Tutorial Probability, Statistics and Concept Lattices

Richard EMILION (MAPMO Lab., Orléans University, France)

Palacky University, Olomouc, Czech Republic

INVESTMENTS IN EDUCATION DEVELOPMENT

Outline

- Part I Motivations
- Part II Models
- Part III Sampling
- Part IV Pointwise convergence of empirical CLs
- Part V Experiments, Regression

Part I - MOTIVATIONS

Models Sampling

4 / 43

• Context $\mathcal{C} = (I, J, \mathcal{D})$ (Binary matrix case), \mathcal{L} its concept lattice.

 \bullet Examples of complex and time consuming tasks : listing $\mathcal{L},$ the frequent itemsets, the associative rules

- Probabilistic and Statistical methods can be used at least for : 1. *Modelling*
- 2. Sampling, Bootstrapping

- Context $\mathcal{C} = (I, J, \mathcal{D})$ (Binary matrix case), \mathcal{L} its concept lattice.
- \bullet Examples of complex and time consuming tasks : listing $\mathcal{L},$ the frequent itemsets, the associative rules
- Probabilistic and Statistical methods can be used at least for : 1. *Modelling*
- 2. Sampling, Bootstrapping

- Context $\mathcal{C} = (I, J, \mathcal{D})$ (Binary matrix case), \mathcal{L} its concept lattice.
- \bullet Examples of complex and time consuming tasks : listing $\mathcal{L},$ the frequent itemsets, the associative rules
- Probabilistic and Statistical methods can be used at least for :
- 1. Modelling
- 2. Sampling, Bootstrapping

- Context $\mathcal{C} = (I, J, \mathcal{D})$ (Binary matrix case), \mathcal{L} its concept lattice.
- \bullet Examples of complex and time consuming tasks : listing $\mathcal{L},$ the frequent itemsets, the associative rules
- Probabilistic and Statistical methods can be used at least for :
- 1. Modelling
- 2. Sampling, Bootstrapping

5/43

• Model: Mathematical representation of a real context

• *Modelling* a real context (and \mathcal{L} , if possible) submitted to a random environment: customer purchases

meteorological measurements

patient diseases ...

- Observed context is considered as an outcome of the model.
- Estimating the parameters of the model from the observations
- Performing *Tests*
- Proposing Confidence Intervals
- Model selection

 \bullet Some Interest of models: Framework for exact computations (concerning, e.g., $\mathcal{L})$ and prediction

5/43

- Model: Mathematical representation of a real context
- \bullet Modelling a real context (and $\mathcal{L},$ if possible) submitted to a random environment: customer purchases

meteorological measurements

- Observed context is considered as an outcome of the model.
- Estimating the parameters of the model from the observations
- Performing *Tests*
- Proposing Confidence Intervals
- Model selection
- \bullet Some Interest of models: Framework for exact computations (concerning, e.g., $\mathcal{L})$ and prediction
- Framework for defining the right concepts and not only the empirical concepts

5/43

- Model: Mathematical representation of a real context
- \bullet Modelling a real context (and $\mathcal{L},$ if possible) submitted to a random environment: customer purchases

meteorological measurements

- Observed context is considered as an outcome of the model.
- Estimating the parameters of the model from the observations
- Performing Tests
- Proposing Confidence Intervals
- Model selection
- \bullet Some Interest of models: Framework for exact computations (concerning, e.g., $\mathcal{L})$ and prediction
- Framework for defining the right concepts and not only the empirical concepts

5/43

- Model: Mathematical representation of a real context
- \bullet Modelling a real context (and $\mathcal{L},$ if possible) submitted to a random environment: customer purchases

meteorological measurements

- Observed context is considered as an outcome of the model.
- Estimating the parameters of the model from the observations
- Performing *Tests*
- Proposing Confidence Intervals
- Model selection
- \bullet Some Interest of models: Framework for exact computations (concerning, e.g., $\mathcal{L})$ and prediction
- Framework for defining the right concepts and not only the empirical concepts

5/43

- Model: Mathematical representation of a real context
- \bullet Modelling a real context (and $\mathcal{L},$ if possible) submitted to a random environment: customer purchases

meteorological measurements

- Observed context is considered as an outcome of the model.
- Estimating the parameters of the model from the observations
- Performing Tests
- Proposing Confidence Intervals
- Model selection
- \bullet Some Interest of models: Framework for exact computations (concerning, e.g., $\mathcal{L})$ and prediction
- Framework for defining the right concepts and not only the empirical concepts

5/43

- Model: Mathematical representation of a real context
- \bullet Modelling a real context (and $\mathcal{L},$ if possible) submitted to a random environment: customer purchases

meteorological measurements

- Observed context is considered as an outcome of the model.
- Estimating the parameters of the model from the observations
- Performing *Tests*
- Proposing Confidence Intervals
- Model selection
- \bullet Some Interest of models: Framework for exact computations (concerning, e.g., $\mathcal{L})$ and prediction
- Framework for defining the right concepts and not only the empirical concepts

5/43

- Model: Mathematical representation of a real context
- \bullet Modelling a real context (and $\mathcal{L},$ if possible) submitted to a random environment: customer purchases

meteorological measurements

patient diseases ...

- Observed context is considered as an outcome of the model.
- Estimating the parameters of the model from the observations
- Performing *Tests*
- Proposing Confidence Intervals
- Model selection

 \bullet Some Interest of models: Framework for exact computations (concerning, e.g., $\mathcal{L})$ and prediction

5/43

- Model: Mathematical representation of a real context
- \bullet Modelling a real context (and $\mathcal{L},$ if possible) submitted to a random environment: customer purchases

meteorological measurements

patient diseases ...

- Observed context is considered as an outcome of the model.
- Estimating the parameters of the model from the observations
- Performing Tests
- Proposing Confidence Intervals
- Model selection
- \bullet Some Interest of models: Framework for exact computations (concerning, e.g., $\mathcal{L})$ and prediction

5/43

- Model: Mathematical representation of a real context
- \bullet *Modelling* a real context (and \mathcal{L} , if possible) submitted to a random environment: customer purchases

meteorological measurements

patient diseases ...

