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Part I - MOTIVATIONS

Models
Sampling

R. Emilion (DAMOL) Summer School in Olomouc June 4-5 2012 June 7, 2012 3 / 43



I.1. Motivations 4 / 43

• Context C = (I, J,D) (Binary matrix case), L its concept lattice.

• Examples of complex and time consuming tasks : listing L, the frequent itemsets, the
associative rules

• Probabilistic and Statistical methods can be used at least for :
1. Modelling

2. Sampling, Bootstrapping
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I.2 Modelling 5 / 43

• Model: Mathematical representation of a real context

• Modelling a real context (and L, if possible) submitted to a random environment:
customer purchases

meteorological measurements

patient diseases ...

• Observed context is considered as an outcome of the model.
• Estimating the parameters of the model from the observations
• Performing Tests
• Proposing Confidence Intervals
• Model selection

• Some Interest of models: Framework for exact computations (concerning, e.g., L) and
prediction
Framework for defining the right concepts and not only the empirical concepts
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I.3 Sampling 6 / 43

• Considering a given C or L as a population and Sampling, Bootstrapping from C or from
L
Application : Concept Counting (estimating |L|), and quickly check the feasibility of an
potentially exponential time listing of all concepts
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II - MODELS OF RANDOM BINARY CONTEXTS

Bernoulli Model
Hierarchical Bernoulli Models

Indian Buffet
Latent Block Model

Survival Analysis with frailtyness
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II.1 Bernoulli(p) Model: Simulation 8 / 43

Illustration In R software :

p = 0.4 : probability that an entry be equal to 1

m = 10 rows (customers, objects), I = 1, . . . ,m

n = 5 columns (items, attributes) J = 1, . . . , n

D = m× n random binary matrix

{1, 4} may be closed or not closed, depending on the outcome D.
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II.2 Random Concepts 9 / 43

pj probability that any entry of column j be equal to 1

The entries of the matrix D are independent r.v.s.

O a subset of objects, A a subset of attributes (itemset)

Probability that the rectangle O ×A be a concept ?
The rectangle O ×A is a concept (maximal rectangle of ones) iff

1. O ×A is filled of ones

and
2. each row of the rectangle (I −O)×A contains at least one zero

and
3. each column of the rectangle O × (J −A) contains at least one zero
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II.3 Computation in the Bernoulli model case 10 / 43

R. Emilion, G. Lévy, Disc. Appl. Math. J, 157, 2945-2957 (2009)
Let pA := Πj∈Apj .

1.
One row of O ×A is filled with ones with probability (w.p.): pA

O ×A is filled of ones w.p. p
|O|
A

2.
One row of (I −O)×A) contains at least one zero w.p. 1− pA
each row of (I −O)×A) contains at least one zero w.p. (1− pA)m−|O|

3.
Column j of O × (J −A) contains at least one zero w.p.: 1− p|O|j
each column of O × (J −A) contains at least one zero w.p.: Πj 6∈A(1− p|O|j )

Due to independency we arrive at
Proposition 1

O ×A is a maximal rectangle w.p. p
|O|
A (1− pA)m−|O|Πj 6∈A(1− p|O|j )
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R. Emilion, G. Lévy, Disc. Appl. Math. J, 157, 2945-2957 (2009)
Let pA := Πj∈Apj .

1.
One row of O ×A is filled with ones with probability (w.p.): pA

O ×A is filled of ones w.p. p
|O|
A

2.
One row of (I −O)×A) contains at least one zero w.p. 1− pA
each row of (I −O)×A) contains at least one zero w.p. (1− pA)m−|O|

3.
Column j of O × (J −A) contains at least one zero w.p.: 1− p|O|j
each column of O × (J −A) contains at least one zero w.p.: Πj 6∈A(1− p|O|j )

Due to independency we arrive at
Proposition 1

O ×A is a maximal rectangle w.p. p
|O|
A (1− pA)m−|O|Πj 6∈A(1− p|O|j )

R. Emilion (DAMOL) Summer School in Olomouc June 4-5 2012 June 7, 2012 10 / 43



II.3 Computation in the Bernoulli model case 10 / 43
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II.4 Probability of A be closed, in the Bernoulli model case
11 / 43

• Given A, the preceding proposition shows that the probability only depends on the size
|O| of O

