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I.1. Motivations 4/43

e Context C = (I, J, D) (Binary matrix case), L its concept lattice.
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e Context C = (I, J, D) (Binary matrix case), L its concept lattice.

e Examples of complex and time consuming tasks : listing £, the frequent itemsets, the
associative rules

e Probabilistic and Statistical methods can be used at least for :
1. Modelling

2. Sampling, Bootstrapping
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.2 Modelling 5/43

e Model: Mathematical representation of a real context
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.2 Modelling 5/43

e Model: Mathematical representation of a real context

e Modelling a real context (and L, if possible) submitted to a random environment:
customer purchases

meteorological measurements
patient diseases ...

e Observed context is considered as an outcome of the model.
e Estimating the parameters of the model from the observations
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e Model: Mathematical representation of a real context

e Modelling a real context (and L, if possible) submitted to a random environment:
customer purchases

meteorological measurements
patient diseases ...

e Observed context is considered as an outcome of the model.

e Estimating the parameters of the model from the observations
e Performing Tests

e Proposing Confidence Intervals
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customer purchases

meteorological measurements
patient diseases ...

e Observed context is considered as an outcome of the model.

e Estimating the parameters of the model from the observations
e Performing Tests

e Proposing Confidence Intervals

e Model selection

e Some Interest of models: Framework for exact computations (concerning, e.g., £) and
prediction
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.2 Modelling 5/43

e Model: Mathematical representation of a real context

e Modelling a real context (and L, if possible) submitted to a random environment:
customer purchases

meteorological measurements
patient diseases ...

e Observed context is considered as an outcome of the model.

e Estimating the parameters of the model from the observations
e Performing Tests

e Proposing Confidence Intervals

e Model selection

e Some Interest of models: Framework for exact computations (concerning, e.g., £) and
prediction
Framework for defining the right concepts and not only the empirical concepts
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1.3 Sampling 6/43

e Considering a given C or L as a population and Sampling, Bootstrapping from C or from

L
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1.3 Sampling 6/43

e Considering a given C or L as a population and Sampling, Bootstrapping from C or from

L
Application : Concept Counting (estimating |L£]), and quickly check the feasibility of an

potentially exponential time listing of all concepts
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Il - MODELS OF RANDOM BINARY CONTEXTS

Bernoulli Model
Hierarchical Bernoulli Models
Indian Buffet
Latent Block Model
Survival Analysis with frailtyness
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I1.1 Bernoulli(p) Model: Simulation 8/43

Illustration In R software :

p = 0.4 : probability that an entry be equal to 1
m = 10 rows (customers, objects), I =1,...,m
n =5 columns (items, attributes) J =1,...,n
D = m x n random binary matrix

{1, 4} may be closed or not closed, depending on the outcome D.
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11.2 Random Concepts 9/43

pj probability that any entry of column j be equal to 1
The entries of the matrix D are independent r.v.s.
O a subset of objects, A a subset of attributes (itemset)

Probability that the rectangle O x A be a concept ?
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pj probability that any entry of column j be equal to 1
The entries of the matrix D are independent r.v.s.

O a subset of objects, A a subset of attributes (itemset)
Probability that the rectangle O x A be a concept ?

The rectangle O x A is a concept (maximal rectangle of ones) iff
1. O x A'is filled of ones

and

2. each row of the rectangle (I — O) x A contains at least one zero
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11.2 Random Concepts 9/43

pj probability that any entry of column j be equal to 1
The entries of the matrix D are independent r.v.s.
O a subset of objects, A a subset of attributes (itemset)

Probability that the rectangle O x A be a concept ?
The rectangle O x A is a concept (maximal rectangle of ones) iff

1. O x A is filled of ones

and
2. each row of the rectangle (I — O) x A contains at least one zero

and
3. each column of the rectangle O x (J — A) contains at least one zero
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11.3 Computation in the Bernoulli model case 10/43

R. Emilion, G. Lévy, Disc. Appl. Math. J, 157, 2945-2957 (2009)
Let py := HjeApj.
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R. Emilion, G. Lévy, Disc. Appl. Math. J, 157, 2945-2957 (2009)
Let py := HjeApj.

