ-additive, then
its unique extension, ŝ, on (G, u) is σ-additive.
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• Theorem 0.13 Let E be an MV-algebra and
let s be a state on E. Then there is a unique
regular Borel probability measure, µs, on
B(S(E)) such that µs(∂eS(E)) = 1 and

s(a) =

∫

∂eS(E)

â(x) dµs(x), a ∈ E.
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• Corollary 0.14 Let s be a state on an effect
algebra E. There is a regular Borel probability
measure, µs, on the Borel σ-algebra B(S(E))
such that

s(a) =

∫

S(E)

â(x) dµs(x), a ∈ E.
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• Corollary 0.15 Let s be a state on an effect
algebra E. There is a regular Borel probability
measure, µs, on the Borel σ-algebra B(S(E))
such that

s(a) =

∫

S(E)

â(x) dµs(x), a ∈ E.

• Kolmogorov (Ω,S, P ) P -σ-additive probability
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• Corollary 0.16 Let s be a state on an effect
algebra E. There is a regular Borel probability
measure, µs, on the Borel σ-algebra B(S(E))
such that

s(a) =

∫

S(E)

â(x) dµs(x), a ∈ E.

• Kolmogorov (Ω,S, P ) P -σ-additive probability

• de Finetti - finitely additive probability
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σ-MV-algebras

• M is a σ-MV-algebra if M is σ-lattice.
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σ-MV-algebras

• M is a σ-MV-algebra if M is σ-lattice.
• tribe on Ω 6= ∅ is a collection T of fuzzy sets

from [0, 1]Ω such that (i) 1 ∈ T , (ii) if f ∈ T ,
then 1− f ∈ T , and (iii) if {fn}n is a sequence
from T , then

min{
∞
∑

n=1

fn, 1} ∈ T .

Quantum Structures I-III – p. 57



σ-MV-algebras

• M is a σ-MV-algebra if M is σ-lattice.
• tribe on Ω 6= ∅ is a collection T of fuzzy sets

from [0, 1]Ω such that (i) 1 ∈ T , (ii) if f ∈ T ,
then 1− f ∈ T , and (iii) if {fn}n is a sequence
from T , then

min{
∞
∑

n=1

fn, 1} ∈ T .

min{
∑∞

n=1 χAn
, 1} = χ⋃

n An
.
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σ-MV-algebras

• M is a σ-MV-algebra if M is σ-lattice.
• tribe on Ω 6= ∅ is a collection T of fuzzy sets

from [0, 1]Ω such that (i) 1 ∈ T , (ii) if f ∈ T ,
then 1− f ∈ T , and (iii) if {fn}n is a sequence
from T , then

min{
∞
∑

n=1

fn, 1} ∈ T .

min{
∑∞

n=1 χAn
, 1} = χ⋃

n An
.

• tribe is a σ-MV-algebra.
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Monotoneσ-complete EAs

• PEA E is monotone σ-complete provided that
every ascending sequence x1 6 x2 6 · · · of
elements in E has a supremum x =

∨

n xn.
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Monotoneσ-complete EAs

• PEA E is monotone σ-complete provided that
every ascending sequence x1 6 x2 6 · · · of
elements in E has a supremum x =

∨

n xn.

• A tribe is a collection T ⊆ [0, 1]Ω s.t. (i) 1 ∈ T ,
(ii) if f ∈ T , then 1− f ∈ T , and (iii) if {fn} is a
sequence from T , then min{

∑∞
n=1 fn, 1} ∈ T .
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• PEA E is monotone σ-complete provided that
every ascending sequence x1 6 x2 6 · · · of
elements in E has a supremum x =

∨

n xn.

• A tribe is a collection T ⊆ [0, 1]Ω s.t. (i) 1 ∈ T ,
(ii) if f ∈ T , then 1− f ∈ T , and (iii) if {fn} is a
sequence from T , then min{

∑∞
n=1 fn, 1} ∈ T .

• E(H) is isomorphic to an effect-tribe: E(H) no
RDP
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Monotoneσ-complete EAs

• PEA E is monotone σ-complete provided that
every ascending sequence x1 6 x2 6 · · · of
elements in E has a supremum x =

∨

n xn.

• A tribe is a collection T ⊆ [0, 1]Ω s.t. (i) 1 ∈ T ,
(ii) if f ∈ T , then 1− f ∈ T , and (iii) if {fn} is a
sequence from T , then min{

∑∞
n=1 fn, 1} ∈ T .

• E(H) is isomorphic to an effect-tribe: E(H) no
RDP

• Ω(H) = {φ ∈ H : ||φ|| = 1}, A ∈ E(H),
µA(φ) := (Aφ, φ), φ ∈ Ω(H).
T (H) = {µA : A ∈ E(H)}
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Loomis-Sikorski theorems

• Theorem 0.17 Every σ-MV-algebra is a
σ-homomorphic image of a tribe of fuzzy sets.
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Loomis-Sikorski theorems

• Theorem 0.19 Every σ-MV-algebra is a
σ-homomorphic image of a tribe of fuzzy sets.

