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Plan

ä An example of spatial reasoning

ä What is space made of?

ä Some musings on pointless geometry/topology.

ä A brief overview of the history of �qualitative spatial
reasoning� (QSR).

ä Relational concepts

ä Contact structures

ä A review of topological concepts.

ä Concrete regions: Regular closed sets.

ä Abstract regions: Boolean contact algebras.

ä Bringing it all together - a representation theorem.



An example of spatial reasoning: The confederation

1. The confederation consists of exactly 7 countries/provinces
(a,b,c,d ,e, f ,g) on an island.

2. a shares a border with another country.

3. Country a and country d have no common border.

4. Country c is surrounded by country e.

5. Country d consists of two provinces f and g .

6. Country e and a have no common border.

Question: Do a and b share a common border?



The confederation



A derivation

ä Countries and provinces are regions on the island.

ä Regions are collections of locations.

ä xCy denotes the property of two regions to share at least one
common border.

1. aCa∗ (= b+ c +d + e + f +g).

2. a(−C )d ⇒ aC (b+ c + e + f +g).

3. d = f +g
2)⇒ aC (b+ c + e).

4. c is strictly inside c + e, i.e. every
country which does not have a
border with e cannot share a border
with c .

5. e(−C )a
3)⇒ aCb.



Properties of the example

ä Basic entities are regions.

ä Spatial information is given with respect to other regions. No
information about locations (points) is assumed.

ä The information given is incomplete, so a derivation
mechanism is needed.



What is space made of?

ä The basic entity of Euclidean geometry are points.

ä Points are abstract entities and do not exist in the physical
world. How do points relate to everyday objects in space?

ä Reasoning about regions (= sets of points) requires 2nd order
logic.

ä Alternative: Choose regions as basic entity instead of points
and de�ne points (if at all) via sets of regions, see e.g. Biacino
and Gerla [4], but also Schoop [31].



Points vs aggregates
A.N. Whitehead: The Organization of Thought, 1917



Qualitative spatial reasoning - Mereotopology

I Investigates properties of relations �part�of� (P) and �contact�

I �Foundations of the General Theory of
Sets� (Le±niewski, 1916)

I �Point, line, and surface as sets of solids�
(de Laguna, 1922)

I �Geometry in a sensible world�, (Nicod,
1924)

I �Foundation of the geometry of solids�
(Tarski, 1929)

I �Process and reality� (Whitehead, 1929)

I �Axiomatization of Geometry without
Points� (Grzegorczyk, 1960)



Modern approaches

I A calculus of individuals based on `connection' (Clarke [6, 7],
but see Biacino and Gerla [3])

I Computing Transitivity Tables: A Challenge for Automated
Theorem Provers (Randell et al. [30])

I Parts, wholes, and part�whole relations: The prospect of
mereotopology (Varzi [36])

I The mereotopology of discrete space (Galton [17])

I A note on proximity spaces and connection based mereology
(Vakarelov et al. [35])

I Pointless Geometries (Gerla [18])

I Handbook of Spatial Logics (Aiello et al. [1])

I Qualitative Spatial and Temporal Reasoning (Ligozat [25])



Today's applications

ä Geographical information systems.

ä Computer games.

ä Semantic web (Ontologies are regions).

ä Biological systems.

ä Mobile robot navigation.

ä Computer aided design

ä more

See Wolter and Wallgrün [38].

�Spatial databases will bene�t from the composition table of

topological relations if it is applied during data acquisition to

integrate independently collected topological information and

to derive new topological knowledge ; to detect consistency

violations among spatial data about some otherwise

non�evident topological facts; or during query processing,

when spatial queries are less expensive to be executed or

involve less objects.� (Egenhofer [16])
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Binary relations

I A binary relation on U is a subset of U×U, Rel(U) = 2U×U .

I Convention: 〈x ,y〉 ∈ R ⇐⇒ xRy .

I Special relations: /0, V ,
,
1 , 0′, where

V = U×U,

1′ = {〈x ,x〉 : x ∈ U},
0′ = {〈x ,y〉 : x ,y ∈ U,x 6= y}= V \1′.

I 〈Rel(U),∩,∪,−, /0,V 〉 is a Boolean algebra.



Relative operations

Composition (relative multiplication):

R ; S = {〈x ,y〉 : (∃z)[xRz and zSy ]}

Converse:

R ˘ = {〈y ,x〉 : xRy}.
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Properties of the operators [5, 22]

1. ; is associative, i.e. (R ; S) ; T = R ; (S ; T ).