1.
One row of O x A is filled with ones with probability (w.p.): pa

R. Emilion (DAMOL) Summer School in Olomouc June 4-5 2012 June 7, 2012 10 / 43



11.3 Computation in the Bernoulli model case 10/43
R. Emilion, G. Lévy, Disc. Appl. Math. J, 157, 2945-2957 (2009)

Let py := HjeApj.

1

One row of O x A is filled with ones with probability (w.p.): pa

O x A is filled of ones w.p. pf'
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R. Emilion, G. Lévy, Disc. Appl. Math. J, 157, 2945-2957 (2009)
Let py := HjeApj.

1

One row of O x A is filled with ones with probability (w.p.): pa
O x A is filled of ones w.p. pf‘

2.
One row of (I — O) x A) contains at least one zero w.p. 1 —py
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11.3 Computation in the Bernoulli model case 10/43

R. Emilion, G. Lévy, Disc. Appl. Math. J, 157, 2945-2957 (2009)
Let py := HjeApj.

1.

One row of O x A is filled with ones with probability (w.p.): pa
O x A is filled of ones w.p. pf‘

2.

One row of (I —O) x A) contains at least one zero w.p. 1 —py

each row of (I —O) x A) contains at least one zero w.p. (1 —py)

3.
Column j of O x (J — A) contains at least one zero w.p.: 1 — ijO\

m—|0|

each column of O x (J — A) contains at least one zero w.p.: II;za(1 — p‘jo|)

Due to independency we arrive at
Proposition 1
O x A is a maximal rectangle w.p. p‘AO|(1 —pa)™ IO g a(1 — pljo|)
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1.4 Probability of A be closed, in the Bernoulli model case
11 /43

e Given A, the preceding proposition shows that the probability only depends on the size
|O| of O
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e Given A, the preceding proposition shows that the probability only depends on the size
|O| of O

® As Prob(A is k-closed) = > 5cp ;) Prob(O x A is a concept)
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e Given A, the preceding proposition shows that the probability only depends on the size
|O| of O

® As Prob(A is k-closed) = > 5cp ;) Prob(O x A is a concept)

and there are (') subsets O such that |O| = k we arrive at the
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1.4 Probability of A be closed, in the Bernoulli model case
11 /43

e Given A, the preceding proposition shows that the probability only depends on the size
|O| of O

® As Prob(A is k-closed) = > 5cp ;) Prob(O x A is a concept)

and there are (') subsets O such that |O| = k we arrive at the

Proposition 2
Prob(A is k-closed) = Y"1 (7)ph(1 — pa)™ *ILiga(1 — pé“)
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1.4 Probability of A be closed, in the Bernoulli model case
11 /43

e Given A, the preceding proposition shows that the probability only depends on the size
|O| of O

® As Prob(A is k-closed) = > 5cp ;) Prob(O x A is a concept)

and there are (') subsets O such that |O| = k we arrive at the

Proposition 2
Prob(A is k-closed) = Y"1 (7)ph(1 — pa)™ *ILiga(1 — pé“)

e If p; = p does not depend on j, we have p4 = pl4l and
Proposition 3
Prob(A is k-closed) = )", (?)pk|f4|(1 — plAlym=k(1 _ pkyn—IA|
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11.5 Expectation of |£| in the Bernoulli model case 12 /43

e Since the number of concepts is equal to the number of k-closed itemsets, we have

|L| = Z 14 is k-closed

AeP(J)
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e Since the number of concepts is equal to the number of k-closed itemsets, we have

|L| = Z 14 is k-closed

AeP(J)
e Taking expectation we get
E(|L|) = ) prob(Ais k-closed)
AeP(J)
_ Z Z( > k|A| p|A|)m—k(1_pk)n—|A\
AeP(J) k=0
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11.5 Expectation of |£| in the Bernoulli model case 12 /43

