Tutorial

Probability, Statistics and Concept Lattices

Richard EMILION (MAPMO Lab., Orléans University, France)

DATA ANALYSIS AND MODELING LAB
Palacky University, Olomouc, Czech Republic

Outline

- Part I - Motivations
- Part II - Models
- Part III - Sampling
- Part IV - Pointwise convergence of empirical CLs
- Part V - Experiments, Regression

Part I - MOTIVATIONS

Models
Sampling

I.1. Motivations

- Context $\mathcal{C}=(I, J, \mathcal{D})$ (Binary matrix case), \mathcal{L} its concept lattice.
- Examples of complex and time consuming tasks: listing \mathcal{L}, the frequent itemsets, the associative rules
- Probabilistic and Statistical methods can be used at least for

1. Modelling
2. Sampling, Bootstrapping

I.1. Motivations

- Context $\mathcal{C}=(I, J, \mathcal{D})$ (Binary matrix case), \mathcal{L} its concept lattice.
- Examples of complex and time consuming tasks: listing \mathcal{L}, the frequent itemsets, the associative rules
- Probabilistic and Statistical methods can be used at least for

1. Modelling
2. Sampling, Bootstrapping

I.1. Motivations

4 / 43

- Context $\mathcal{C}=(I, J, \mathcal{D})$ (Binary matrix case), \mathcal{L} its concept lattice.
- Examples of complex and time consuming tasks: listing \mathcal{L}, the frequent itemsets, the associative rules
- Probabilistic and Statistical methods can be used at least for :

1. Modelling
2. Sampling, Bootstrapping

I.1. Motivations

4 / 43

- Context $\mathcal{C}=(I, J, \mathcal{D})$ (Binary matrix case), \mathcal{L} its concept lattice.
- Examples of complex and time consuming tasks: listing \mathcal{L}, the frequent itemsets, the associative rules
- Probabilistic and Statistical methods can be used at least for :

1. Modelling
2. Sampling, Bootstrapping

I. 2 Modelling

- Model: Mathematical representation of a real context
- Modelling a real context (and \mathcal{L}, if possible) submitted to a random environment: customer purchases
meteorological measurements
patient diseases
- Observed context is considered as an outcome of the model.
- Estimating the parameters of the model from the observations
- Performing Tests
- Proposing Confidence Intervals
- Model selection
- Some Interest of models: Framework for exact computations (concerning, e.g., \mathcal{L}) and prediction
Framework for defining the right concepts and not only the empirical concepts

I. 2 Modelling

- Model: Mathematical representation of a real context
- Modelling a real context (and \mathcal{L}, if possible) submitted to a random environment: customer purchases
meteorological measurements
patient diseases
- Observed contevt is considered as an outcome of the model.
- Estimating the parameters of the model from the observations
- Performing Tests
- Proposing Confidence Intervals
- Model selection
- Some Interest of models: Framework for exact computations (concerning, e.g., \mathcal{L}) and prediction
Framework for defining the right concepts and not only the empirical concepts

I. 2 Modelling

- Model: Mathematical representation of a real context
- Modelling a real context (and \mathcal{L}, if possible) submitted to a random environment: customer purchases
meteorological measurements
patient diseases
- Observed context is considered as an outcome of the model
- Estimating the parameters of the model from the observations
- Performing Tests
- Proposing Confidence Intervals
- Model selection
- Some Interest of models: Framework for exact computations (concerning, e.g., \mathcal{L}) and prediction
Framework for defining the right concepts and not only the empirical concepts

I. 2 Modelling

- Model: Mathematical representation of a real context
- Modelling a real context (and \mathcal{L}, if possible) submitted to a random environment: customer purchases
meteorological measurements
patient diseases ...
- Observed context is considered as an outcome of the model
- Estimating the parameters of the model from the observations
- Performing Tests
- Proposing Confidence Intervals
- Model selection
- Some Interest of models: Framework for exact computations (concerning, e.g., L) and prediction
Framework for defining the right concepts and not only the empirical concepts

I. 2 Modelling

- Model: Mathematical representation of a real context
- Modelling a real context (and \mathcal{L}, if possible) submitted to a random environment: customer purchases
meteorological measurements
patient diseases ...
- Observed context is considered as an outcome of the model.
- Estimating the parameters of the model from the observations
- Performing Tests
- Proposing Confidence Intervals
- Model selection
- Some Interest of models: Framework for exact computations (concerning, e.g., \mathcal{L}) and prediction
Framework for defining the right concepts and not only the empirical concepts

I. 2 Modelling

- Model: Mathematical representation of a real context
- Modelling a real context (and \mathcal{L}, if possible) submitted to a random environment: customer purchases
meteorological measurements
patient diseases ...
- Observed context is considered as an outcome of the model.
- Estimating the parameters of the model from the observations
- Performing Tests
- Proposing Confidence Intervals
- Model selection
- Some Interest of models: Framework for exact computations (concerning, e.g., L) and prediction
Framework for defining the right concepts and not only the empirical concepts

I. 2 Modelling

- Model: Mathematical representation of a real context
- Modelling a real context (and \mathcal{L}, if possible) submitted to a random environment: customer purchases
meteorological measurements
patient diseases ...
- Observed context is considered as an outcome of the model.
- Estimating the parameters of the model from the observations
- Performing Tests
- Proposing Confidence Intervals
- Model selection
- Some Interest of models: Framework for exact computations (concerning, e.g., \mathcal{L}) and prediction
Framework for defining the right concepts and not only the empirical concepts

I. 2 Modelling

- Model: Mathematical representation of a real context
- Modelling a real context (and \mathcal{L}, if possible) submitted to a random environment: customer purchases
meteorological measurements
patient diseases ...
- Observed context is considered as an outcome of the model.
- Estimating the parameters of the model from the observations
- Performing Tests
- Proposing Confidence Intervals
- Model selection
- Some Interest of models: Framework for exact computations (concerning, e.g., \mathcal{L}) and prediction
Framework for defining the right concepts and not only the empirical concepts

I. 2 Modelling

- Model: Mathematical representation of a real context
- Modelling a real context (and \mathcal{L}, if possible) submitted to a random environment: customer purchases
meteorological measurements
patient diseases ...
- Observed context is considered as an outcome of the model.
- Estimating the parameters of the model from the observations
- Performing Tests
- Proposing Confidence Intervals
- Model selection
- Some Interest of models: Framework for exact computations (concerning, e.g., \mathcal{L}) and prediction
Framework for defining the right concepts and not only the empirical concepts

I. 3 Sampling
 6 / 43

- Considering a given \mathcal{C} or \mathcal{L} as a population and Sampling, Bootstrapping from \mathcal{C} or from \mathcal{L}
Application: Concept Counting (estimating $|\mathcal{L}|$), and quickly check the feasibility of an potentially exponential time listing of all concepts

I. 3 Sampling

- Considering a given \mathcal{C} or \mathcal{L} as a population and Sampling, Bootstrapping from \mathcal{C} or from \mathcal{L}
Application : Concept Counting (estimating $|\mathcal{L}|$), and quickly check the feasibility of an potentially exponential time listing of all concepts

II - MODELS OF RANDOM BINARY CONTEXTS

Bernoulli Model
Hierarchical Bernoulli Models
Indian Buffet
Latent Block Model

Survival Analysis with frailtyness

II. 1 Bernoulli (p) Model: Simulation

Illustration In R software :
$p=0.4$: probability that an entry be equal to 1
$m=10$ rows (customers, objects), $I=1, \ldots, m$
$n=5$ columns (items, attributes) $J=1, \ldots, n$
$\mathcal{D}=m \times n$ random binary matrix
$\{1,4\}$ may be closed or not closed, depending on the outcome D.