2. 1′ ; R = R = R ; 1′.

æ 〈Rel(U), ; ,1′〉 is a monoid.

3. R ˘ ˘ = R .

4. (R ; S)˘ = S ˘ ; R ˘.

æ ˘ is an involution w.r.t. ; .

5. For all R,S ∈ Rel(U) there is a largest T ∈ Rel(U) such that
R ; T ⊆ S . T is the residual of S by R , denoted by R�res S .

R�res S =−(R ˘ ; −S),

x(R�res S)y ⇐⇒ R ˘(x)⊆ S ˘(y).

6. (R ; S)∩T = /0⇐⇒ (T ; S ˘)∩R = /0⇐⇒ (R ˘ ; T )∩S = /0.
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Algebras of binary relations

I 〈Rel(U),∩,∪,−, /0,V , ; , ˘,1′〉 is called the full algebra of

binary relations on U.

I If A⊆ Rel(U) is closed under the operations and contains the
distinguished constants /0,V ,1′, it is called an algebra of binary

relations (BRA).

I If R ⊆ Rel(U), the BRA generated by R is the set of all
binary relations on U which are de�nable in the (language of
the) relational structure 〈U,R〉 by �rst order formulas using at
most three variables, two of which are free [34].

I The equational theory of (B)RAs can express inequality:

τ 6= σ ⇐⇒ τ⊕σ 6= /0⇐⇒ V ; (τ⊕σ) ; V = V .

ý BRAs are not locally �nite.
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Composition tables

ä A �nite BRA is a complete atomic Boolean algebra, and the
action of the Boolean operators are uniquely determined by
the atoms.

ä Since ; and ˘ distribute over ∪ it su�ces to specify
composition and converse of atoms.

; S

R T0,T1, . . . ,Tk

R ; S = T0∪T1∪ . . .∪Tk

ä Atoms below 1′ need not be listed.



Weak composition

ä Splitting equality leads to two kinds of theorem:

(∀x ,y ,z)[xRz ∧ zSy ⇒ xT0y ∨·· ·∨ xTky ],

(∀x ,y)[xTiy ⇒ (∃z)xRz ∧ zSy ].

ä Considering only the �rst direction leads to weak composition:

; w S

R T0,T1, . . . ,Tk

R ; S ⊆ T0∪T1∪ . . .∪Tk

ä An interpretation of a weak composition table is extensional or
path consistent if ; w = ; .

ä A table - regarded as an abstract structure - can have
extensional and non�extensional interpretations.



Contact structures
A contact structure is a triple 〈U,P,C 〉 where U is a set (of
regions), P a partial order on U, and C a binary relation
(�contact�) which satis�es

1. C is symmetric, i.e. aC b implies bC a for all a,b ∈ U.
2. C is re�exive, i.e. aC a for all a ∈ U.
3. C is compatible with P , i.e. C ; P ⊆ C .

å P ⊆ C : Let xPy .

2.⇒ xC x
3.⇒ xC y .

å xPy ⇒ C (x)⊆ C (y):

xC z
1.⇒ zC x

3.⇒ zC y
2.⇒ yC z .

C is called extensional i� C (x)⊆ C (y)⇒ xPy .

å C is extensional i� C (x) = C (y)⇐⇒ x = y i� P = C �res C .
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Mereological relations

PP = P \1′, proper part

O = P ˘ ; P overlap

PO = O \ (P ∪P ˘) partial overlap

DR = (U×U)\O disjoint

Note: O ⊆ C :

xOy ⇒ (∃z)[xP ˘zPy ]⇒ (∃z)[xC zPy ]⇒ x(C ; P)y ⇒ xC y .

RCC5 relations:

U×U = 1′ ·∪ PP ·∪ PP ˘ ·∪ PO ·∪ DR.
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RCC5 relations on open disks

Let U be the collection of all open disks in the plane,and

xPy ⇐⇒ x ⊆ y .

The BRA generated by P on Rel(U) has �ve atoms and the table

; PP PP ˘ PO DR

PP PP V PP,PO,DR DR

PP ˘ −DR PP ˘ PP ˘,PO PP ˘,PO,DR

PO PP,PO PP ˘,PO,DR V PP ˘,PO,DR

DR PP,PO,DR DR PP,PO,DR V

C = P ∪P ˘ ∪PO is extensional!.