• As Prob(A is k-closed) =
∑

O∈P(I)Prob(O ×A is a concept)

and there are
(
m
k

)
subsets O such that |O| = k we arrive at the

Proposition 2
Prob(A is k-closed) =

∑m
k=0

(
m
k

)
pkA(1− pA)m−kΠj 6∈A(1− pkj )

• If pj = p does not depend on j, we have pA = p|A| and
Proposition 3
Prob(A is k-closed) =

∑m
k=0

(
m
k

)
pk|A|(1− p|A|)m−k(1− pk)n−|A|
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II.5 Expectation of |L| in the Bernoulli model case 12 / 43
• Since the number of concepts is equal to the number of k-closed itemsets, we have

|L| =
∑

A∈P(J)

1A is k-closed

• Taking expectation we get

E(|L|) =
∑

A∈P(J)

prob(A is k-closed)

=
∑

A∈P(J)

m∑
k=0

(
m

k

)
pk|A|(1− p|A|)m−k(1− pk)n−|A|

and grouping the subsets A with same cardinality we get
Theorem 1

E(|L|) =
n∑
l=0

(
n

l

) m∑
k=0

(
m

k

)
pkl(1− pl)m−k(1− pk)n−l
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II.6 Variance of |L| in the Bernoulli model case 13 / 43

• Computation of Prob(A and B be closed), A, B ∈ P(J)

Instead of having just 3 cases, namely O×A, I −O×A, O× J −A, it appears 16 cases.
Some formulas in (Emilion-Lévy can be simplified).

• Taking expectation yields E(|L|2) and therefore var(|L|) = E(|L|2)− (E(|L|))2
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II.7 µ, σ exact values in the Bernoulli model case 14 / 43

m n p µ σ 95% CI for L

14 10 0.3 32.48 6.47 [3, 62]

15 15 0.9 489.47 373.74 [1, 2161]

20 15 0.25 62.78 11.09 [13, 113]

20 20 0.65 1945.49 469.16 [1, 4044]

25 15 0.85 3758.31 1625.93 [1, 11030]

30 12 0.85 1598.66 538.70 [1, 4008]
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II.8 Bernoulli context, CL size Expectation 15 / 43

Figure: Estimated and Exact Mean size of Bernoulli Concept Lattices
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II.9 Experiments for σ in the Bernoulli model case 16 / 43

m n p σ S300 95% CI S1000
14 10 0.3 6.47 5.94 5.03 - 7.94 6.40

15 15 0.9 373.74 321.43 284.39 - 386.57 370.6

20 15 0.25 11.09 11.14 8.92 - 12.96 11.04

20 20 0.65 469.16 469.65 433.60 - 497.42 468.25

25 15 0.85 1625.93 1688.60 1493.90 - 1743.60 1626.20

30 12 0.85 538.70 549.30 503.96 - 566.11 535.79

R. Emilion (DAMOL) Summer School in Olomouc June 4-5 2012 June 7, 2012 16 / 43



II.10 Hierarchical Bernoulli context 17 / 43

R.E., Selected contributions in Data Analysis and Classification, 247-259, Springer, 2007

Context: m× r random binary matrix C
U a latent class variable ∈ {1, . . . ,K} over the individuals

q = (q1, . . . , qK) ∼ Dirichlet(γ1, . . . , γK)

U ∈ {1, . . . ,K} : P (U = u|q) = qu

C|U=u,q ∼ ⊗rj=1B(pu,j)

C|q ∼
∑K

u=1 qu ⊗rj=1 B(pu,j)
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II.11 Indian Buffet context 18 / 43

Y. W. Teh, D. Gorur, Z. Ghahramani
Beta−Bernoulli Context: m× r random binary matrix C p1, . . . , pr

i.i.d.∼ Beta(αr , 1)

Cij |p1, . . . , pr
ind∼ Bernoulli(pj)

Limit:
Step 1: Customer 1 chooses K(1) different items, where K(1) ∼ Poisson(α)
Step 2: Customer 2 arrives and chooses to enjoy each of the items already chosen with
probability 1/2. In addition, he chooses K(2) new items , where K(2) ∼ Poisson(α/2)
Steps 3 through N: The ith customer arrives and chooses to enjoy each of the items
already chosen with probability mki/i, where mki is the number of customers who have
chosen the kth item before the ith customer. In addition, the ith customer chooses
K(i) ∼ Poisson(α/i) new items.
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II.12 Latent Block model 19 / 43