• Theorem 0.20 For every monotone
σ-complete effect algebra E with RDP, there
are a nonempty set Ω, an effect-tribe
T ⊆ [0, 1]Ω with RDP, and a σ-homomorphism
h from T onto E.
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New Trends
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• We don’t assume that + has to be
commutative
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commutative

• pseudo MV-algebras, pseudo effect algebras
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New Trends

• We don’t assume that + has to be
commutative

• pseudo MV-algebras, pseudo effect algebras
• (non-Abelian) po-groups, ℓ-groups
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GMV-algebras
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GMV-algebras

• Georgescu and Iorgulescu [GeIo] (pseudo
MV-algebras), Rachunek [Rac] (generalized
MV-algebras) - 1999
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GMV-algebras

• Georgescu and Iorgulescu [GeIo] (pseudo
MV-algebras), Rachunek [Rac] (generalized
MV-algebras) - 1999

• PMV-algebra or GMV-algebra is an algebra
(M ;⊕,− ,∼ , 0, 1) of type (2, 1, 1, 0, 0) with an
additional binary operation ⊙ defined via

y ⊙ x = (x− ⊕ y−)∼
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(A1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;

(A2) x⊕ 0 = 0⊕ x = x;

(A3) x⊕ 1 = 1⊕ x = 1;

(A4) 1∼ = 0; 1− = 0;

(A5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−;

(A6) x⊕ (x∼ ⊙ y) = y ⊕ (y∼ ⊙ x) = (x⊙ y−)⊕ y =
(y ⊙ x−)⊕ x;

(A7) x⊙ (x− ⊕ y) = (x⊕ y∼)⊙ y;

(A8) (x−)∼ = x.
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•

x ≤ y iff x− ⊕ y = 1
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•

x ≤ y iff x− ⊕ y = 1

• M – distributive lattice
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•

x ≤ y iff x− ⊕ y = 1

• M – distributive lattice
• x ∨ y = x⊕ (x∼ ⊙ y) and x ∧ y = x⊙ (x− ⊕ y).

Quantum Structures I-III – p. 63



•

x ≤ y iff x− ⊕ y = 1

• M – distributive lattice
• x ∨ y = x⊕ (x∼ ⊙ y) and x ∧ y = x⊙ (x− ⊕ y).

• GMV-algebra M is an MV-algebra iff
x⊕ y = y ⊕ x for all x, y ∈ M.

Quantum Structures I-III – p. 63



(G, u) unital ℓ-group, u strong unit
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(G, u) unital ℓ-group, u strong unit

Γ(G, u) := [0, u]
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(G, u) unital ℓ-group, u strong unit

Γ(G, u) := [0, u]

x⊕ y := (x+ y) ∧ u,

x− := u− x,

x∼ := −x+ u,

x⊙ y := (x− u+ y) ∨ 0,
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(G, u) unital ℓ-group, u strong unit

Γ(G, u) := [0, u]

x⊕ y := (x+ y) ∧ u,

x− := u− x,

x∼ := −x+ u,

x⊙ y := (x− u+ y) ∨ 0,

(Γ(G, u);⊕,− ,∼ , 0, u) is a GMV-algebra.
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• Theorem 0.21 [Dvu 2002] For any
GMV-algebra M , there exists a unique (up to
isomorphism) unital ℓ-group G with a strong
unit u such that M ∼= Γ(G, u).
The functor Γ defines a categorical
equivalence between the category of
GMV-algebras and the category of unital
ℓ-groups.
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• Theorem 0.22 [Dvu 2002] For any
GMV-algebra M , there exists a unique (up to
isomorphism) unital ℓ-group G with a strong
unit u such that M ∼= Γ(G, u).
The functor Γ defines a categorical
equivalence between the category of
GMV-algebras and the category of unital
ℓ-groups.

• Γ(Z
−→
× G, (1, 0)) - GMV-algebra such that

x∼ = x− (symmetric) but not necessarily
MV-algebra
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• Let u be the translation u(t) = t+ 1, t ∈ R,

BAut(R) = {g ∈ Aut(R) : ∃ n ∈ N, u−n ≤ g ≤ un}.

Then Γ(BAut(R), u)) is stateless - it is a
generator of the variety GMV-algebras

Quantum Structures I-III – p. 66



• Let u be the translation u(t) = t+ 1, t ∈ R,

BAut(R) = {g ∈ Aut(R) : ∃ n ∈ N, u−n ≤ g ≤ un}.

Then Γ(BAut(R), u)) is stateless - it is a
generator of the variety GMV-algebras

• Komori: The lattice of varieties of
MV-algebras is countable
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• Let u be the translation u(t) = t+ 1, t ∈ R,

BAut(R) = {g ∈ Aut(R) : ∃ n ∈ N, u−n ≤ g ≤ un}.