RCC8 relations

If C 6= O, PP and C are split:

EC
def
= C ∩−O external contact (1)

TPP
def
= PP ∩ (EC ; EC ) tangential proper part (2)

NTPP
def
= PP ∩−TPP non�tangential proper part (3)

DC
def
= −C disconnected (4)

The RCC8 relations

1′,TPP,TPP ˘,NTPP,NTPP ˘,PO,EC ,DC

partition U×U.
These are the two�dimensional version of Allen's interval relations
[2], see [11] for details.



RCC8 relations on closed disks (RCC8, [30])



Closed disk composition table

C
O; DR

PP PP˘
DC EC PO TPP NTPP TPP˘ NTPP˘

DC V DR,PO,PP DR,PO,PP DR,PO,PP DR,PO,PP DC DC

EC DR,PO,PP˘ 1',DR,PO,
TPP
TPP˘

DR,PO,PP EC,PO,PP PO,PP DR DC

PO DR,PO,PP˘ DR,PO,PP˘ V PO,PP PO,PP DR,PO,PP˘ DR,PO,PP˘
TPP DC DR DR,PO,PP PP NTPP 1',DR,PO,

TPP,TPP˘
DR,PO,
PP˘

NTPP DC DC DR,PO,PP NTPP NTPP DR,PO,PP 1

TPP˘ DR,PO,PP˘ EC,PO,PP˘ PO,PP˘ 1',PO,
TPP,TPP˘

PO,PP PP˘ NTPP˘

NTPP˘ DR,PO,PP˘ PO,PP˘ PO,PP˘ PO,PP˘ O NTPP˘ NTPP˘

I Also known as the RCC8 composition table (a misnomer).

I C is extensional.



Empiricism and rationalism (Pratt-Hartmann [29])
The empiricist:

1. Select a group of primitive spatial relations corresponding to
familiar spatial concepts and illustrate their meaning with a
few examples.

2. Write down axioms to govern these primitives.

3. Propose various de�nitions for a range of familiar spatial
relations not included in the primitive ones.

The rationalist:

1. Select a group σ of predicate letters to represent primitive
spatial relations corresponding to familiar spatial concepts.

2. Using some familiar point-based model of space, select a set A
of subsets of that space to count as regions recognized by the
theory.

3. Interpret the symbols from σ over the regions in A using the
standard de�nitions to obtain a structure A(σ).

4. Systematically investigate its properties as a structure.
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Brief review of topological terms

I A topology over a set X is a collection τ of subsets of X such
that

1. /0,X ∈ τ,
2. O1,O2 ∈ τ implies O1∩O2 ∈ τ,
3. {Oi : i ∈ I} ⊆ τ implies

⋃
{Oi : i ∈ I} ∈ τ

I Elements of τ are called open sets and their complements
closed sets.

I For Y ⊆ X , int(Y ) is the largest open set contained in Y , and
cl(Y ) the smallest closed sets containing Y .

I The boundary of Y is the set bd(Y ) = cl(Y )\ int(Y ).

I An open basis for τ is a subset B of τ such that each O ∈ τ is
a union of elements of B.

I A closed basis for τ is a set B of closed sets 2X such that
every closed set is an intersection of elements of B .



Separation axioms

Let X = 〈X ,τ〉 be a topological space. X is called a

1. T0 space if for all x ,y ∈ τ there is some O ∈ τ such that x ∈O
and y 6∈ O or x 6∈ O and y ∈ O.

2. T1 space if for all x ,y ∈ X there is some O ∈ τ x ∈ O and
y 6∈ O.

3. T2 space if for all x ,y ∈ X ,x 6= y there are O1,O2 ∈ τ such
that x ∈ O1,y ∈ O2 and O1∩O2 = /0.

4. regular space, if for every x ∈ X and every closed set A with
x 6∈ A there are open sets O1,O2 such that x ∈O1,A⊆O2 and
O1∩O2 = /0.

5. weakly regular space, if for every x ∈ X and every regular
closed set A with x 6∈ A there are open sets O1,O2 such that
x ∈ O1,A⊆ O2 and O1∩O2 = /0.



Regular sets and more

I Y ⊆ X is regular open if int(cl(Y )) = Y , and regular closed if
cl(int(Y )) = Y .

Figure: Regular and nonregular sets (from Pratt and Schoop [27])

I A topology τ is called semiregular if it has a basis of regular
open sets.

I A topology τ is called connected if the only closed�open sets
are /0 and X .

I A topology τ is called totally disconnected if every open set is
the union of closed�open sets.