II. 1 Bernoulli (p) Model: Simulation

Illustration In R software :
$p=0.4$: probability that an entry be equal to 1
$m=10$ rows (customers, objects), $I=1, \ldots, m$
$n=5$ columns (items, attributes) $J=1, \ldots, n$
$\mathcal{D}=m \times n$ random binary matrix
$\{1,4\}$ may be closed or not closed, depending on the outcome D.

II. 2 Random Concepts
 $9 / 43$

p_{j} probability that any entry of column j be equal to 1 The entries of the matrix \mathcal{D} are independent r.v.s.
O a subset of objects, A a subset of attributes (itemset)
Probability that the rectangle $O \times A$ be a concept ?
The rectangle $O \times A$ is a concept (maximal rectangle of ones) iff

1. $O \times A$ is filled of ones
and
2. each row of the rectangle $(I-O) \times A$ contains at least one zero
3. each column of the rectangle $O \times(J-A)$ contains at least one zero

II. 2 Random Concepts

9 / 43
p_{j} probability that any entry of column j be equal to 1
The entries of the matrix \mathcal{D} are independent r.v.s.
O a subset of objects, A a subset of attributes (itemset)
Probability that the rectangle $O \times A$ be a concept?
The rectangle $O \times A$ is a concept (maximal rectangle of ones) iff

1. $O \times A$ is filled of ones
and
2. each row of the rectangle $(I-O) \times A$ contains at least one zero
3. each column of the rectangle $O \times(J-A)$ contains at least one zero

II. 2 Random Concepts

$9 / 43$
p_{j} probability that any entry of column j be equal to 1
The entries of the matrix \mathcal{D} are independent r.v.s.
O a subset of objects, A a subset of attributes (itemset)
Probability that the rectangle $O \times A$ be a concept?
The rectangle $O \times A$ is a concept (maximal rectangle of ones) iff

1. $O \times A$ is filled of ones
and
2. each row of the rectangle $(I-O) \times A$ contains at least one zero
and
3. each column of the rectangle $O \times(J-A)$ contains at least one zero

II. 2 Random Concepts
 9 / 43

p_{j} probability that any entry of column j be equal to 1
The entries of the matrix \mathcal{D} are independent r.v.s.
O a subset of objects, A a subset of attributes (itemset)
Probability that the rectangle $O \times A$ be a concept?
The rectangle $O \times A$ is a concept (maximal rectangle of ones) iff

1. $O \times A$ is filled of ones
and
2. each row of the rectangle $(I-O) \times A$ contains at least one zero and
3. each column of the rectangle $O \times(J-A)$ contains at least one zero

II. 3 Computation in the Bernoulli model case

R. Emilion, G. Lévy, Disc. Appl. Math. J, 157, 2945-2957 (2009) Let $p_{A}:=\Pi_{j \in A} p_{j}$.

One row of $O \times A$ is filled with ones with probability (w.p.): p_{A} $O \times A$ is filled of ones w.p. $p_{A}^{|O|}$

One row of $(I-O) \times A)$ contains at least one zero w.p. $1-p_{A}$ each row of $(I-O) \times A)$ contains at least one zero w.p. $\left(1-p_{A}\right)^{m-1 O}$ 3. Column j of $O \times(J-A)$ contains at least one zero w.p.: $1-p_{j}^{\mid O}$ each column of $O \times(. I-A)$ contains at least one zero $w n: \Pi_{j \notin A}\left(1-p_{j}\right)$ Due to independency we arrive at
Proposition 1

II. 3 Computation in the Bernoulli model case

R. Emilion, G. Lévy, Disc. Appl. Math. J, 157, 2945-2957 (2009) Let $p_{A}:=\Pi_{j \in A} p_{j}$.
1.

One row of $O \times A$ is filled with ones with probability (w.p.): p_{A}

One row of $(I-O) \times A)$ contains at least one zero w.p. $1-p_{A}$
each row of $(I-O) \times A)$ contains at least one zero w.p. $\left(1-p_{A}\right)^{m-|O|}$
3.

Column j of $O \times(J-A)$ contains at least one zero w.p.: $1-p_{j}^{|O|}$
each column of $O \times(. J-A)$ contains at least one zero wn: $\Pi_{j c A}\left(1-p_{j}\right)$
Due to independency we arrive at
Proposition 1

II. 3 Computation in the Bernoulli model case

R. Emilion, G. Lévy, Disc. Appl. Math. J, 157, 2945-2957 (2009) Let $p_{A}:=\Pi_{j \in A} p_{j}$.
1.

One row of $O \times A$ is filled with ones with probability (w.p.): p_{A} $O \times A$ is filled of ones w.p. $p_{A}^{|O|}$

One row of $(I-O) \times A)$ contains at least one zero w.p. $1-p_{A}$
each row of $(I-O) \times A)$ contains at least one zero w.p. $\left(1-p_{A}\right)^{m-|O|}$
3.

Column j of $O \times(J-A)$ contains at least one zero w.p.: $1-p_{j}^{|O|}$
each column of $O \times(. J-A)$ contains at least one zero wn: $\Pi_{j \subset A}\left(1-p_{j}\right)$
Due to independency we arrive at
Proposition 1

II. 3 Computation in the Bernoulli model case

R. Emilion, G. Lévy, Disc. Appl. Math. J, 157, 2945-2957 (2009)

Let $p_{A}:=\Pi_{j \in A} p_{j}$.
1.

One row of $O \times A$ is filled with ones with probability (w.p.): p_{A} $O \times A$ is filled of ones w.p. $p_{A}^{|O|}$
2.

One row of $(I-O) \times A)$ contains at least one zero w.p. $1-p_{A}$
each row of $(I-O) \times A)$ contains at least one zero w.p. $\left(1-p_{A}\right)^{m-O}$

Column j of $O \times(J-A)$ contains at least one zero w.p.: $1-p_{j}^{|O|}$
each column of $O \times(J-A)$ contains at least one zero $w: n: \Pi_{j \neq A}\left(1-p_{j}\right)$
Due to independency we arrive at
Proposition 1

II. 3 Computation in the Bernoulli model case

R. Emilion, G. Lévy, Disc. Appl. Math. J, 157, 2945-2957 (2009)

Let $p_{A}:=\Pi_{j \in A} p_{j}$.
1.

One row of $O \times A$ is filled with ones with probability (w.p.): p_{A}
$O \times A$ is filled of ones w.p. $p_{A}^{|O|}$
2.