G. Govaert, M. Nadif, Co-clustering.
Context: m× r random binary matrix C
Z set of partitions of I into g subsets
W set of partitions of J into h subsets

f(C; θ) =
∑

(z,w)∈Z×W

p(z; θ)p(w; θ)
∏
i,j,k,l

Bernoulli(ci,j ;αk,l)
zi,kwj,l
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II.13 Recurrent events with frailty models 20 / 43

A disease (crisis), or a failure, appearing several times.
Context: m× n random binary matrix C
1 : m set of patients
1 : n Observation times (deterministic right censoring)
or locations
If the disease starts at time j for patient i then Ci,j = 1 else Ci,j = 0.
Xi a random variable representing frailty of patient i
The interarrival times (between two diseases) given Xi are i.i.d.

Simple case: Xi
i.i.d.∼ γ

Non Parametric Bayesian case Xi|P ∼ P, P ∼ Dirichlet(cγ)
In the case of locations: spatial dependance.
A. Adekpedjou, R. Emilion, S. Niang (in progress)
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III - Sampling

- Sampling in a large set

- Markov Chains in L

- Sampling and Counting concepts
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III.1 Sampling in a large set 22 / 43

• Selecting an element at random on a large (but finite) set, e.g., L

• At random ? Given a probability measure Q on L, propose an algorithm X which
outputs are elements of L and such that Prob(X = l) = Q{l} = ql for any l ∈ L

• When Q is uniform, i.e. ql = 1
|L| : sampling at random, in common language .

• Problems : L is very large, listing L is tedious, |L| is unknown

• More general problem : Prob(X = l) ∝ v(l) a function of l which no need to sum up
to 1.
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III.2 Markov Chains 23 / 43

• Classical Central limit Theorem (CLT) holds for i.i.d. r.v.s
• Markov triying to generalizing for non i.i.d. r.v.s found his famous definition:
• X0, . . . , Xn, . . . : Ω→ L (the state space)

P (Xn+1 = xn+1|Xn, . . . , X0) = P (Xn+1 = xn+1|Xn)

• The chain ’forgets’ its past.
• Transitions:

P (Xn+1 = xn+1|Xn = xn+1) = p(xn+1, xn)

• P (X0 = x0) initial distribution.
• Simulation in R software.
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III.3 Markov Chains and sampling 24 / 43

• Sampling with MC. Main idea: find a MC such that

limn→+∞P (Xn = l) = ql

(if the limit exists : ergodicity, steady state)
• Problems:
- Theoretical proof of ergodicity
- From which n can we consider that the steady state is reached
- This n should not be too large (time consuming)
- Precision: Perfect sampling
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III.4 Markov Chains in a graph 25 / 43

• The chain moves from on node to its neighbourhood nodes
• Define the neighbourhood nodes of a node
• Define the transitions
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III.5 Markov Chain in L 26 / 43

Mario Boley et. al. SIAM DM 2010

Context C = (A,O,D)
O[ ] : P(A)→ P(O) extent mapping
A[ ] : P(O)→ P(A) intent mapping
Φ = A o O and Ψ = O o A the closure mappings
Concepts C = (I, E), I ∈ P(A), E ∈ P(O)
I ′ is a Φ−neighbourhood of I if there exists an a ∈ A such that Φ(I ∪ a) = I ′

E′ is a Ψ−neighbourhood of E if there exists an o ∈ O such that Ψ(E ∪ E) = E′
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III.6 Neighbourhoods in L 27 / 43

Figure: Both graphs are used
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III.7 Transitions in L 28 / 43

Figure: Transitions between two concepts
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III.8 Metropolis-Hasting Transitions in L 29 / 43

Figure: MH- Transitions between two concepts
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III.8 Metropolis-Hasting Sampling Algorithm in L 30 / 43

Figure: MH- Algorithm
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III.9 Application of sampling: concept counting in L 31 / 43

Mario Boley et. al. SIAM DM 2010

Context C = (A,On = 1 : n,D)
On[ ] : P(A)→ P(On) extent mapping
A[ ] : P(On)→ P(A) intent maping
Φn = A o On and Ψn = On o A the closure mappings
For any I ∈ P(A), we have I ⊆ Φn+1(I) ⊆ Φn(I) and thus Ln ⊆ Ln+1
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III.10 Counting method using sampling 32 / 43