- Observed context is considered as an outcome of the model.
- *Estimating* the parameters of the model from the observations
- Performing *Tests*
- Proposing Confidence Intervals
- Model selection
- \bullet Some Interest of models: Framework for exact computations (concerning, e.g., $\mathcal{L})$ and prediction

I.3 Sampling

6 / 43

Considering a given C or L as a population and Sampling, Bootstrapping from C or from L
 Application : Concept Counting (estimating |L|), and quickly check the feasibility of an potentially exponential time listing of all concepts

I.3 Sampling

- \bullet Considering a given ${\cal C}$ or ${\cal L}$ as a population and Sampling, Bootstrapping from ${\cal C}$ or from ${\cal L}$
- Application : Concept Counting (estimating $|\mathcal{L}|$), and quickly check the feasibility of an potentially exponential time listing of all concepts

II - MODELS OF RANDOM BINARY CONTEXTS

Bernoulli Model Hierarchical Bernoulli Models Indian Buffet Latent Block Model Survival Analysis with frailtyness Illustration In R software :

- p=0.4 : probability that an entry be equal to $\mathbf{1}$
- m=10 rows (customers, objects), $I=1,\ldots,m$
- n=5 columns (items, attributes) $J=1,\ldots,n$
- $\mathcal{D} = m \times n$ random binary matrix
- $\{1, 4\}$ may be closed or not closed, depending on the outcome D.

Illustration In R software :

- p=0.4 : probability that an entry be equal to $\mathbf{1}$
- m=10 rows (customers, objects), $I=1,\ldots,m$
- n=5 columns (items, attributes) $J=1,\ldots,n$
- $\mathcal{D} = m \times n$ random binary matrix
- $\{1, 4\}$ may be closed or not closed, depending on the outcome D.

 p_j probability that any entry of column j be equal to 1

The entries of the matrix \mathcal{D} are *independent* r.v.s.

O a subset of objects, A a subset of attributes (itemset)

Probability that the rectangle $O \times A$ be a concept ? The rectangle $O \times A$ is a concept (maximal rectangle of ones) if

1. $O \times A$ is filled of ones

and

2. each row of the rectangle $(I - O) \times A$ contains at least one zero

and

 p_j probability that any entry of column j be equal to 1

The entries of the matrix \mathcal{D} are *independent* r.v.s.

O a subset of objects, A a subset of attributes (itemset)

Probability that the rectangle $O \times A$ be a concept ? The rectangle $O \times A$ is a concept (maximal rectangle of ones) iff

1. $O \times A$ is filled of ones

```
and 2. each row of the rectangle (I - O) \times A contains at least one zero and
```

 p_j probability that any entry of column j be equal to 1

The entries of the matrix \mathcal{D} are *independent* r.v.s.

O a subset of objects, A a subset of attributes (itemset)

Probability that the rectangle $O \times A$ be a concept ? The rectangle $O \times A$ is a concept (maximal rectangle of ones) iff

1. $O \times A$ is filled of ones

and

2. each row of the rectangle $(I - O) \times A$ contains at least one zero

and

 p_j probability that any entry of column j be equal to 1

The entries of the matrix \mathcal{D} are *independent* r.v.s.

O a subset of objects, A a subset of attributes (itemset)

Probability that the rectangle $O \times A$ be a concept ? The rectangle $O \times A$ is a concept (maximal rectangle of ones) iff

1. $O \times A$ is filled of ones

and

2. each row of the rectangle $(I - O) \times A$ contains at least one zero

and

```
10 / 43
```

R. Emilion, G. Lévy, Disc. Appl. Math. J, 157, 2945-2957 (2009) Let $p_A := \prod_{j \in A} p_j$.

One row of $O \times A$ is filled with ones with probability (w.p.): p_A $O \times A$ is filled of ones w.p. $p_A^{|O|}$

2.

One row of $(I - O) \times A$ contains at least one zero w.p. $1 - p_A$ each row of $(I - O) \times A$ contains at least one zero w.p. $(1 - p_A)^{m-|O|}$

3.

Column j of $O \times (J - A)$ contains at least one zero w.p.: $1 - p_j^{|O|}$ each column of $O \times (J - A)$ contains at least one zero w.p.: $\prod_{j \notin A} (1 - p_j^{|O|})$

Due to independency we arrive at **Proposition 1**

```
10 / 43
```

R. Emilion, G. Lévy, Disc. Appl. Math. J, 157, 2945-2957 (2009) Let $p_A:=\Pi_{j\in A}p_j.$

1.

One row of $O \times A$ is filled with ones with probability (w.p.): p_A $O \times A$ is filled of ones w.p. $p_A^{[O]}$

2.

One row of $(I - O) \times A$ contains at least one zero w.p. $1 - p_A$ each row of $(I - O) \times A$ contains at least one zero w.p. $(1 - p_A)^{m-|O|}$

3.

Column j of $O \times (J - A)$ contains at least one zero w.p.: $1 - p_j^{|O|}$ each column of $O \times (J - A)$ contains at least one zero w.p.: $\prod_{j \notin A} (1 - p_j^{|O|})$

Due to independency we arrive at **Proposition 1**

```
10 / 43
```

R. Emilion, G. Lévy, Disc. Appl. Math. J, 157, 2945-2957 (2009) Let $p_A := \prod_{j \in A} p_j$.

1.

One row of $O\times A$ is filled with ones with probability (w.p.): p_A $O\times A$ is filled of ones w.p. $p_A^{|O|}$

2.

One row of $(I - O) \times A$ contains at least one zero w.p. $1 - p_A$ each row of $(I - O) \times A$ contains at least one zero w.p. $(1 - p_A)^{m-|O|}$

3.

Column j of $O \times (J - A)$ contains at least one zero w.p.: $1 - p_j^{|O|}$ each column of $O \times (J - A)$ contains at least one zero w.p.: $\prod_{j \notin A} (1 - p_j^{|O|})$

Due to independency we arrive at **Proposition 1**

```
10 / 43
```

R. Emilion, G. Lévy, Disc. Appl. Math. J, 157, 2945-2957 (2009) Let $p_A := \prod_{j \in A} p_j$.

1.

One row of $O\times A$ is filled with ones with probability (w.p.): p_A $O\times A$ is filled of ones w.p. $p_A^{|O|}$

2.

One row of $(I - O) \times A$ contains at least one zero w.p. $1 - p_A$ each row of $(I - O) \times A$ contains at least one zero w.p. $(1 - p_A)^{m - |O|}$

3.

Column j of $O \times (J - A)$ contains at least one zero w.p.: $1 - p_j^{|O|}$ each column of $O \times (J - A)$ contains at least one zero w.p.: $\prod_{j \notin A} (1 - p_j^{|O|})$

Due to independency we arrive at **Proposition 1**

R. Emilion, G. Lévy, Disc. Appl. Math. J, 157, 2945-2957 (2009) Let $p_A := \prod_{j \in A} p_j$.

1.

One row of $O\times A$ is filled with ones with probability (w.p.): p_A $O\times A$ is filled of ones w.p. $p_A^{|O|}$

2.