One row of $(I-O) \times A)$ contains at least one zero w.p. $1-p_{A}$
each row of $(I-O) \times A)$ contains at least one zero w.p. $\left(1-p_{A}\right)^{m-|O|}$
3
Column j of $O \times(J-A)$ contains at least one zero w.p.: $1-p_{j}^{|O|}$
each column of $O \times(J-A)$ contains at least one zero w.p.: $\Pi_{j \notin A}\left(1-p_{j}\right)$
Due to independency we arrive at
Proposition 1

II. 3 Computation in the Bernoulli model case

R. Emilion, G. Lévy, Disc. Appl. Math. J, 157, 2945-2957 (2009)

Let $p_{A}:=\Pi_{j \in A} p_{j}$.
1.

One row of $O \times A$ is filled with ones with probability (w.p.): p_{A}
$O \times A$ is filled of ones w.p. $p_{A}^{|O|}$
2.

One row of $(I-O) \times A)$ contains at least one zero w.p. $1-p_{A}$
each row of $(I-O) \times A)$ contains at least one zero w.p. $\left(1-p_{A}\right)^{m-|O|}$
3.

Column j of $O \times(J-A)$ contains at least one zero w.p.: $1-p_{j}^{|O|}$
each column of $O \times(J-A)$ contains at least one zero w.p.: $\Pi_{j \notin A}\left(1-p_{j}^{O \mid}\right)$
Due to independency we arrive at
Proposition 1
$O \times A$ is a maximal rectangle w.p. $p_{A}^{|O|}\left(1-p_{A}\right)^{m-|O|} \prod_{j \notin A}\left(1-p_{j}^{|O|}\right)$

II. 3 Computation in the Bernoulli model case

R. Emilion, G. Lévy, Disc. Appl. Math. J, 157, 2945-2957 (2009)

Let $p_{A}:=\Pi_{j \in A} p_{j}$.
1.

One row of $O \times A$ is filled with ones with probability (w.p.): p_{A}
$O \times A$ is filled of ones w.p. $p_{A}^{|O|}$
2.

One row of $(I-O) \times A)$ contains at least one zero w.p. $1-p_{A}$
each row of $(I-O) \times A)$ contains at least one zero w.p. $\left(1-p_{A}\right)^{m-|O|}$
3.

Column j of $O \times(J-A)$ contains at least one zero w.p.: $1-p_{j}^{|O|}$
each column of $O \times(J-A)$ contains at least one zero w.p.: $\Pi_{j \notin A}\left(1-p_{j}^{|O|}\right)$
Due to independency we arrive at
Proposition 1
$O \times A$ is a maximal rectangle w.p. $p_{A}^{|O|}\left(1-p_{A}\right)^{m-|O|} \Pi_{j \notin A}\left(1-p_{j}^{|O|}\right)$

II. 3 Computation in the Bernoulli model case

R. Emilion, G. Lévy, Disc. Appl. Math. J, 157, 2945-2957 (2009)

Let $p_{A}:=\Pi_{j \in A} p_{j}$.
1.

One row of $O \times A$ is filled with ones with probability (w.p.): p_{A}
$O \times A$ is filled of ones w.p. $p_{A}^{|O|}$
2.

One row of $(I-O) \times A)$ contains at least one zero w.p. $1-p_{A}$
each row of $(I-O) \times A)$ contains at least one zero w.p. $\left(1-p_{A}\right)^{m-|O|}$
3.

Column j of $O \times(J-A)$ contains at least one zero w.p.: $1-p_{j}^{|O|}$
each column of $O \times(J-A)$ contains at least one zero w.p.: $\Pi_{j \notin A}\left(1-p_{j}^{|O|}\right)$
Due to independency we arrive at
Proposition 1
$O \times A$ is a maximal rectangle w.p. $p_{A}^{|O|}\left(1-p_{A}\right)^{m-|O|} \Pi_{j \notin A}\left(1-p_{j}^{|O|}\right)$

II. 4 Probability of A be closed, in the Bernoulli model case 11 / 43

- Given A, the preceding proposition shows that the probability only depends on the size $|O|$ of O

and there are $\binom{m}{k}$ subsets O such that $|O|=k$ we arrive at the
Pronosition 2
$\operatorname{Prob}(A$ is k-closed $)=\sum_{k=0}^{m}\binom{m}{k} p_{A}^{k}\left(1-p_{A}\right)^{m-k} \Pi_{j \notin A}\left(1-p_{j}^{k}\right)$
- If $p_{j}=p$ does not depend on j, we have $p_{A}=p^{|A|}$ and

Proposition 3
$\operatorname{Prob}(A$ is k-closed $)=\sum_{k=0}^{m}\binom{m}{k} p^{k|A|}\left(1-p^{|A|}\right)^{m-k}\left(1-p^{k}\right)^{n-|A|}$

II. 4 Probability of A be closed, in the Bernoulli model case 11 / 43

- Given A, the preceding proposition shows that the probability only depends on the size $|O|$ of O
- As $\operatorname{Prob}(A$ is k-closed $)=\sum_{O \in \mathcal{P}(I)} \operatorname{Prob}(O \times A$ is a concept $)$
and there are $\binom{m}{k}$ subsets O such that $|O|=k$ we arrive at the
Proposition 2
$\operatorname{Prob}(A$ is k-clos $\epsilon \mathrm{d})=\sum_{k=0}^{m}\binom{m}{k} p_{A}^{k}\left(1-p_{A}\right)^{m-k_{i}} \Pi_{j \notin A}\left(1-p_{j}^{k}\right)$
- If $p_{j}=p$ does not depend on j, we have $p_{A}=p^{|A|}$ and

Proposition 3
$\operatorname{Prob}(A$ is k-closed $)=\sum_{k=0}^{m}\binom{m}{k} p^{k|A|}\left(1-p^{|A|}\right)^{m-k}\left(1-p^{k}\right)^{n-|A|}$

II. 4 Probability of A be closed, in the Bernoulli model case 11 / 43

- Given A, the preceding proposition shows that the probability only depends on the size $|O|$ of O
- As $\operatorname{Prob}(A$ is k-closed $)=\sum_{O \in \mathcal{P}(I)} \operatorname{Prob}(O \times A$ is a concept $)$ and there are $\binom{m}{k}$ subsets O such that $|O|=k$ we arrive at the

Proposition 2
$\operatorname{Prob}(A$ is k-closed $)=\sum_{k=0}^{m}\binom{m}{k} p_{A}^{k}\left(1-p_{A}\right)^{m-k} \Pi_{j \notin A}\left(1-p_{j}^{k}\right)$

- If $p_{j}=p$ does not depend on j, we have $p_{A}=p^{|A|}$ and

Proposition 3
$\operatorname{Prob}(A$ is k-closed $)=\sum_{k=0}^{m}\binom{m}{k} p^{k|A|}\left(1-p^{|A|}\right)^{m-k}\left(1-p^{k}\right)^{n-|A|}$

II. 4 Probability of A be closed, in the Bernoulli model case 11 / 43

- Given A, the preceding proposition shows that the probability only depends on the size $|O|$ of O
- As $\operatorname{Prob}(A$ is k-closed $)=\sum_{O \in \mathcal{P}(I)} \operatorname{Prob}(O \times A$ is a concept $)$ and there are $\binom{m}{k}$ subsets O such that $|O|=k$ we arrive at the