e Since the number of concepts is equal to the number of k-closed itemsets, we have

|L| = Z 14 is k-closed

AeP(J)
e Taking expectation we get
E(L)) = Y prob(Ais k-closed)
AeP(J)
_ Z Z < ) k|A| p|A|)m7k(1 _pk)nf|A\
AeP(J) k=0

and grouping the subsets A with same cardinality we get

Theorem 1 . o
E(IL) = (?) ) (Z)p’“’(l (L et

=0 k=0
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11.6 Variance of |£| in the Bernoulli model case 13 /43

e Computation of Prob(A and B be closed), A, B € P(J)
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11.6 Variance of |£| in the Bernoulli model case 13 /43

e Computation of Prob(A and B be closed), A, B € P(J)

Instead of having just 3 cases, namely O x A, I — O x A, O x J — A, it appears 16 cases.
Some formulas in (Emilion-Lévy can be simplified).
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11.6 Variance of |£| in the Bernoulli model case 13 /43

e Computation of Prob(A and B be closed), A, B € P(J)

Instead of having just 3 cases, namely O x A, I — O x A, O x J — A, it appears 16 cases.
Some formulas in (Emilion-Lévy can be simplified).

e Taking expectation yields E(|L|?) and therefore var(|L|) = E(|L|?) — (E(|L]))?
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1.7 i, 0 exact values in the Bernoulli model case

m|n | p i o 95% Cl for L
1410 | 03 | 3248 | 647 [3,62]

15 [ 15 | 0.9 | 489.47 | 373.74 | [1,2161]
20 | 15 | 025 | 62.78 | 11.09 [13,113]
20 | 20 | 0.65 | 1945.49 | 469.16 | |[I,4044]
25 | 15 | 0.85 | 3758.31 | 1625.93 [1,11030]
30 | 12 | 0.85 | 1598.66 | 538.70 [1,4008]
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11.8 Bernoulli context, CL size Expectation 15/43

Empirical mean size of Galois lattices (m,n,p)
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Figure: Estimated and Exact Mean size of Bernoulli Concept Lattices
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11.9 Experiments for o in the Bernoulli model case 16 /43

m| n P o S300 95% Cl S1000
14 110 | 0.3 6.47 5.94 5.03-7.94 6.40
15|15 | 0.9 373.74 321.43 284.39 - 386.57 370.6
20 | 15 | 0.25 11.09 11.14 8.92 - 12.96 11.04
20 | 20 | 0.65 | 469.16 469.65 433.60 - 497.42 468.25
25 1 15 | 0.85 | 1625.93 | 1688.60 | 1493.90 - 1743.60 | 1626.20
30| 12 | 0.85 | 538.70 549.30 503.96 - 566.11 535.79
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11.10 Hierarchical Bernoulli context 17 /43

R.E., Selected contributions in Data Analysis and Classification, 247-259, Springer, 2007

Context: m x r random binary matrix C

U a latent class variable € {1,..., K} over the individuals
q:(QIv"'7QK) ~ DZTZChlet(Wh?’YK)
Ue{l,....K}: P(U=ul|q) = Qu
Clu=uq ~ ®§:1B(pu7j)
K
Clg ~ et du ®j—1 B(pu,j)

R. Emilion (DAMOL) Summer School in Olomouc June 4-5 2012 June 7, 2012 17 / 43



11.11 Indian Buffet context 18 /43

Y. W. Teh, D. Gorur, Z. Ghahramani
Beta — Bernoulli Context: m X r random binary matrix C

b1, Dr l}\/d Beta(%71)

ind

Cijlp1,...,pr ~ Bernoulli(pj)
Limit:
Step 1: Customer 1 chooses K1) different items, where K1) ~ Poisson(c)
Step 2: Customer 2 arrives and chooses to enjoy each of the items already chosen with
probability 1/2. In addition, he chooses K(?) new items , where K2 ~ Poisson(a/2)
Steps 3 through N: The ith customer arrives and chooses to enjoy each of the items
already chosen with probability my; /i, where my; is the number of customers who have
chosen the kth item before the ith customer. In addition, the ith customer chooses
K® ~ Poisson(a/i) new items.
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11.12 Latent Block model 19/43