One row of $(I-O)\times A)$ contains at least one zero w.p. $1-p_A$ each row of $(I-O)\times A)$ contains at least one zero w.p. $(1-p_A)^{m-|O|}$

3.

Column j of $O \times (J - A)$ contains at least one zero w.p.: $1 - p_j^{|O|}$ each column of $O \times (J - A)$ contains at least one zero w.p.: $\prod_{j \notin A} (1 - p_j^{|O|})$

Due to independency we arrive at **Proposition 1**

R. Emilion, G. Lévy, Disc. Appl. Math. J, 157, 2945-2957 (2009) Let $p_A := \prod_{j \in A} p_j$.

1.

One row of $O\times A$ is filled with ones with probability (w.p.): p_A $O\times A$ is filled of ones w.p. $p_A^{|O|}$

2.

One row of $(I - O) \times A$ contains at least one zero w.p. $1 - p_A$ each row of $(I - O) \times A$ contains at least one zero w.p. $(1 - p_A)^{m - |O|}$

3.

Column j of $O \times (J - A)$ contains at least one zero w.p.: $1 - p_j^{|O|}$ each column of $O \times (J - A)$ contains at least one zero w.p.: $\prod_{j \notin A} (1 - p_j^{|C|})$

Due to independency we arrive at **Proposition 1**

R. Emilion, G. Lévy, Disc. Appl. Math. J, 157, 2945-2957 (2009) Let $p_A := \prod_{j \in A} p_j$.

1.

One row of $O\times A$ is filled with ones with probability (w.p.): p_A $O\times A$ is filled of ones w.p. $p_A^{|O|}$

2.

One row of $(I-O)\times A)$ contains at least one zero w.p. $1-p_A$ each row of $(I-O)\times A)$ contains at least one zero w.p. $(1-p_A)^{m-|O|}$

3.

Column j of $O \times (J - A)$ contains at least one zero w.p.: $1 - p_j^{|O|}$ each column of $O \times (J - A)$ contains at least one zero w.p.: $\prod_{j \notin A} (1 - p_j^{|O|})$

Due to independency we arrive at **Proposition 1**

R. Emilion, G. Lévy, Disc. Appl. Math. J, 157, 2945-2957 (2009) Let $p_A := \prod_{j \in A} p_j$.

1.

One row of $O\times A$ is filled with ones with probability (w.p.): p_A $O\times A$ is filled of ones w.p. $p_A^{|O|}$

2.

One row of $(I - O) \times A$ contains at least one zero w.p. $1 - p_A$ each row of $(I - O) \times A$ contains at least one zero w.p. $(1 - p_A)^{m-|O|}$

3.

Column j of $O \times (J - A)$ contains at least one zero w.p.: $1 - p_j^{|O|}$ each column of $O \times (J - A)$ contains at least one zero w.p.: $\prod_{j \notin A} (1 - p_j^{|O|})$

Due to independency we arrive at Proposition 1

II.4 Probability of A be closed, in the Bernoulli model case 11 / 43

 \bullet Given A, the preceding proposition shows that the probability only depends on the size |O| of O

• As $\operatorname{Prob}(A \text{ is } k\text{-closed}) = \sum_{O \in \mathcal{P}(I)} \operatorname{Prob}(O \times A \text{ is a concept})$

and there are $\binom{m}{k}$ subsets O such that |O| = k we arrive at the

Proposition 2

$$\mathsf{Prob}(A \text{ is } k\text{-closed}) = \sum_{k=0}^{m} \binom{m}{k} p_A^k (1-p_A)^{m-k} \prod_{j \notin A} (1-p_j^k)$$

• If $p_j = p$ does not depend on j, we have $p_A = p^{|A|}$ and **Proposition 3** Prob(A is k-closed) = $\sum_{k=0}^{m} {m \choose k} p^{k|A|} (1 - p^{|A|})^{m-k} (1 - p^k)^{n-|A|}$

II.4 Probability of A be closed, in the Bernoulli model case $11\,/\,43$

- \bullet Given A, the preceding proposition shows that the probability only depends on the size |O| of O
- As $\operatorname{Prob}(A \text{ is } k\text{-closed}) = \sum_{O \in \mathcal{P}(I)} \operatorname{Prob}(O \times A \text{ is a concept})$

and there are $\binom{m}{k}$ subsets O such that |O| = k we arrive at the

Proposition 2

$$\mathsf{Prob}(A \text{ is } k\text{-closed}) = \sum_{k=0}^{m} {m \choose k} p_A^k (1-p_A)^{m-k} \prod_{j \notin A} (1-p_j^k)$$

• If $p_j = p$ does not depend on j, we have $p_A = p^{|A|}$ and **Proposition 3** Prob(A is k-closed) = $\sum_{k=0}^{m} {m \choose k} p^{k|A|} (1 - p^{|A|})^{m-k} (1 - p^k)^{n-|A|}$

II.4 Probability of A be closed, in the Bernoulli model case 11 / 43

- \bullet Given A, the preceding proposition shows that the probability only depends on the size |O| of O
- As $\operatorname{Prob}(A \text{ is } k\text{-closed}) = \sum_{O \in \mathcal{P}(I)} \operatorname{Prob}(O \times A \text{ is a concept})$

and there are $\binom{m}{k}$ subsets O such that |O| = k we arrive at the

Proposition 2 Prob(A is k-closed) = $\sum_{k=0}^{m} {m \choose k} p_A^k (1 - p_A)^{m-k} \prod_{j \notin A} (1 - p_j^k)$

• If $p_j = p$ does not depend on j, we have $p_A = p^{|A|}$ and **Proposition 3** Prob $(A \text{ is } k\text{-closed}) = \sum_{k=0}^{m} {m \choose k} p^{k|A|} (1 - p^{|A|})^{m-k} (1 - p^k)^{n-k}$

II.4 Probability of A be closed, in the Bernoulli model case $11\,/\,43$

- \bullet Given A, the preceding proposition shows that the probability only depends on the size |O| of O
- As $\mathsf{Prob}(A \text{ is } k\text{-closed}) = \sum_{O \in \mathcal{P}(I)} \mathsf{Prob}(O \times A \text{ is a concept})$

and there are $\binom{m}{k}$ subsets O such that |O| = k we arrive at the

Proposition 2 Prob(A is k-closed) = $\sum_{k=0}^{m} {m \choose k} p_A^k (1 - p_A)^{m-k} \prod_{j \notin A} (1 - p_j^k)$