Proposition 2

$\operatorname{Prob}(A$ is k-closed $)=\sum_{k=0}^{m}\binom{m}{k} p_{A}^{k}\left(1-p_{A}\right)^{m-k} \Pi_{j \notin A}\left(1-p_{j}^{k}\right)$

- If $p_{j}=p$ does not depend on j, we have $p_{A}=p^{|A|}$ and

Proposition 3
$\operatorname{Prob}(A$ is k-closed $)=\sum_{k=0}^{m}\binom{m}{k} p^{k|A|}\left(1-p^{|A|}\right)^{m-k}\left(1-p^{k}\right)^{n-|A|}$

II. 4 Probability of A be closed, in the Bernoulli model case 11 / 43

- Given A, the preceding proposition shows that the probability only depends on the size $|O|$ of O
- As $\operatorname{Prob}(A$ is k-closed $)=\sum_{O \in \mathcal{P}(I)} \operatorname{Prob}(O \times A$ is a concept $)$ and there are $\binom{m}{k}$ subsets O such that $|O|=k$ we arrive at the

Proposition 2

$\operatorname{Prob}(A$ is k-closed $)=\sum_{k=0}^{m}\binom{m}{k} p_{A}^{k}\left(1-p_{A}\right)^{m-k} \Pi_{j \notin A}\left(1-p_{j}^{k}\right)$

- If $p_{j}=p$ does not depend on j, we have $p_{A}=p^{|A|}$ and

Proposition 3
$\operatorname{Prob}(A$ is k-closed $)=\sum_{k=0}^{m}\binom{m}{k} p^{k|A|}\left(1-p^{|A|}\right)^{m-k}\left(1-p^{k}\right)^{n-|A|}$

II. 4 Probability of A be closed, in the Bernoulli model case 11 / 43

- Given A, the preceding proposition shows that the probability only depends on the size $|O|$ of O
- As $\operatorname{Prob}(A$ is k-closed $)=\sum_{O \in \mathcal{P}(I)} \operatorname{Prob}(O \times A$ is a concept $)$ and there are $\binom{m}{k}$ subsets O such that $|O|=k$ we arrive at the

Proposition 2

$\operatorname{Prob}(A$ is k-closed $)=\sum_{k=0}^{m}\binom{m}{k} p_{A}^{k}\left(1-p_{A}\right)^{m-k} \Pi_{j \notin A}\left(1-p_{j}^{k}\right)$

- If $p_{j}=p$ does not depend on j, we have $p_{A}=p^{|A|}$ and

Proposition 3
$\operatorname{Prob}(A$ is k-closed $)=\sum_{k=0}^{m}\binom{m}{k} p^{k|A|}\left(1-p^{|A|}\right)^{m-k}\left(1-p^{k}\right)^{n-|A|}$

II. 5 Expectation of $|\mathcal{L}|$ in the Bernoulli model case $12 / 43$

- Since the number of concepts is equal to the number of k-closed itemsets, we have

$$
|L|=\sum_{A \in \mathcal{P}(J)} 1_{A} \text { is } k \text {-closed }
$$

- Taking expectation we get

and grouping the subsets A with same cardinality we get
Theorem 1

II. 5 Expectation of $|\mathcal{L}|$ in the Bernoulli model case $12 / 43$

- Since the number of concepts is equal to the number of k-closed itemsets, we have

$$
|L|=\sum_{A \in \mathcal{P}(J)} 1_{A} \text { is } k \text {-closed }
$$

- Taking expectation we get

$$
\begin{aligned}
\mathbb{E}(|L|) & =\sum_{A \in \mathcal{P}(J)} \operatorname{prob}(A \text { is } k \text {-closed }) \\
& =\sum_{A \in \mathcal{P}(J)} \sum_{k=0}^{m}\binom{m}{k} p^{k|A|}\left(1-p^{|A|}\right)^{m-k}\left(1-p^{k}\right)^{n-|A|}
\end{aligned}
$$

and grouping the subsets A with same cardinality we get
Theorem 1

II. 5 Expectation of $|\mathcal{L}|$ in the Bernoulli model case 12 / 43

- Since the number of concepts is equal to the number of k-closed itemsets, we have

$$
|L|=\sum_{A \in \mathcal{P}(J)} 1_{A} \text { is } k \text {-closed }
$$

- Taking expectation we get

$$
\begin{aligned}
\mathbb{E}(|L|) & =\sum_{A \in \mathcal{P}(J)} \operatorname{prob}(A \text { is } k \text {-closed }) \\
& =\sum_{A \in \mathcal{P}(J)} \sum_{k=0}^{m}\binom{m}{k} p^{k|A|}\left(1-p^{|A|}\right)^{m-k}\left(1-p^{k}\right)^{n-|A|}
\end{aligned}
$$

and grouping the subsets A with same cardinality we get
Theorem 1

$$
\mathbb{E}(|L|)=\sum_{l=0}^{n}\binom{n}{l} \sum_{k=0}^{m}\binom{m}{k} p^{k l}\left(1-p^{l}\right)^{m-k}\left(1-p^{k}\right)^{n-l}
$$

II. 6 Variance of $|\mathcal{L}|$ in the Bernoulli model case

- Computation of $\operatorname{Prob}(A$ and B be closed), $A, B \in \mathcal{P}(J)$

Instead of having just 3 cases, namely $O \times A, I-O \times A, O \times J-A$, it appears 16 cases. Some formulas in (Emilion-Lévy can be simplified).
-Taking expectation yields $\mathbb{E}\left(\mid L^{\mid 2}\right)$ and therefore $\operatorname{var}(|L|)=\mathbb{E}\left(|L|^{2}\right)-(\mathbb{E}(|L|))^{2}$

II. 6 Variance of $|\mathcal{L}|$ in the Bernoulli model case $13 / 43$

- Computation of $\operatorname{Prob}(A$ and B be closed), $A, B \in \mathcal{P}(J)$ Instead of having just 3 cases, namely $O \times A, I-O \times A, O \times J-A$, it appears 16 cases. Some formulas in (Emilion-Lévy can be simplified).