G. Govaert, M. Nadif, Co-clustering.
Context: m x r random binary matrix C
Z set of partitions of [ into g subsets
W set of partitions of J into h subsets

f(C;0) = Z p(z;0)p(w;0) H Bernoulli(c; j; agp) =+
(Z,’UJ)EZXW 1,5,k
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11.13 Recurrent events with frailty models 20 /43

A disease (crisis), or a failure, appearing several times.

Context: m x n random binary matrix C

1: m set of patients

1 : n Observation times (deterministic right censoring)

or locations

If the disease starts at time j for patient ¢ then C; ; = 1 else C; j = 0.
X, a random variable representing frailty of patient ¢

The interarrival times (between two diseases) given X; are i.i.d.

Simple case: X; g ~y

Non Parametric Bayesian case X;|P ~ P, P ~ Dirichlet(c)
In the case of locations: spatial dependance.
A. Adekpedjou, R. Emilion, S. Niang (in progress)
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11 - Sampling
- Sampling in a large set
- Markov Chains in £

- Sampling and Counting concepts
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I11.1 Sampling in a large set 22 /43

e Selecting an element at random on a large (but finite) set, e.g., £
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I11.1 Sampling in a large set 22 /43

e Selecting an element at random on a large (but finite) set, e.g., £

e At random ?
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I11.1 Sampling in a large set 22 /43

e Selecting an element at random on a large (but finite) set, e.g., £

e At random 7 Given a probability measure @ on L, propose an algorithm X which
outputs are elements of £ and such that Prob(X =1) = Q{l} = ¢ forany l € L
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I11.1 Sampling in a large set 22 /43

e Selecting an element at random on a large (but finite) set, e.g., £

e At random 7 Given a probability measure @ on L, propose an algorithm X which
outputs are elements of £ and such that Prob(X =1) = Q{l} = ¢ forany l € L

1

e When @ is uniform, i.e. ¢ = ] sampling at random, in common language
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I11.1 Sampling in a large set 22 /43

e Selecting an element at random on a large (but finite) set, e.g., £

e At random 7 Given a probability measure @ on L, propose an algorithm X which
outputs are elements of £ and such that Prob(X =1) = Q{l} = ¢ forany l € L

e When @ is uniform, i.e. ¢ = |%| : sampling at random, in common language .

e Problems : L is very large, listing L is tedious, |£| is unknown
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I11.1 Sampling in a large set 22 /43

e Selecting an element at random on a large (but finite) set, e.g., £

e At random 7 Given a probability measure @ on L, propose an algorithm X which
outputs are elements of £ and such that Prob(X =1) = Q{l} = ¢ forany l € L

e When @ is uniform, i.e. ¢ = |%| : sampling at random, in common language .

e Problems : L is very large, listing L is tedious, |£| is unknown

e More general problem : Prob(X =1) o v(l) a function of [ which no need to sum up
to 1.
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111.2 Markov Chains 23 /43

e Classical Central limit Theorem (CLT) holds for i.i.d. r.v.s
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e Xo,...,Xn,...: Q — L (the state space)

P(Xn+1 = l‘n+1‘Xn, e ,X()) = P(Xn+1 = l‘n+1‘Xn)

e The chain 'forgets’ its past.
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e Xo,...,Xn,...: Q — L (the state space)

P(Xn+1 = l‘n+1‘Xn, e ,X()) = P(Xn+1 = l‘n+1‘Xn)

e The chain 'forgets’ its past.
e Transitions:

P(Xn—i-l = xn+1|Xn = xn—i—l) = p(l‘n+1, xn)
e P(Xy = xo) initial distribution.
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111.2 Markov Chains 23 /43

e Classical Central limit Theorem (CLT) holds for i.i.d. r.v.s
e Markov triying to generalizing for non i.i.d. r.v.s found his famous definition:
e Xo,...,Xn,...: Q — L (the state space)