• If $p_j = p$ does not depend on j, we have $p_A = p^{|A|}$ and **Proposition 3** Prob(A is k-closed) = $\sum_{k=0}^{m} {m \choose k} p^{k|A|} (1 - p^{|A|})^{m-k} (1 - p^k)^{n-|A|}$

II.4 Probability of A be closed, in the Bernoulli model case $11\,/\,43$

- \bullet Given A, the preceding proposition shows that the probability only depends on the size |O| of O
- As $\mathsf{Prob}(A \text{ is } k\text{-closed}) = \sum_{O \in \mathcal{P}(I)} \mathsf{Prob}(O \times A \text{ is a concept})$

and there are $\binom{m}{k}$ subsets O such that |O| = k we arrive at the

Proposition 2

$$\mathsf{Prob}(A \text{ is } k\text{-closed}) = \sum_{k=0}^{m} \binom{m}{k} p_A^k (1-p_A)^{m-k} \prod_{j \notin A} (1-p_j^k)$$

• If $p_j = p$ does not depend on j, we have $p_A = p^{|A|}$ and **Proposition 3** Prob(A is k-closed) = $\sum_{k=0}^{m} {m \choose k} p^{k|A|} (1 - p^{|A|})^{m-k} (1 - p^k)^{n-|A|}$

II.4 Probability of A be closed, in the Bernoulli model case $11\,/\,43$

- \bullet Given A, the preceding proposition shows that the probability only depends on the size |O| of O
- As $\mathsf{Prob}(A \text{ is } k\text{-closed}) = \sum_{O \in \mathcal{P}(I)} \mathsf{Prob}(O \times A \text{ is a concept})$

and there are $\binom{m}{k}$ subsets O such that |O| = k we arrive at the

Proposition 2

$$\mathsf{Prob}(A \text{ is } k\text{-closed}) = \sum_{k=0}^{m} \binom{m}{k} p_A^k (1-p_A)^{m-k} \prod_{j \notin A} (1-p_j^k)$$

• If $p_j = p$ does not depend on j, we have $p_A = p^{|A|}$ and **Proposition 3** Prob(A is k-closed) = $\sum_{k=0}^{m} {m \choose k} p^{k|A|} (1 - p^{|A|})^{m-k} (1 - p^k)^{n-|A|}$

II.5 Expectation of $|\mathcal{L}|$ in the Bernoulli model case 12/43

 \bullet Since the number of concepts is equal to the number of k-closed itemsets, we have

$$|L| = \sum_{A \in \mathcal{P}(J)} 1_A \text{ is } k\text{-closed}$$

• Taking expectation we get

$$\begin{split} \mathcal{L}(|L|) &= \sum_{A \in \mathcal{P}(J)} prob(A \text{ is } k\text{-closed}) \\ &= \sum_{A \in \mathcal{P}(J)} \sum_{k=0}^{m} \binom{m}{k} p^{k|A|} (1-p^{|A|})^{m-k} (1-p^k)^{n-|A|} \end{split}$$

and grouping the subsets A with same cardinality we get **Theorem 1**

$$\mathbb{E}(|L|) = \sum_{l=0}^{n} \binom{n}{l} \sum_{k=0}^{m} \binom{m}{k} p^{kl} (1-p^l)^{m-k} (1-p^k)^{n-l}$$

II.5 Expectation of $|\mathcal{L}|$ in the Bernoulli model case 12/43

 \bullet Since the number of concepts is equal to the number of k-closed itemsets, we have

$$|L| = \sum_{A \in \mathcal{P}(J)} \mathbf{1}_A \text{ is } k\text{-closed}$$

• Taking expectation we get

$$\begin{split} \mathbb{E}(|L|) &= \sum_{A \in \mathcal{P}(J)} prob(A \text{ is } k\text{-closed}) \\ &= \sum_{A \in \mathcal{P}(J)} \sum_{k=0}^m \binom{m}{k} p^{k|A|} (1-p^{|A|})^{m-k} (1-p^k)^{n-|A|} \end{split}$$

and grouping the subsets A with same cardinality we get **Theorem 1**

$$\mathbb{E}(|L|) = \sum_{l=0}^{n} \binom{n}{l} \sum_{k=0}^{m} \binom{m}{k} p^{kl} (1-p^l)^{m-k} (1-p^k)^{n-l}$$

II.5 Expectation of $|\mathcal{L}|$ in the Bernoulli model case 12/43

 \bullet Since the number of concepts is equal to the number of k-closed itemsets, we have

$$|L| = \sum_{A \in \mathcal{P}(J)} 1_A \text{ is } k\text{-closed}$$

• Taking expectation we get

$$\begin{split} \mathbb{E}(|L|) &= \sum_{A \in \mathcal{P}(J)} prob(A \text{ is } k\text{-closed}) \\ &= \sum_{A \in \mathcal{P}(J)} \sum_{k=0}^m \binom{m}{k} p^{k|A|} (1-p^{|A|})^{m-k} (1-p^k)^{n-|A|} \end{split}$$

and grouping the subsets A with same cardinality we get $\ensuremath{\mathbf{Theorem 1}}$

$$\mathbb{E}(|L|) = \sum_{l=0}^{n} \binom{n}{l} \sum_{k=0}^{m} \binom{m}{k} p^{kl} (1-p^l)^{m-k} (1-p^k)^{n-l}$$

II.6 Variance of $|\mathcal{L}|$ in the Bernoulli model case 13 / 43

• Computation of Prob(A and B be closed), A, $B \in \mathcal{P}(J)$

Instead of having just 3 cases, namely $O \times A$, $I - O \times A$, $O \times J - A$, it appears 16 cases. Some formulas in (Emilion-Lévy can be simplified).

• Taking expectation yields $\mathbb{E}(|L|^2)$ and therefore $var(|L|) = \mathbb{E}(|L|^2) - (\mathbb{E}(|L|))^2$

II.6 Variance of $|\mathcal{L}|$ in the Bernoulli model case 13 / 43

• Computation of Prob(A and B be closed), A, $B \in \mathcal{P}(J)$

Instead of having just 3 cases, namely $O \times A$, $I - O \times A$, $O \times J - A$, it appears 16 cases. Some formulas in (Emilion-Lévy can be simplified).

• Taking expectation yields $\mathbb{E}(|L|^2)$ and therefore $var(|L|) = \mathbb{E}(|L|^2) - (\mathbb{E}(|L|))^2$

II.6 Variance of $|\mathcal{L}|$ in the Bernoulli model case 13 / 43

• Computation of Prob(A and B be closed), A, $B \in \mathcal{P}(J)$

Instead of having just 3 cases, namely $O \times A$, $I - O \times A$, $O \times J - A$, it appears 16 cases. Some formulas in (Emilion-Lévy can be simplified).