II. 6 Variance of $|\mathcal{L}|$ in the Bernoulli model case $13 / 43$

- Computation of $\operatorname{Prob}(A$ and B be closed), $A, B \in \mathcal{P}(J)$ Instead of having just 3 cases, namely $O \times A, I-O \times A, O \times J-A$, it appears 16 cases. Some formulas in (Emilion-Lévy can be simplified).
- Taking expectation yields $\mathbb{E}\left(|L|^{2}\right)$ and therefore $\operatorname{var}(|L|)=\mathbb{E}\left(|L|^{2}\right)-(\mathbb{E}(|L|))^{2}$

II. $7 \mu, \sigma$ exact values in the Bernoulli model case

m	n	p	μ	σ	$95 \% \mathrm{CI}$ for L
14	10	0.3	32.48	6.47	$[3,62]$
15	15	0.9	489.47	373.74	$[1,2161]$
20	15	0.25	62.78	11.09	$[13,113]$
20	20	0.65	1945.49	469.16	$[1,4044]$
25	15	0.85	3758.31	1625.93	$[1,11030]$
30	12	0.85	1598.66	538.70	$[1,4008]$

II. 8 Bernoulli context, CL size Expectation 15 / 43

Figure: Estimated and Exact Mean size of Bernoulli Concept Lattices

II. 9 Experiments for σ in the Bernoulli model case
 16 / 43

m	n	p	σ	S_{300}	$95 \% \mathrm{Cl}$	S_{1000}
14	10	0.3	6.47	5.94	$5.03-7.94$	6.40
15	15	0.9	373.74	321.43	$284.39-386.57$	370.6
20	15	0.25	11.09	11.14	$8.92-12.96$	11.04
20	20	0.65	469.16	469.65	$433.60-497.42$	468.25
25	15	0.85	1625.93	1688.60	$1493.90-1743.60$	1626.20
30	12	0.85	538.70	549.30	$503.96-566.11$	535.79

II. 10 Hierarchical Bernoulli context

R.E., Selected contributions in Data Analysis and Classification, 247-259, Springer, 2007 Context: $m \times r$ random binary matrix \mathcal{C} U a latent class variable $\in\{1, \ldots, K\}$ over the individuals

$$
\left\{\begin{array}{ccc}
q=\left(q_{1}, \ldots, q_{K}\right) & \sim & \operatorname{Dirichlet}\left(\gamma_{1}, \ldots, \gamma_{K}\right) \\
U \in\{1, \ldots, K\}: P(U=u \mid q) & = & q_{u} \\
\left.\mathcal{C}\right|_{U=u, q} & \sim & \otimes_{j=1}^{r} B\left(p_{u, j}\right) \\
\left.\mathcal{C}\right|_{q} & \sim & \sum_{u=1}^{K} q_{u} \otimes_{j=1}^{r} B\left(p_{u, j}\right)
\end{array}\right.
$$

II. 11 Indian Buffet context

Y. W. Teh, D. Gorur, Z. Ghahramani

Beta - Bernoulli Context: $m \times r$ random binary matrix \mathcal{C}

$$
\left\{\begin{array}{ccc}
p_{1}, \ldots, p_{r} & \stackrel{i . i . d .}{\sim} & \operatorname{Beta}\left(\frac{\alpha}{r}, 1\right) \\
\mathcal{C}_{i j} \mid p_{1}, \ldots, p_{r} & \stackrel{i n d}{\sim} & \operatorname{Bernoulli}\left(p_{j}\right)
\end{array}\right.
$$

Limit:
Step 1: Customer 1 chooses $K^{(1)}$ different items, where $K^{(1)} \sim \operatorname{Poisson}(\alpha)$
Step 2: Customer 2 arrives and chooses to enjoy each of the items already chosen with probability $1 / 2$. In addition, he chooses $K^{(2)}$ new items, where $K^{(2)} \sim \operatorname{Poisson}(\alpha / 2)$ Steps 3 through N : The i th customer arrives and chooses to enjoy each of the items already chosen with probability $m_{k i} / i$, where $m_{k i}$ is the number of customers who have chosen the k th item before the i th customer. In addition, the i th customer chooses $K^{(i)} \sim \operatorname{Poisson}(\alpha / i)$ new items.

II. 12 Latent Block model

19 / 43

G. Govaert, M. Nadif, Co-clustering. Context: $m \times r$ random binary matrix \mathcal{C} \mathcal{Z} set of partitions of I into g subsets \mathcal{W} set of partitions of J into h subsets

$$
f(\mathcal{C} ; \theta)=\sum_{(z, w) \in \mathcal{Z} \times \mathcal{W}} p(z ; \theta) p(w ; \theta) \prod_{i, j, k, l} \text { Bernoulli }\left(c_{i, j} ; \alpha_{k, l}\right)^{z_{i, k} w_{j, l}}
$$

II. 13 Recurrent events with frailty models

A disease (crisis), or a failure, appearing several times.
Context: $m \times n$ random binary matrix \mathcal{C}
$1: m$ set of patients
$1: n$ Observation times (deterministic right censoring)
or locations
If the disease starts at time j for patient i then $\mathcal{C}_{i, j}=1$ else $\mathcal{C}_{i, j}=0$.
X_{i} a random variable representing frailty of patient i
The interarrival times (between two diseases) given X_{i} are i.i.d.
Simple case: $X_{i} \stackrel{i . i . d .}{\sim} \gamma$
Non Parametric Bayesian case $X_{i} \mid P \sim P, P \sim \operatorname{Dirichlet}(c \gamma)$
In the case of locations: spatial dependance.
A. Adekpedjou, R. Emilion, S. Niang (in progress)

III-Sampling

- Sampling in a large set
- Markov Chains in \mathcal{L}
- Sampling and Counting concepts

III. 1 Sampling in a large set

- Selecting an element at random on a large (but finite) set, e.g., \mathcal{L}
- At random ? Given a probability measure Q on \mathcal{L}, propose an algorithm X which outputs are elements of \mathcal{L} and such that $\operatorname{Prob}(X=l)=Q\{l\}=q_{l}$ for any $l \in \mathcal{L}$ - When Q is uniform, i.e. $q_{l}=\frac{1}{|C|}$: sampling at random, in common language - Problems : L is very large, listing L is tedious, $|\mathcal{L}|$ is unknown - More general problem : $\operatorname{Prob}(X=l) \propto v(l)$ a function of l which no need to sum up to 1

III. 1 Sampling in a large set

- Selecting an element at random on a large (but finite) set, e.g., \mathcal{L}
- At random ? Given a probability measure Q on \mathcal{L}, propose an algorithm X which outputs are elements of \mathcal{L} and such that $\operatorname{Prob}(X=l)=Q\{l\}=q_{l}$ for any $l \in \mathcal{L}$
- When Q is uniform, i.e. $q_{l}=\frac{1}{|\mathcal{L}|}$: sampling at random, in common language
- Problems : L is very large, listing L is tedious, $|\mathcal{L}|$ is unknown
- More general problem : $\operatorname{Prob}(X=l) \propto v(l)$ a function of l which no need to sum up
to 1

III. 1 Sampling in a large set

- Selecting an element at random on a large (but finite) set, e.g., \mathcal{L}
- At random ? Given a probability measure Q on \mathcal{L}, propose an algorithm X which outputs are elements of \mathcal{L} and such that $\operatorname{Prob}(X=l)=Q\{l\}=q_{l}$ for any $l \in \mathcal{L}$
- When Q is uniform, i.e. $q_{l}=\frac{1}{\mathcal{L}}$: sampling at random, in common language
- Problems : L is very large, listing L is tedious, $|\mathcal{L}|$ is unknown
- More general problem : $\operatorname{Prob}(X=l) \propto v(l)$ a function of l which no need to sum up
to 1