Then Γ(BAut(R), u)) is stateless - it is a
generator of the variety GMV-algebras

• Komori: The lattice of varieties of
MV-algebras is countable

• The lattice of varieties of GMV-algebras is
uncountable
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Pseudo Effect Algebras

• AD+ Vetterlein- noncommutative
generalization of EAs
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Pseudo Effect Algebras

• AD+ Vetterlein- noncommutative
generalization of EAs

• a+ b and (a+ b) + c exist if and only if b+ c
and a+ (b+ c) exist, and in this case,
(a+ b) + c = a+ (b+ c).
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Pseudo Effect Algebras

• AD+ Vetterlein- noncommutative
generalization of EAs

• a+ b and (a+ b) + c exist if and only if b+ c
and a+ (b+ c) exist, and in this case,
(a+ b) + c = a+ (b+ c).

• If a+ b exists, there are elements d, e ∈ E
such that a+ b = d+ a = b+ e.
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Pseudo Effect Algebras

• AD+ Vetterlein- noncommutative
generalization of EAs

• a+ b and (a+ b) + c exist if and only if b+ c
and a+ (b+ c) exist, and in this case,
(a+ b) + c = a+ (b+ c).

• If a+ b exists, there are elements d, e ∈ E
such that a+ b = d+ a = b+ e.

• If a+ b and a+ c exist and are equal, then
b = c. If b+ a and c+ a exist and are equal,
then b = c.
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Pseudo Effect Algebras

• AD+ Vetterlein- noncommutative
generalization of EAs

• a+ b and (a+ b) + c exist if and only if b+ c
and a+ (b+ c) exist, and in this case,
(a+ b) + c = a+ (b+ c).

• If a+ b exists, there are elements d, e ∈ E
such that a+ b = d+ a = b+ e.

• If a+ b and a+ c exist and are equal, then
b = c. If b+ a and c+ a exist and are equal,
then b = c.

• If a+ b exists and a+ b = 0, then a = b = 0.
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• a+ 0 and 0 + a exist and both are equal to a.
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• a+ 0 and 0 + a exist and both are equal to a.

• a 6 b iff ∃ c ∈ E such that a+ c = b.
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• a+ 0 and 0 + a exist and both are equal to a.

• a 6 b iff ∃ c ∈ E such that a+ c = b.

• PEA is an EA iff + is commutative

Quantum Structures I-III – p. 68



• a+ 0 and 0 + a exist and both are equal to a.

• a 6 b iff ∃ c ∈ E such that a+ c = b.

• PEA is an EA iff + is commutative
• RDP: a1+a2 = b1+ b2, there are four elements
c11, c12, c21, c22 such that a1 = c11 + c12,
a2 = c21 + c22, b1 = c11 + c21, and b2 = c21 + c22.

Quantum Structures I-III – p. 68



• a+ 0 and 0 + a exist and both are equal to a.

• a 6 b iff ∃ c ∈ E such that a+ c = b.

• PEA is an EA iff + is commutative
• RDP: a1+a2 = b1+ b2, there are four elements
c11, c12, c21, c22 such that a1 = c11 + c12,
a2 = c21 + c22, b1 = c11 + c21, and b2 = c21 + c22.

• (RDP)1: RDP + x 6 c12 and y 6 c21, we have
x+ y, y + x exists in E and x+ y = y + x,
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• RDP2: RDP + d2 ∧ d3 = 0 - pseudo
MV-algebra
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• RDP2: RDP + d2 ∧ d3 = 0 - pseudo
MV-algebra

• (G, u) - unital po-group not necessarily
Abelian
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• RDP2: RDP + d2 ∧ d3 = 0 - pseudo
MV-algebra

• (G, u) - unital po-group not necessarily
Abelian

• AD+Vetterlein: The category of pseudo effect
algebras with RDP1 is categorically equivalent
with the category of unital po-group with
RDP1
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States on PEAs

• Theorem 0.23 If E is a pseudo effect algebra
with (RDP), then either S(E) is empty or it is a
nonempty Choquet simplex.
If, in addition, E satisfies (RDP)2, then either
S(E) is empty or it is a nonempty Bauer
simplex.

Quantum Structures I-III – p. 70



States on PEAs

• Theorem 0.24 If E is a pseudo effect algebra
with (RDP), then either S(E) is empty or it is a
nonempty Choquet simplex.
If, in addition, E satisfies (RDP)2, then either
S(E) is empty or it is a nonempty Bauer
simplex.

• Extremal states for GMV-algebras similar as
those for MV-algebras

Quantum Structures I-III – p. 70



States on PEAs

• Theorem 0.25 If E is a pseudo effect algebra
with (RDP), then either S(E) is empty or it is a
nonempty Choquet simplex.
If, in addition, E satisfies (RDP)2, then either
S(E) is empty or it is a nonempty Bauer
simplex.

• Extremal states for GMV-algebras similar as
those for MV-algebras

• Representation of states by integral as those
for states on EAs
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