• Taking expectation yields $\mathbb{E}(|L|^2)$ and therefore $var(|L|) = \mathbb{E}(|L|^2) - (\mathbb{E}(|L|))^2$

II.7 μ , σ exact values in the Bernoulli model case

m	n	p	μ	σ	95% Cl for L
14	10	0.3	32.48	6.47	[3, 62]
15	15	0.9	489.47	373.74	[1, 2161]
20	15	0.25	62.78	11.09	[13, 113]
20	20	0.65	1945.49	469.16	[1, 4044]
25	15	0.85	3758.31	1625.93	[1, 11030]
30	12	0.85	1598.66	538.70	[1, 4008]

II.8 Bernoulli context, CL size Expectation

15/43

Figure: Estimated and Exact Mean size of Bernoulli Concept Lattices

II.9 Experiments for σ in the Bernoulli model case **16**/43

m	n	p	σ	S_{300}	95% CI	S_{1000}
14	10	0.3	6.47	5.94	5.03 - 7.94	6.40
15	15	0.9	373.74	321.43	284.39 - 386.57	370.6
20	15	0.25	11.09	11.14	8.92 - 12.96	11.04
20	20	0.65	469.16	469.65	433.60 - 497.42	468.25
25	15	0.85	1625.93	1688.60	1493.90 - 1743.60	1626.20
30	12	0.85	538.70	549.30	503.96 - 566.11	535.79

II.10 Hierarchical Bernoulli context

17 / 43

R.E., Selected contributions in Data Analysis and Classification, 247-259, Springer, 2007 Context: $m \times r$ random binary matrix CU a latent class variable $\in \{1, \ldots, K\}$ over the individuals

$$\begin{cases} q = (q_1, \dots, q_K) & \sim \quad Dirichlet(\gamma_1, \dots, \gamma_K) \\ U \in \{1, \dots, K\} : P(U = u | q) & = \quad q_u \\ \mathcal{C}|_{U=u,q} & \sim \quad \bigotimes_{j=1}^r B(p_{u,j}) \\ \mathcal{C}|_q & \sim \quad \sum_{u=1}^K q_u \otimes_{j=1}^r B(p_{u,j}) \end{cases}$$

II.11 Indian Buffet context

Y. W. Teh, D. Gorur, Z. Ghahramani

Beta - Bernoulli Context: $m \times r$ random binary matrix C

$$\begin{cases} p_1, \dots, p_r & \stackrel{i.i.d.}{\sim} & Beta(\frac{\alpha}{r}, 1) \\ \mathcal{C}_{ij} | p_1, \dots, p_r & \stackrel{ind}{\sim} & Bernoulli(p_j) \end{cases}$$

Limit:

Step 1: Customer 1 chooses $K^{(1)}$ different items, where $K^{(1)} \sim Poisson(\alpha)$ Step 2: Customer 2 arrives and chooses to enjoy each of the items already chosen with probability 1/2. In addition, he chooses $K^{(2)}$ new items, where $K^{(2)} \sim Poisson(\alpha/2)$ Steps 3 through N: The *i*th customer arrives and chooses to enjoy each of the items already chosen with probability m_{ki}/i , where m_{ki} is the number of customers who have chosen the *k*th item before the *i*th customer. In addition, the *i*th customer chooses $K^{(i)} \sim Poisson(\alpha/i)$ new items.

19/43

G. Govaert, M. Nadif, Co-clustering. Context: $m \times r$ random binary matrix CZ set of partitions of I into g subsets W set of partitions of J into h subsets

$$f(\mathcal{C};\theta) = \sum_{(z,w)\in\mathcal{Z}\times\mathcal{W}} p(z;\theta)p(w;\theta)\prod_{i,j,k,l} Bernoulli(c_{i,j};\alpha_{k,l})^{z_{i,k}w_{j,l}}$$

II.13 Recurrent events with frailty models

20 / 43

A disease (crisis), or a failure, appearing several times.

Context: $m \times n$ random binary matrix $\mathcal C$

 $1:m \ {\rm set} \ {\rm of} \ {\rm patients}$

1:n Observation times (deterministic right censoring)

or locations

```
If the disease starts at time j for patient i then C_{i,j} = 1 else C_{i,j} = 0.
```

 X_i a random variable representing frailty of patient i

The interarrival times (between two diseases) given X_i are i.i.d.

Simple case: $X_i \overset{i.i.d.}{\sim} \gamma$

Non Parametric Bayesian case $X_i | P \sim P, P \sim Dirichlet(c\gamma)$

In the case of locations: spatial dependance.

A. Adekpedjou, R. Emilion, S. Niang (in progress)

III - Sampling

- Sampling in a large set
 - Markov Chains in $\ensuremath{\mathcal{L}}$
- Sampling and Counting concepts

22 / 43

\bullet Selecting an element at random on a large (but finite) set, e.g., $\mathcal L$

• At random ? Given a probability measure Q on \mathcal{L} , propose an algorithm X which outputs are elements of \mathcal{L} and such that $Prob(X = l) = Q\{l\} = q_l$ for any $l \in \mathcal{L}$

- When Q is uniform, i.e. $q_l = \frac{1}{|\mathcal{L}|}$: sampling at random, in common language .
- Problems : L is very large, listing L is tedious, $|\mathcal{L}|$ is unknown
- More general problem : $Prob(X = l) \propto v(l)$ a function of l which no need to sum up to 1.

22 / 43

\bullet Selecting an element at random on a large (but finite) set, e.g., $\mathcal L$

- At random ? Given a probability measure Q on \mathcal{L} , propose an algorithm X which outputs are elements of \mathcal{L} and such that $Prob(X = l) = Q\{l\} = q_l$ for any $l \in \mathcal{L}$
- When Q is uniform, i.e. $q_l = \frac{1}{|\mathcal{L}|}$: sampling at random, in common language .
- \bullet Problems : L is very large, listing L is tedious, $|\mathcal{L}|$ is unknown
- More general problem : $Prob(X = l) \propto v(l)$ a function of l which no need to sum up to 1.

- \bullet Selecting an element at random on a large (but finite) set, e.g., $\mathcal L$
- At random ? Given a probability measure Q on \mathcal{L} , propose an algorithm X which outputs are elements of \mathcal{L} and such that $Prob(X = l) = Q\{l\} = q_l$ for any $l \in \mathcal{L}$
- When Q is uniform, i.e. $q_l = \frac{1}{|\mathcal{L}|}$: sampling at random, in common language .
- Problems : L is very large, listing L is tedious, $|\mathcal{L}|$ is unknown
- More general problem : $Prob(X = l) \propto v(l)$ a function of l which no need to sum up to 1.