III. 1 Sampling in a large set

- Selecting an element at random on a large (but finite) set, e.g., \mathcal{L}
- At random ? Given a probability measure Q on \mathcal{L}, propose an algorithm X which outputs are elements of \mathcal{L} and such that $\operatorname{Prob}(X=l)=Q\{l\}=q_{l}$ for any $l \in \mathcal{L}$
- When Q is uniform, i.e. $q_{l}=\frac{1}{|\mathcal{L}|}$: sampling at random, in common language
- Problems : L is very large, listing L is tedious, $|\mathcal{L}|$ is unknown
- More general problem : $\operatorname{Prob}(X=l) \propto v(l)$ a function of l which no need to sum up
to 1

III. 1 Sampling in a large set

- Selecting an element at random on a large (but finite) set, e.g., \mathcal{L}
- At random ? Given a probability measure Q on \mathcal{L}, propose an algorithm X which outputs are elements of \mathcal{L} and such that $\operatorname{Prob}(X=l)=Q\{l\}=q_{l}$ for any $l \in \mathcal{L}$
- When Q is uniform, i.e. $q_{l}=\frac{1}{|\mathcal{L}|}$: sampling at random, in common language .
- Problems : L is very large, listing L is tedious, $|\mathcal{L}|$ is unknown
- More general problem $\operatorname{Prob}(X=l) \propto v(l)$ a function of l which no need to sum up
to 1.

III. 1 Sampling in a large set

- Selecting an element at random on a large (but finite) set, e.g., \mathcal{L}
- At random ? Given a probability measure Q on \mathcal{L}, propose an algorithm X which outputs are elements of \mathcal{L} and such that $\operatorname{Prob}(X=l)=Q\{l\}=q_{l}$ for any $l \in \mathcal{L}$
- When Q is uniform, i.e. $q_{l}=\frac{1}{|\mathcal{L}|}$: sampling at random, in common language.
- Problems : L is very large, listing L is tedious, $|\mathcal{L}|$ is unknown
- More general problem : $\operatorname{Prob}(X=l) \propto v(l)$ a function of l which no need to sum up to 1 .

III. 2 Markov Chains
 $23 / 43$

- Classical Central limit Theorem (CLT) holds for i.i.d. r.v.s
- Markov triying to generalizing for non i.i.d. r.v.s found his famous definition: $\Omega \rightarrow \mathcal{L}$ (the state space)


```
- The chain 'forgets' its past.
```

- Transitions:

$$
P\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n+1}\right)=p\left(x_{n+1}, x_{n}\right)
$$

- $P\left(X_{0}=x_{0}\right)$ initial distribution

- Simulation in R software.

III. 2 Markov Chains 23 / 43

- Classical Central limit Theorem (CLT) holds for i.i.d. r.v.s
- Markov triying to generalizing for non i.i.d. r.v.s found his famous definition:
- $X_{0}, \ldots, X_{n}, \ldots: \Omega \rightarrow \mathcal{L}$ (the state space)

- The chain 'forgets' its past.
- Transitions:
$P\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n+1}\right)=p\left(x_{n+1}, x_{n}\right)$
- $P\left(X_{0}=x_{0}\right)$ initial distribution.
- Simulation in R software.

III. 2 Markov Chains
 $23 / 43$

- Classical Central limit Theorem (CLT) holds for i.i.d. r.v.s
- Markov triying to generalizing for non i.i.d. r.v.s found his famous definition:
- $X_{0}, \ldots, X_{n}, \ldots: \Omega \rightarrow \mathcal{L}$ (the state space)

$$
P\left(X_{n+1}=x_{n+1} \mid X_{n}, \ldots, X_{0}\right)=P\left(X_{n+1}=x_{n+1} \mid X_{n}\right)
$$

- The chain 'forgets' its past.
- Transitions:

$$
P\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n+1}\right)=p\left(x_{n+1}, x_{n}\right)
$$

- $P\left(X_{0}=x_{0}\right)$ initial distribution
- Simulation in R software.

III. 2 Markov Chains

- Classical Central limit Theorem (CLT) holds for i.i.d. r.v.s
- Markov triying to generalizing for non i.i.d. r.v.s found his famous definition:
- $X_{0}, \ldots, X_{n}, \ldots: \Omega \rightarrow \mathcal{L}$ (the state space)

$$
P\left(X_{n+1}=x_{n+1} \mid X_{n}, \ldots, X_{0}\right)=P\left(X_{n+1}=x_{n+1} \mid X_{n}\right)
$$

- The chain 'forgets' its past.
- Transitions:
$P\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n+1}\right)=p\left(x_{n+1}, x_{n}\right)$
- $P\left(X_{0}=x_{0}\right)$ initial distribution
- Simulation in R software.

III. 2 Markov Chains

- Classical Central limit Theorem (CLT) holds for i.i.d. r.v.s
- Markov triying to generalizing for non i.i.d. r.v.s found his famous definition:
- $X_{0}, \ldots, X_{n}, \ldots: \Omega \rightarrow \mathcal{L}$ (the state space)

$$
P\left(X_{n+1}=x_{n+1} \mid X_{n}, \ldots, X_{0}\right)=P\left(X_{n+1}=x_{n+1} \mid X_{n}\right)
$$

- The chain 'forgets' its past.
- Transitions:

$$
P\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n+1}\right)=p\left(x_{n+1}, x_{n}\right)
$$

- $P\left(X_{0}=x_{0}\right)$ initial distribution
- Simulation in R software.

III. 2 Markov Chains

- Classical Central limit Theorem (CLT) holds for i.i.d. r.v.s
- Markov triying to generalizing for non i.i.d. r.v.s found his famous definition:
- $X_{0}, \ldots, X_{n}, \ldots: \Omega \rightarrow \mathcal{L}$ (the state space)

$$
P\left(X_{n+1}=x_{n+1} \mid X_{n}, \ldots, X_{0}\right)=P\left(X_{n+1}=x_{n+1} \mid X_{n}\right)
$$

- The chain 'forgets' its past.
- Transitions:

$$
P\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n+1}\right)=p\left(x_{n+1}, x_{n}\right)
$$

- $P\left(X_{0}=x_{0}\right)$ initial distribution.
- Simulation in R software.

III. 2 Markov Chains

- Classical Central limit Theorem (CLT) holds for i.i.d. r.v.s
- Markov triying to generalizing for non i.i.d. r.v.s found his famous definition:
- $X_{0}, \ldots, X_{n}, \ldots: \Omega \rightarrow \mathcal{L}$ (the state space)

$$
P\left(X_{n+1}=x_{n+1} \mid X_{n}, \ldots, X_{0}\right)=P\left(X_{n+1}=x_{n+1} \mid X_{n}\right)
$$

- The chain 'forgets' its past.
- Transitions:

$$
P\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n+1}\right)=p\left(x_{n+1}, x_{n}\right)
$$

- $P\left(X_{0}=x_{0}\right)$ initial distribution.
- Simulation in R software.