Mario Boley et. al. SIAM DM 2010

L0 = {A},|L0| = 1
Sample r concepts in Ln+1

c of them belong to Ln (does not contain n+ 1)

Estimate |Ln|
|Ln+1| by c

r
If O = 1 : m then use that

|L| = |Lm| =
|Lm|
|Lm−1|

. . .
|L1|
|L0|

to estimate |L|
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IV - Pointwise convergence of empirical RCLs

i.i.d. case
Markov chain case
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IV.1 Random empirical Intents/Extents 34 / 43

(Ω, P ) a probability space, F a countable semilattice
Examples: F = P(A) A finite set, binary tree, set of subsets of R that are countable or
their complementary is countable.
X : Ω −→ F a random variable
Support of X = SuppX :
any subset S of F such that P (X ∈ S) = 1
Observations: X1(ω), . . . , Xn(ω), . . . ,
For any d ∈ F

gn(d) = gX1(ω),...,Xn(ω)(d) = {i = 1, ..., n : d ≤ Xi(ω)} (1)

kn(d) = fn(gn(d)) =
∧

u=X1(ω),...,Xn(ω),d≤u

u (2)
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IV.2 Empirical Intents Pointwise convergence 35 / 43

Theorem

(R.E., Springer 2007)

If F is a countable σ-semilattice
X1(ω), . . . , Xn(ω), . . ., i.i.d. sample of X
Then
gn(d) ↑ g∞(d) = {i = 1, ..., n, ... : d ≤ Xi(ω)}

kn(d) ↓ k∞(d) =
∧
u∈SuppX ,u≤d u: deterministic limit

(g∞, k∞) is a GC, k∞(F) deterministic lattice generated by SuppX .

Induces the CL of a discrete r.v.

k∞(d): deterministic ideal concept (intent)

Does not depend on the observations. Is the limit of empirical intents

Streaming. Learning.
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IV.3 Pointwise convergence, Markov chain 36 / 43

Theorem

(Emilion 2011)

If F is a countable σ-semilattice
X1(ω), . . . , Xn(ω), . . ., recurrent Markov chain with inv. meas. µ
Then

gn(d) ↑ g∞(d) = {i = 1, ..., n, ... : d ≤ Xi(ω)}

kn(d) ↓ k∞(d) =
∧
u∈Suppµ,u≤d u: deterministic limit

(g∞, k∞) is a GC which induces a CL: the CL of a discrete Markov Chain
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IV.4 Sketch of proof 37 / 43

Since SuppX ⊆ F is countable, {X1(ω), . . . , Xn(ω), . . .} = SuppX for a.a. ω
Indeed Xi(ω) ∈ SuppX as P (Xi ∈ SuppX) = P (Xi ∈ SuppX) = 1
Conversely if d ∈ SuppX , by the Large Number Law, Xi = d for an infinity of i.

kn(d) ↓ k∞(d) =
∧

u∈{X1(ω),...,Xn(ω),...},d≤u

u

=
∧

u∈SuppX ,d≤u
u : deterministic limit

LNL also holds for a recurrent Markov Chain which has an invariant measure.
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V - Experiments

Bernoulli case
Mushroom case, Regression
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V.1 Bernoulli context, CL size distribution 39 / 43

Distribution of 500 Bernoulli(15,7,0.6) CL sizes
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Figure: Distribution of Bernoulli CL Size
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V.2 Bernoulli context, CL depth distribution 40 / 43

Sample: 120, rows: 60, col: 15, p: 0.6
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Figure: Distribution of Bernoulli CL Depth
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V.3 Bernoulli context, CL width distribution 41 / 43

Sample: 120, rows: 60, col: 15, p: 0.6
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Figure: Distribution of Bernoulli CL Width

R. Emilion (DAMOL) Summer School in Olomouc June 4-5 2012 June 7, 2012 41 / 43



V.4 Bernoulli context, CL Size Depth Width PCA 42 / 43
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Figure: PCA on Bernoulli CLs
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V.5 Mushroom context, Regression : Number of concepts
w.r.t. number of ones 43 / 43
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Figure: Linear regression, concepts of the r first rows, r = 1000,1100, ..., 8124
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