- \bullet Selecting an element at random on a large (but finite) set, e.g., $\mathcal L$
- At random ? Given a probability measure Q on \mathcal{L} , propose an algorithm X which outputs are elements of \mathcal{L} and such that $Prob(X = l) = Q\{l\} = q_l$ for any $l \in \mathcal{L}$
- When Q is uniform, i.e. $q_l = \frac{1}{|\mathcal{L}|}$: sampling at random, in common language
- Problems : L is very large, listing L is tedious, $|\mathcal{L}|$ is unknown
- More general problem : $Prob(X = l) \propto v(l)$ a function of l which no need to sum up to 1.

- \bullet Selecting an element at random on a large (but finite) set, e.g., $\mathcal L$
- At random ? Given a probability measure Q on \mathcal{L} , propose an algorithm X which outputs are elements of \mathcal{L} and such that $Prob(X = l) = Q\{l\} = q_l$ for any $l \in \mathcal{L}$
- When Q is uniform, i.e. $q_l = \frac{1}{|\mathcal{L}|}$: sampling at random, in common language .
- Problems : L is very large, listing L is tedious, $|\mathcal{L}|$ is unknown
- More general problem : $Prob(X = l) \propto v(l)$ a function of l which no need to sum up to 1.

- \bullet Selecting an element at random on a large (but finite) set, e.g., $\mathcal L$
- At random ? Given a probability measure Q on \mathcal{L} , propose an algorithm X which outputs are elements of \mathcal{L} and such that $Prob(X = l) = Q\{l\} = q_l$ for any $l \in \mathcal{L}$
- When Q is uniform, i.e. $q_l=\frac{1}{|\mathcal{L}|}$: sampling at random, in common language .
- \bullet Problems : L is very large, listing L is tedious, $|\mathcal{L}|$ is unknown
- \bullet More general problem : $Prob(X=l) \propto v(l)$ a function of l which no need to sum up to 1.

- Classical Central limit Theorem (CLT) holds for i.i.d. r.v.s
- Markov triving to generalizing for non i.i.d. r.v.s found his famous definition:
 X₀,...,X_n,...: Ω → L (the state space)

$$P(X_{n+1} = x_{n+1} | X_n, \dots, X_0) = P(X_{n+1} = x_{n+1} | X_n)$$

- The chain 'forgets' its past.
- Transitions:

$$P(X_{n+1} = x_{n+1} | X_n = x_{n+1}) = p(x_{n+1}, x_n)$$

- $P(X_0 = x_0)$ initial distribution.
- Simulation in R software.

- Classical Central limit Theorem (CLT) holds for i.i.d. r.v.s
- Markov triving to generalizing for non i.i.d. r.v.s found his famous definition:
- $X_0, \ldots, X_n, \ldots : \Omega \to \mathcal{L}$ (the state space)

$$P(X_{n+1} = x_{n+1} | X_n, \dots, X_0) = P(X_{n+1} = x_{n+1} | X_n)$$

- The chain 'forgets' its past.
- Transitions:

$$P(X_{n+1} = x_{n+1} | X_n = x_{n+1}) = p(x_{n+1}, x_n)$$

- $P(X_0 = x_0)$ initial distribution.
- Simulation in R software.

- Classical Central limit Theorem (CLT) holds for i.i.d. r.v.s
- Markov triving to generalizing for non i.i.d. r.v.s found his famous definition:
- $X_0, \ldots, X_n, \ldots : \Omega \to \mathcal{L}$ (the state space)

$$P(X_{n+1} = x_{n+1} | X_n, \dots, X_0) = P(X_{n+1} = x_{n+1} | X_n)$$

- The chain 'forgets' its past.
- Transitions:

$$P(X_{n+1} = x_{n+1} | X_n = x_{n+1}) = p(x_{n+1}, x_n)$$

- $P(X_0 = x_0)$ initial distribution.
- Simulation in R software.

- Classical Central limit Theorem (CLT) holds for i.i.d. r.v.s
- Markov triving to generalizing for non i.i.d. r.v.s found his famous definition:
- $X_0, \ldots, X_n, \ldots : \Omega \to \mathcal{L}$ (the state space)

$$P(X_{n+1} = x_{n+1} | X_n, \dots, X_0) = P(X_{n+1} = x_{n+1} | X_n)$$

- The chain 'forgets' its past.
- Transitions:

$$P(X_{n+1} = x_{n+1} | X_n = x_{n+1}) = p(x_{n+1}, x_n)$$

- $P(X_0 = x_0)$ initial distribution.
- Simulation in R software.

23 / 43

- Classical Central limit Theorem (CLT) holds for i.i.d. r.v.s
- Markov triving to generalizing for non i.i.d. r.v.s found his famous definition:
- $X_0, \ldots, X_n, \ldots : \Omega \to \mathcal{L}$ (the state space)

$$P(X_{n+1} = x_{n+1} | X_n, \dots, X_0) = P(X_{n+1} = x_{n+1} | X_n)$$

- The chain 'forgets' its past.
- Transitions:

$$P(X_{n+1} = x_{n+1} | X_n = x_{n+1}) = p(x_{n+1}, x_n)$$

P(X₀ = x₀) initial distribution.
Simulation in R software.

23 / 43

- Classical Central limit Theorem (CLT) holds for i.i.d. r.v.s
- Markov triving to generalizing for non i.i.d. r.v.s found his famous definition:
- $X_0, \ldots, X_n, \ldots : \Omega \to \mathcal{L}$ (the state space)

$$P(X_{n+1} = x_{n+1} | X_n, \dots, X_0) = P(X_{n+1} = x_{n+1} | X_n)$$

- The chain 'forgets' its past.
- Transitions:

$$P(X_{n+1} = x_{n+1} | X_n = x_{n+1}) = p(x_{n+1}, x_n)$$

P(X₀ = x₀) initial distribution.
Simulation in R software.

- Classical Central limit Theorem (CLT) holds for i.i.d. r.v.s
- Markov triving to generalizing for non i.i.d. r.v.s found his famous definition:
- $X_0, \ldots, X_n, \ldots : \Omega \to \mathcal{L}$ (the state space)

$$P(X_{n+1} = x_{n+1} | X_n, \dots, X_0) = P(X_{n+1} = x_{n+1} | X_n)$$

- The chain 'forgets' its past.
- Transitions:

$$P(X_{n+1} = x_{n+1} | X_n = x_{n+1}) = p(x_{n+1}, x_n)$$

- $P(X_0 = x_0)$ initial distribution.
- Simulation in R software.