III. 3 Markov Chains and sampling

- Sampling with MC. Main idea: find a MC such that

$$
\lim _{n \rightarrow+\infty} P\left(X_{n}=l\right)=q_{l}
$$

(if the limit exists : ergodicity, steady state)

- Problems:

Theoretical proof of ergodicity
From which n can we consider that the steady state is reached This n should not be too large (time consuming) Precision: Perfect sampling

III. 3 Markov Chains and sampling

- Sampling with MC. Main idea: find a MC such that

$$
\lim _{n \rightarrow+\infty} P\left(X_{n}=l\right)=q_{l}
$$

(if the limit exists : ergodicity, steady state)

- Problems:
- Theoretical proof of ergodicity

From which n can we consider that the steady state is reached This n should not be too large (time consuming) Precision: Perfect sampling

III. 3 Markov Chains and sampling

- Sampling with MC. Main idea: find a MC such that

$$
\lim _{n \rightarrow+\infty} P\left(X_{n}=l\right)=q_{l}
$$

(if the limit exists : ergodicity, steady state)

- Problems:
- Theoretical proof of ergodicity
- From which n can we consider that the steady state is reached This n should not be too large (time consuming) Precision: Perfect sampling

III. 3 Markov Chains and sampling

- Sampling with MC. Main idea: find a MC such that

$$
\lim _{n \rightarrow+\infty} P\left(X_{n}=l\right)=q_{l}
$$

(if the limit exists : ergodicity, steady state)

- Problems:
- Theoretical proof of ergodicity
- From which n can we consider that the steady state is reached
- This n should not be too large (time consuming)

III. 3 Markov Chains and sampling

- Sampling with MC. Main idea: find a MC such that

$$
\lim _{n \rightarrow+\infty} P\left(X_{n}=l\right)=q_{l}
$$

(if the limit exists : ergodicity, steady state)

- Problems:
- Theoretical proof of ergodicity
- From which n can we consider that the steady state is reached
- This n should not be too large (time consuming)
- Precision: Perfect sampling

III. 3 Markov Chains and sampling

- Sampling with MC. Main idea: find a MC such that

$$
\lim _{n \rightarrow+\infty} P\left(X_{n}=l\right)=q_{l}
$$

(if the limit exists : ergodicity, steady state)

- Problems:
- Theoretical proof of ergodicity
- From which n can we consider that the steady state is reached
- This n should not be too large (time consuming)
- Precision: Perfect sampling

III. 4 Markov Chains in a graph

- The chain moves from on node to its neighbourhood nodes
- Define the neighbourhood nodes of a node
- Define the transitions

III. 4 Markov Chains in a graph

- The chain moves from on node to its neighbourhood nodes
- Define the neighbourhood nodes of a node
- Define the transitions

III. 4 Markov Chains in a graph

- The chain moves from on node to its neighbourhood nodes
- Define the neighbourhood nodes of a node
- Define the transitions

III. 5 Markov Chain in \mathcal{L}

Mario Boley et. al. SIAM DM 2010
Context $\mathcal{C}=(A, O, \mathcal{D})$
$O[]: \mathcal{P}(A) \rightarrow \mathcal{P}(O)$ extent mapping
$A[]: \mathcal{P}(O) \rightarrow \mathcal{P}(A)$ intent mapping
$\Phi=A \circ O$ and $\Psi=O \circ A$ the closure mappings
Concepts $C=(I, E), I \in \mathcal{P}(A), E \in \mathcal{P}(O)$
I^{\prime} is a Φ-neighbourhood of I if there exists an $a \in A$ such that $\Phi(I \cup a)=I^{\prime}$
E^{\prime} is a Ψ-neighbourhood of E if there exists an $o \in O$ such that $\Psi(E \cup E)=E^{\prime}$

III. 6 Neighbourhoods in \mathcal{L}

(a)

(b)

Figure: Both graphs are used

III. 7 Transitions in \mathcal{L}

$$
q\left(C, C^{\prime}\right)= \begin{cases}\left|G_{\phi}\left(I, I^{\prime}\right)\right| /(2|A|), & \text { if } C \prec C^{\prime} \\ \left|G_{\psi}\left(E, E^{\prime}\right)\right| /(2|O|), & \text { if } C \succ C^{\prime} \\ |I| /(2|A|)+|E| /(2|O|), & \text { if } C=C^{\prime}\end{cases}
$$

Figure: Transitions between two concepts

III. 8 Metropolis-Hasting Transitions in \mathcal{L}

$p\left(C, C^{\prime}\right)= \begin{cases}q\left(C, C^{\prime}\right) \min \left\{\alpha \frac{\pi\left(C^{\prime}\right)}{\pi(C)}, 1\right\}, & \text { if } q\left(C, C^{\prime}\right)>0 \\ 0, & \text { otherwise }\end{cases}$
 where $\alpha=q\left(C^{\prime}, C\right) / q\left(C, C^{\prime}\right)$. This is the Metropolis-

Figure: MH- Transitions between two concepts

III. 8 Metropolis-Hasting Sampling Algorithm in $\mathcal{L} \quad 30$ / 43

```
Algorithm 1 Metropolis-Hastings Concept Sampling
Input : context \((A, O, \mathcal{D})\), number of iterations \(s\),
        oracle of map \(f: \mathcal{C} \rightarrow \mathbb{R}_{+}\)
Output : concept \(\langle I, E\rangle\)
    1. init \(\langle I, E\rangle \sim u(\{\top, \perp\})\) and \(i \leftarrow 0\)
    2. \(i \leftarrow i+1\)
    3. draw \(d \sim u(\{\) up, down \(\})\)
    4. if \(d=u p\) then
    5. draw \(a \sim u(A)\)
6. \(\left\langle I^{\prime}, E^{\prime}\right\rangle \leftarrow\langle\phi(I \cup\{a\}), O[\phi(I \cup\{a\})]\rangle\)
7. \(\quad \alpha \leftarrow\left(\left|G_{\psi}\left(E^{\prime}, E\right)\right||A|\right) /\left(\left|G_{\phi}\left(I, I^{\prime}\right)\right||O|\right)\)
8. else
9. draw \(o \sim u(O)\)
10. \(\left\langle I^{\prime}, E^{\prime}\right\rangle \leftarrow\langle A[\psi(E \cup\{o\})], \psi(E \cup\{o\})\rangle\)
11. \(\alpha \leftarrow\left(\left|G_{\phi}\left(I^{\prime}, I\right)\right||O|\right) /\left(\left|G_{\psi}\left(E, E^{\prime}\right)\right||A|\right)\)
12. draw \(x \sim u([0,1])\)
13. if \(x<\alpha f\left(I^{\prime}\right) / f(I)\) then \(\langle I, E\rangle \leftarrow\left\langle I^{\prime}, E^{\prime}\right\rangle\)
14. if \(i=s\) then return \(\langle I, E\rangle\) else goto 2
```

Figure: MH- Algorithm

III. 9 Application of sampling: concept counting in $\mathcal{L} 31 / 43$

Mario Boley et. al. SIAM DM 2010
Context $\mathcal{C}=\left(A, O_{n}=1: n, \mathcal{D}\right)$
$O_{n}[]: \mathcal{P}(A) \rightarrow \mathcal{P}\left(O_{n}\right)$ extent mapping
$A[]: \mathcal{P}\left(O_{n}\right) \rightarrow \mathcal{P}(A)$ intent maping
$\Phi_{n}=A o O_{n}$ and $\Psi_{n}=O_{n} o A$ the closure mappings
For any $I \in \mathcal{P}(A)$, we have $I \subseteq \Phi_{n+1}(I) \subseteq \Phi_{n}(I)$ and thus $\mathcal{L}_{n} \subseteq \mathcal{L}_{n+1}$