P(Xn+1 = l‘n+1‘Xn, e ,X()) = P(Xn+1 = l‘n+1‘Xn)

e The chain 'forgets’ its past.
e Transitions:

P(Xn—i-l = xn+1|Xn = xn—i—l) = p($n+1, xn)

e P(Xy = xo) initial distribution.
e Simulation in R software.
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I11.3 Markov Chains and sampling 24 /43

e Sampling with MC. Main idea: find a MC such that
limn—)-{—ooP(Xn = l) =4q

(if the limit exists : ergodicity, steady state)
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e Sampling with MC. Main idea: find a MC such that

limy— 100 P(Xn =1) = q

(if the limit exists : ergodicity, steady state)
e Problems:
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I11.4 Markov Chains in a graph 25 /43

e The chain moves from on node to its neighbourhood nodes
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I11.4 Markov Chains in a graph 25 /43

e The chain moves from on node to its neighbourhood nodes
e Define the neighbourhood nodes of a node
e Define the transitions
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I11.5 Markov Chain in £ 26 /43

Mario Boley et. al. SIAM DM 2010

Context C = (A,0, D)

O[] :P(A) — P(O) extent mapping

A[]:P(O) — P(A) intent mapping

®=A00 and ¥ = O o A the closure mappings

Concepts C = (I, E),I € P(A),E € P(O)

I' is a ®—neighbourhood of I if there exists an a € A such that ®(I Ua) = I’

E’ is a U—neighbourhood of E if there exists an o € O such that ¥(EU E) = F’
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111.6 Neighbourhoods in £ 27 /43

Figure: Both graphs are used
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I11.7 Transitions in £ 28 /43

Ga(I, )| /(2)A)), if C < C
9(C,C) = { |Gu(E, B /2|0)),  C>C
11/214]) + |E| /(2]0]), £C=C"

Figure: Transitions between two concepts
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111.8 Metropolis-Hasting Transitions in £ 29 /43

q(C,C")min{aZZ) 1}, if g(C,C") > 0

0, otherwise

p{ﬂﬂ')={

where a = g(C",C)/q(C,C"). This is the Metropolis-

Figure: MH- Transitions between two concepts
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111.8 Metropolis-Hasting Sampling Algorithm in £ 30 /43

Algorithm 1 Metropolis-Hastings Concept Sampling

Input : context (A, @, D), number of iterations =,
oracle of map f:C — R
Output : concept (I, E)

1. init (I,E) ~u({T,L}) and i — 0

2. i—i+1

3. draw d ~ u({up,down})

4. if d = up then

5. draw a ~ u(A4)

6. (I'E") — (9(LU{a}),0[6(I Ufa}))
n o (GuEBIIAD/(CH1.I]0)
9: draw o ~ (0)

1. (I E') — {AR(E U {o})] , ¥ (E U {0}))
1 (G, DO / (IGy(E, E')||A])
12. draw x ~ »([0,1])

13. if # < af(I")/ f(I) then (I.E) — (I',E')
14. if ¢ = & then return (I, E) else goto 2

Figure: MH- Algorithm
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111.9 Application of sampling: concept counting in £ 31 /43

Mario Boley et. al. SIAM DM 2010

Context C = (4,0, =1:n,D)

On]]:P(A) — P(Oy,) extent mapping

A[]:P(O,) = P(A) intent maping

®,=A00, and ¥, = O,, 0 A the closure mappings

For any I € P(A), we have I C ®,,,1(I) C ®,(I) and thus £, C L, 41
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111.10 Counting method using sampling 32 /43

Mario Boley et. al. SIAM DM 2010

Lo ={A}|Lo| =1
Sample r concepts in L,11
c of them belong to £,, (does not contain n + 1)