24 / 43

• Sampling with MC. Main idea: find a MC such that

$$lim_{n \to +\infty} P(X_n = l) = q_l$$

(if the limit exists : ergodicity, steady state)

• Problems:

- Theoretical proof of ergodicity
- From which n can we consider that the steady state is reached
- This n should not be too large (time consuming)
- Precision: Perfect sampling

24 / 43

• Sampling with MC. Main idea: find a MC such that

$$lim_{n \to +\infty} P(X_n = l) = q_l$$

- Problems:
- Theoretical proof of ergodicity
- From which n can we consider that the steady state is reached
- This n should not be too large (time consuming)
- Precision: Perfect sampling

24 / 43

• Sampling with MC. Main idea: find a MC such that

$$lim_{n \to +\infty} P(X_n = l) = q_l$$

- Problems:
- Theoretical proof of ergodicity
- From which \boldsymbol{n} can we consider that the steady state is reached
- This n should not be too large (time consuming)
- Precision: Perfect sampling

24 / 43

• Sampling with MC. Main idea: find a MC such that

$$lim_{n \to +\infty} P(X_n = l) = q_l$$

- Problems:
- Theoretical proof of ergodicity
- From which \boldsymbol{n} can we consider that the steady state is reached
- This n should not be too large (time consuming)
- Precision: Perfect sampling

24 / 43

• Sampling with MC. Main idea: find a MC such that

$$lim_{n \to +\infty} P(X_n = l) = q_l$$

- Problems:
- Theoretical proof of ergodicity
- From which \boldsymbol{n} can we consider that the steady state is reached
- This n should not be too large (time consuming)
- Precision: Perfect sampling

24 / 43

• Sampling with MC. Main idea: find a MC such that

$$lim_{n \to +\infty} P(X_n = l) = q_l$$

- Problems:
- Theoretical proof of ergodicity
- From which \boldsymbol{n} can we consider that the steady state is reached
- This n should not be too large (time consuming)
- Precision: Perfect sampling

III.4 Markov Chains in a graph

- The chain moves from on node to its neighbourhood nodes
- Define the neighbourhood nodes of a node
- Define the transitions

III.4 Markov Chains in a graph

- The chain moves from on node to its neighbourhood nodes
- Define the neighbourhood nodes of a node
- Define the transitions

III.4 Markov Chains in a graph

- The chain moves from on node to its neighbourhood nodes
- Define the neighbourhood nodes of a node
- Define the transitions

III.5 Markov Chain in \mathcal{L}

26 / 43

Mario Boley et. al. SIAM DM 2010 Context C = (A, O, D) $O[]: \mathcal{P}(A) \to \mathcal{P}(O)$ extent mapping $A[]: \mathcal{P}(O) \to \mathcal{P}(A)$ intent mapping $\Phi = A \ o \ O$ and $\Psi = O \ o \ A$ the closure mappings Concepts $C = (I, E), I \in \mathcal{P}(A), E \in \mathcal{P}(O)$ I' is a Φ -neighbourhood of I if there exists an $a \in A$ such that $\Phi(I \cup a) = I'$ E' is a Ψ -neighbourhood of E if there exists an $o \in O$ such that $\Psi(E \cup E) = E'$

III.6 Neighbourhoods in ${\cal L}$

Figure: Both graphs are used

III.7 Transitions in \mathcal{L}

$$q(C,C') = \begin{cases} |G_{\phi}(I,I')| / (2|A|), & \text{if } C \prec C' \\ |G_{\psi}(E,E')| / (2|O|), & \text{if } C \succ C' \\ |I| / (2|A|) + |E| / (2|O|), & \text{if } C = C' \end{cases}$$

Figure: Transitions between two concepts

III.8 Metropolis-Hasting Transitions in \mathcal{L} 29 / 43

$$p(C, C') = \begin{cases} q(C, C') \min\{\alpha \frac{\pi(C')}{\pi(C)}, 1\}, & \text{if } q(C, C') > 0\\ 0, & \text{otherwise} \end{cases}$$

where $\alpha = q(C', C)/q(C, C')$. This is the Metropolis-

Figure: MH- Transitions between two concepts

III.8 Metropolis-Hasting Sampling Algorithm in \mathcal{L}

30 / 43

Algorithm 1 Metropolis-Hastings Concept Sampling

```
Input : context (A, O, D), number of iterations s,
             oracle of map f: \mathcal{C} \to \mathbb{R}_+
Output: concept (I, E)
 1. init (I, E) \sim u(\{\top, \bot\}) and i \leftarrow 0
 2. i \leftarrow i+1
 3. draw d \sim u(\{up, down\})
 4. if d = up then
 5. draw a \sim u(A)
 6. \langle I', E' \rangle \leftarrow \langle \phi(I \cup \{a\}), O[\phi(I \cup \{a\})] \rangle
 7. \alpha \leftarrow (|G_{\psi}(E', E)||A|) / (|G_{\phi}(I, I')||O|)
 8. else
 9
      draw o \sim \mu(O)
10. \langle I', E' \rangle \leftarrow \langle A[\psi(E \cup \{o\})], \psi(E \cup \{o\}) \rangle
11. \alpha \leftarrow (|G_{\phi}(I', I)| |O|) / (|G_{\psi}(E, E')| |A|)
12. draw x \sim u([0,1])
13. if x < \alpha f(I') / f(I) then \langle I, E \rangle \leftarrow \langle I', E' \rangle
14. if i = s then return \langle I, E \rangle else goto 2
```

Figure: MH- Algorithm

III.9 Application of sampling: concept counting in $\mathcal{L} = 31/43$

Mario Boley et. al. SIAM DM 2010

Context $C = (A, O_n = 1 : n, D)$ $O_n[]: \mathcal{P}(A) \to \mathcal{P}(O_n)$ extent mapping $A[]: \mathcal{P}(O_n) \to \mathcal{P}(A)$ intent maping $\Phi_n = A \text{ o } O_n \text{ and } \Psi_n = O_n \text{ o } A$ the closure mappings For any $I \in \mathcal{P}(A)$, we have $I \subseteq \Phi_{n+1}(I) \subseteq \Phi_n(I)$ and thus $\mathcal{L}_n \subseteq \mathcal{L}_{n+1}$