III. 9 Application of sampling: concept counting in $\mathcal{L} 31 / 43$

Mario Boley et. al. SIAM DM 2010
Context $\mathcal{C}=\left(A, O_{n}=1: n, \mathcal{D}\right)$
$O_{n}[]: \mathcal{P}(A) \rightarrow \mathcal{P}\left(O_{n}\right)$ extent mapping
$A[]: \mathcal{P}\left(O_{n}\right) \rightarrow \mathcal{P}(A)$ intent maping
$\Phi_{n}=A o O_{n}$ and $\Psi_{n}=O_{n} o A$ the closure mappings
For any $I \in \mathcal{P}(A)$, we have $I \subseteq \Phi_{n+1}(I) \subseteq \Phi_{n}(I)$ and thus $\mathcal{L}_{n} \subseteq \mathcal{L}_{n+1}$

III. 10 Counting method using sampling

Mario Boley et. al. SIAM DM 2010
$\mathcal{L}_{0}=\{A\},\left|\mathcal{L}_{0}\right|=1$
Sample r concepts in \mathcal{L}_{n+1}
c of them belong to \mathcal{L}_{n} (does not contain $n+1$)
Estimate $\frac{\left|\mathcal{L}_{n}\right|}{\left|\mathcal{L}_{n+1}\right|}$ by $\frac{c}{r}$
If $O=1: m$ then use that

$$
|\mathcal{L}|=\left|\mathcal{L}_{m}\right|=\frac{\left|\mathcal{L}_{m}\right|}{\left|\mathcal{L}_{m-1}\right|} \cdots \frac{\left|\mathcal{L}_{1}\right|}{\left|\mathcal{L}_{0}\right|}
$$

to estimate $|\mathcal{L}|$

IV - Pointwise convergence of empirical RCLs

i.i.d. case
Markov chain case

IV. 1 Random empirical Intents/Extents

(Ω, P) a probability space, \mathcal{F} a countable semilattice
Examples: $\mathcal{F}=\mathcal{P}(A) A$ finite set, binary tree, set of subsets of \mathbb{R} that are countable or their complementary is countable.

IV. 1 Random empirical Intents/Extents

(Ω, P) a probability space, \mathcal{F} a countable semilattice
Examples: $\mathcal{F}=\mathcal{P}(A) A$ finite set, binary tree, set of subsets of \mathbb{R} that are countable or their complementary is countable.
$X: \Omega \longrightarrow \mathcal{F}$ a random variable
Support of $X=$ Supp $_{X}$:
any subset S of F such that $P(X \in S)=1$
Observations: $X_{1}(\omega), \ldots, X_{n}(\omega), \ldots$,
For any $d \in \mathcal{F}$

$$
\begin{gather*}
g_{n}(d)=g_{X_{1}(\omega), \ldots, X_{n}(\omega)}(d)=\left\{i=1, \ldots, n: d \leq X_{i}(\omega)\right\} \tag{1}\\
k_{n}(d)=f_{n}\left(g_{n}(d)\right)=\bigwedge_{u=X_{1}(\omega), \ldots, X_{n}(\omega), d \leq u} u \tag{2}
\end{gather*}
$$

IV. 2 Empirical Intents Pointwise convergence

Theorem

(R.E., Springer 2007)

If \mathcal{F} is a countable σ-semilattice
$X_{1}(\omega), \ldots, X_{n}(\omega), \ldots$, i.i.d. sample of X
Then
$g_{n}(d) \uparrow g_{\infty}(d)=\left\{i=1, \ldots, n, \ldots: d \leq X_{i}(\omega)\right\}$
$k_{n}(d) \downarrow k_{\infty}(d)=\bigwedge_{u \in S u p p_{X}, u \leq d} u$: deterministic limit

- $\left(g_{\infty}, k_{\infty}\right)$ is a GC, $k_{\infty}(\mathcal{F})$ deterministic lattice generated by Supp $_{X}$.
- Induces the CL of a discrete r.v.
- $k_{\infty}(d)$: deterministic ideal concept (intent)
- Does not depend on the observations. Is the limit of empirical intents
- Streaming. Learning.

IV. 3 Pointwise convergence, Markov chain

Theorem

(Emilion 2011)
If \mathcal{F} is a countable σ-semilattice
$X_{1}(\omega), \ldots, X_{n}(\omega), \ldots$, recurrent Markov chain with inv. meas. μ
Then
$g_{n}(d) \uparrow g_{\infty}(d)=\left\{i=1, \ldots, n, \ldots: d \leq X_{i}(\omega)\right\}$
$k_{n}(d) \downarrow k_{\infty}(d)=\bigwedge_{u \in \text { Supp }_{\mu}, u \leq d} u$: deterministic limit
$\left(g_{\infty}, k_{\infty}\right)$ is a GC which induces a CL: the CL of a discrete Markov Chain

IV. 4 Sketch of proof

Since $\operatorname{Supp}_{X} \subseteq \mathcal{F}$ is countable, $\left\{X_{1}(\omega), \ldots, X_{n}(\omega), \ldots\right\}=$ Supp $_{X}$ for a.a. ω Indeed $X_{i}(\omega) \in$ Supp $_{X}$ as $P\left(X_{i} \in \operatorname{Supp}_{X}\right)=P\left(X_{i} \in\right.$ Supp $\left._{X}\right)=1$
Conversely if $d \in S u p p_{X}$, by the Large Number Law, $X_{i}=d$ for an infinity of i.

$$
\begin{aligned}
k_{n}(d) \downarrow k_{\infty}(d) & =\bigwedge_{u \in\left\{X_{1}(\omega), \ldots, X_{n}(\omega), \ldots\right\}, d \leq u} u \\
& =\bigwedge_{u \in \operatorname{Supp}_{X}, d \leq u} u: \text { deterministic limit }
\end{aligned}
$$

LNL also holds for a recurrent Markov Chain which has an invariant measure.

V-Experiments

Bernoulli case
 Mushroom case, Regression

V. 1 Bernoulli context, CL size distribution

Distribution of 500 Bernoulli($15,7,0.6$) CL sizes

Figure: Distribution of Bernoulli CL Size

V. 2 Bernoulli context, CL depth distribution

Sample: 120, rows: 60, col: 15, p: 0.6

Figure: Distribution of Bernoulli CL Depth

V. 3 Bernoulli context, CL width distribution

Sample: 120, rows: 60, col: 15, p: 0.6

Figure: Distribution of Bernoulli CL Width

V. 4 Bernoulli context, CL Size Depth Width PCA

Figure: PCA on Bernoulli CLs

V. 5 Mushroom context, Regression : Number of concepts w.r.t. number of ones

Mushroom dataset: Linear regression of y by x

Figure: Linear regression, concepts of the r first rows, $r=1000,1100, \ldots, 8124$