Estimate 2o by £
[Lrnt1] T
If O =1:m then use that
|Lm| L4
Ll=|L,] = R
’ ’ | m‘ |Em—1| ’[10‘

to estimate ||

R. Emilion (DAMOL) Summer School in Olomouc June 4-5 2012 June 7, 2012 32 /43



IV - Pointwise convergence of empirical RCLs

i.i.d. case
Markov chain case
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IV.1 Random empirical Intents/Extents 34 /43

(2, P) a probability space, F a countable semilattice
Examples: F = P(A) A finite set, binary tree, set of subsets of R that are countable or
their complementary is countable.
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IV.1 Random empirical Intents/Extents 34 /43

(2, P) a probability space, F a countable semilattice

Examples: F = P(A) A finite set, binary tree, set of subsets of R that are countable or
their complementary is countable.

X : Q — F a random variable

Support of X = Suppx:

any subset S of F' such that P(X € S) =1

Observations: X (w), ..., Xp(w),.
For any d € F

ey

In(d) = 9x, (), Xn(@)(d) ={i =1,...,n:d < X;(w)} (1)
kn(d) = fo(gn(d)) = A u (2)

u=X1(w),...,Xn(w),d<u
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IV.2 Empirical Intents Pointwise convergence 35/43

Theorem
(R.E., Springer 2007)
If F is a countable o-semilattice

X1 (w),. .., Xp(w),..., iid sample of X
Then

gn(d) T goo(d) ={i=1,..,n,...: d < X;(w)}

kn(d) 4 koo(d) = Nyesuppy u<a ¥ deterministic limit

@ (goos ko) is @ GC, koo (F) deterministic lattice generated by Suppx.
@ Induces the CL of a discrete r.v.

@ koo(d): deterministic ideal concept (intent)

@ Does not depend on the observations. Is the limit of empirical intents
@ Streaming. Learning.
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IV.3 Pointwise convergence, Markov chain 36 /43

Theorem
(Emilion 2011)

If F is a countable o-semilattice

Xi1(w),..., Xn(w),..., recurrent Markov chain with inv. meas.
Then

gn(d) T goo(d) ={i=1,..,n,...: d < X;(w)}

kin(d) 4 koo (d) = Nyesupp, uca ¥ deterministic limit

(goo, koo ) is @ GC which induces a CL: the CL of a discrete Markov Chain
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IV.4 Sketch of proof 37 /43

Since Suppx C F is countable, {X;(w),..., Xp(w),...} = Suppx for a.a. w
Indeed X;(w) € Suppx as P(X; € Suppx) = P(X; € Suppx) =1
Conversely if d € Suppx, by the Large Number Law, X; = d for an infinity of 4.

n(d) | koo(d) = A u
we{X1(w),.... Xn(w),...},d<u

= /\ u : deterministic limit
ueSuppx,d<u

LNL also holds for a recurrent Markov Chain which has an invariant measure.
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V - Experiments

Bernoulli case
Mushroom case, Regression
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V.1 Bernoulli context, CL size distribution 39/43

Distribution of 500 Bernoulli(15,7,0.6) CL sizes
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Figure: Distribution of Bernoulli CL Size
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V.2 Bernoulli context, CL depth distribution 40 /43

Sample: 120, rows: 60, col: 15, p: 0.6
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Figure: Distribution of Bernoulli CL Depth
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V.3 Bernoulli context, CL width distribution 41 /43

Sample: 120, rows: 60, col: 15, p: 0.6

Frequency

il [l

r T T 1
600 800 1000 1200

Width

Figure: Distribution of Bernoulli CL Width
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V.4 Bernoulli context, CL Size Depth Width PCA 42 /43

Size Depth Width PCA (sample= 120)
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Figure: PCA on Bernoulli CLs
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V.5 Mushroom context, Regression : Number of concepts
w.r.t. number of ones 43 /43

Mushroom dataset: Linear regression of y by x

Number of concepts
150000 200000
L L

100000
I

50000
I

T T T
50000 100000 150000

Number of ones in the context, r first rows, r= 1000, 1100, ..., 8100, 8124

Figure: Linear regression, concepts of the r first rows, » = 1000,1100, ..., 8124
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