III.9 Application of sampling: concept counting in $\mathcal{L} = 31/43$

Mario Boley et. al. SIAM DM 2010

Context $C = (A, O_n = 1 : n, D)$ $O_n[]: \mathcal{P}(A) \to \mathcal{P}(O_n)$ extent mapping $A[]: \mathcal{P}(O_n) \to \mathcal{P}(A)$ intent maping $\Phi_n = A \text{ o } O_n \text{ and } \Psi_n = O_n \text{ o } A$ the closure mappings For any $I \in \mathcal{P}(A)$, we have $I \subseteq \Phi_{n+1}(I) \subseteq \Phi_n(I)$ and thus $\mathcal{L}_n \subseteq \mathcal{L}_{n+1}$

III.10 Counting method using sampling

Mario Boley et. al. SIAM DM 2010

$$\begin{split} \mathcal{L}_0 &= \{A\}, |\mathcal{L}_0| = 1 \\ \text{Sample } r \text{ concepts in } \mathcal{L}_{n+1} \\ c \text{ of them belong to } \mathcal{L}_n \text{ (does not contain } n+1) \\ \text{Estimate } \frac{|\mathcal{L}_n|}{|\mathcal{L}_{n+1}|} \text{ by } \frac{c}{r} \\ \text{If } O &= 1:m \text{ then use that} \end{split}$$

$$|\mathcal{L}| = |\mathcal{L}_m| = rac{|\mathcal{L}_m|}{|\mathcal{L}_{m-1}|} \dots rac{|\mathcal{L}_1|}{|\mathcal{L}_0|}$$

to estimate $|\mathcal{L}|$

IV - Pointwise convergence of empirical RCLs i.i.d. case Markov chain case

IV.1 Random empirical Intents/Extents

34 / 43

 (Ω, P) a probability space, \mathcal{F} a countable semilattice Examples: $\mathcal{F} = \mathcal{P}(A) A$ finite set, binary tree, set of subsets of \mathbb{R} that are countable or their complementary is countable.

 $X: \Omega \longrightarrow \mathcal{F}$ a random variable Support of $X = Supp_X$: any subset S of F such that $P(X \in S) = 1$ Observations: $X_1(\omega), \ldots, X_n(\omega), \ldots,$ For any $d \in \mathcal{F}$

$$g_{n}(d) = g_{X_{1}(\omega),...,X_{n}(\omega)}(d) = \{i = 1,...,n : d \le X_{i}(\omega)\}$$

$$k_{n}(d) = f_{n}(g_{n}(d)) = \bigwedge_{u = X_{1}(\omega),...,X_{n}(\omega),d \le u} u$$
(2)

IV.1 Random empirical Intents/Extents

 (Ω,P) a probability space, ${\mathcal F}$ a countable semilattice Examples: ${\mathcal F}={\mathcal P}(A)\;A$ finite set, binary tree, set of subsets of ${\mathbb R}$ that are countable or their complementary is countable.

 $X: \Omega \longrightarrow \mathcal{F}$ a random variable Support of $X = Supp_X$: any subset S of F such that $P(X \in S) = 1$ Observations: $X_1(\omega), \ldots, X_n(\omega), \ldots$, For any $d \in \mathcal{F}$

$$g_{n}(d) = g_{X_{1}(\omega),...,X_{n}(\omega)}(d) = \{i = 1,...,n : d \le X_{i}(\omega)\}$$
(1)
$$k_{n}(d) = f_{n}(g_{n}(d)) = \bigwedge_{u = X_{1}(\omega),...,X_{n}(\omega),d \le u} u$$
(2)

IV.2 Empirical Intents Pointwise convergence 35 / 43

Theorem

(R.E., Springer 2007) If \mathcal{F} is a countable σ -semilattice $X_1(\omega), \ldots, X_n(\omega), \ldots$, i.i.d. sample of XThen $g_n(d) \uparrow g_{\infty}(d) = \{i = 1, \ldots, n, \ldots : d \leq X_i(\omega)\}$ $k_n(d) \downarrow k_{\infty}(d) = \bigwedge_{u \in Supp_X, u \leq d} u$: deterministic limit

- (g_{∞}, k_{∞}) is a GC, $k_{\infty}(\mathcal{F})$ deterministic lattice generated by $Supp_X$.
- Induces the CL of a discrete r.v.
- $k_{\infty}(d)$: deterministic ideal concept (intent)
- Does not depend on the observations. Is the limit of empirical intents
- Streaming. Learning.

Theorem

(Emilion 2011)

If ${\cal F}$ is a countable σ -semilattice $X_1(\omega),\ldots,X_n(\omega),\ldots,$ recurrent Markov chain with inv. meas. μ Then

 $g_n(d) \uparrow g_\infty(d) = \{i = 1, ..., n, ... : d \le X_i(\omega)\}$

 $k_n(d) \downarrow k_\infty(d) = \bigwedge_{u \in Supp_\mu, u \leq d} u$: deterministic limit

 (g_∞,k_∞) is a GC which induces a CL: the CL of a discrete Markov Chain

IV.4 Sketch of proof

37 / 43

Since $Supp_X \subseteq \mathcal{F}$ is countable, $\{X_1(\omega), \ldots, X_n(\omega), \ldots\} = Supp_X$ for a.a. ω Indeed $X_i(\omega) \in Supp_X$ as $P(X_i \in Supp_X) = P(X_i \in Supp_X) = 1$ Conversely if $d \in Supp_X$, by the Large Number Law, $X_i = d$ for an infinity of *i*.

$$k_n(d) \downarrow k_{\infty}(d) = \bigwedge_{\substack{u \in \{X_1(\omega), \dots, X_n(\omega), \dots\}, d \le u}} u$$
$$= \bigwedge_{\substack{u \in Supp_X, d \le u}} u : \text{deterministic limit}$$

LNL also holds for a recurrent Markov Chain which has an invariant measure.

V - Experiments

Bernoulli case Mushroom case, Regression

V.1 Bernoulli context, CL size distribution

39 / 43

Distribution of 500 Bernoulli(15,7,0.6) CL sizes

Figure: Distribution of Bernoulli CL Size

V.2 Bernoulli context, CL depth distribution

Sample: 120, rows: 60, col: 15, p: 0.6

Figure: Distribution of Bernoulli CL Depth

V.3 Bernoulli context, CL width distribution

Sample: 120, rows: 60, col: 15, p: 0.6

Figure: Distribution of Bernoulli CL Width

V.4 Bernoulli context, CL Size Depth Width PCA 42/43

Figure: PCA on Bernoulli CLs

V.5 Mushroom context, Regression : Number of concepts w.r.t. number of ones 43/43

Mushroom dataset: Linear regression of y by x

Number of ones in the context, r first rows, r= 1000, 1100, ..., 8100, 8124

Figure: Linear regression, concepts of the r first rows, r = 1000,1100, ..., 8124

R. Emilion (DAMOL)

Summer School in Olomouc June 4-5 2012