Pathological regular sets (from Pratt and Schoop [28])

I One may exclude pathological regions by considering polygonal
or semi�algebraic sets as regions [27, 28, 31].
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A hole in the plane

xHy i� xECy and (∀z)[zECx ⇒ zOy ].



A hole in space



Gotts' doughnuts [19, 20]



Our setup

I Concrete : Regions in a topological space and operations and
relations among them.

I Abstract : A contact structure 〈U,P,C 〉 and an algebraic
structure on U which is in some sense compatible with C .

I Bridge : Sound and complete axiomatizations and
representation theorems.

Be parsimonious!





Concrete structures � Regular closed sets

I Regions are regular closed sets of some semiregular topological
space.

I The regular closed sets of a topological space X form a
complete Boolean algebra under the operations

a+b = a∪b,
a ·b = cl(int(a∩b)),

−a = cl(X \a), 0 = /0, 1 = X .

Observe that it is possible that a ·b = 0, but a∩b 6= /0.
I A standard contact structure is a subalgebra B of the

Boolean algebra RegCl(X ) of regular closed sets of a
(semiregular) topological space 〈X ,τ〉, enhanced by a contact
relation Cτ such that for all regular closed sets a,b ∈ B

aCτb⇐⇒ a∩b 6= /0.

The part-of relation P is set inclusion.



Abstract structures � Boolean contact algebras

A Boolean contact algebra 〈B,≤,C 〉 is a Boolean algebra B

together with its ordering ≤ and a binary relation C on B which
satis�es for all x ,y ,z ∈ B

C0. 0(−C )x

C1. x 6= 0 implies xC x (domain re�exivity)

C2. xC y implies yC x (symmetry)

C3. xC y and y ≤ z implies xC z . (compatibility

C4. xC (y + z) implies (xC y or xC z) (distributivity)

B is connected if

I x 6= 0 and x 6= 1 implies xC − x (connectivity).

B is extensional if

I If xC z ⇐⇒ yC z for all z ∈ B , then x = y (extensionality)
(Whitehead!).

Recall : If C is extensional, then ≤ can be de�ned by C !



Basic facts on BCAs
Let B be a Boolean algebra.

ä There is exactly one contact relation C if B = {0,1}, namely,
C = {〈1,1〉}.

ä The smallest contact relation on B is given by

Cmin = {〈x ,y〉 : x · y 6= 0}.

Cmin is the overlap relation , usually denoted by O.

Cmin is extensional but (usually) not connected.

ä The largest contact relation on B is

Cmax = {〈x ,y〉 : x ,y 6= 0}.

Cmax is connected but (usually) not extensional.

ä The class of �nite Boolean contact algebras has the joint
embedding property and the amalgamation property (Düntsch
and Li [12]).
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Atomless BCAs

I If C is connected and extensional, then B is atomless [13].
Preparation: C is extensional if and only for all a 6= 0,1 there
is some b 6= 0 such that a(−C )b.

Proof.

Assume a is an atom of B . Since C is connected, we have aC −a.
Now, −a is an antiatom, so, if b 6= 0,a, then b ·−a 6= 0. Hence, −a
is in contact with all nonzero elements of B , contradicting that C
is extensional.

I If B is an atomless BA, then there is an extensional and
connected contact relation on B [23].

Proof.

Exercise.
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A simple construction of contact algebras
(Düntsch and Winter [15], Koppelberg et al. [23]

Let B be a subalgebra of P(X ), and R a symmetric and re�exive
relation on X . R induces a contact relation C on B by

bC c ⇐⇒ (∃x ,y ∈ X )[x ∈ b and y ∈ c and xRy ],

i.e.

⇐⇒ (b× c)∩R 6= /0.

If B is a BCA, the relation R on Ult(B) de�ned by

xRy ⇐⇒ x× y ⊆ C

is symmetric, re�exive and closed in the product topology of Ult(B).
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From concrete to abstract

Let X = 〈X ,τ〉 be a semiregular space, and RegCl(X ) be the BA
of regular closed sets with standard connection C , i.e.

xC y ⇐⇒ x ∩ y 6= /0.

ä RegCl(X ) is a Boolean contact algebra (see Biacino and
Gerla [4]).

ä C is extensional if and only if τ is weakly regular [14].

ä C is connected if and only if τ is connected [14].

Proof.

�⇒�: Assume there are disjoint nonempty open sets a,b whose
union is X . Then, a,b are regular closed and b =−a. Since C is
connected, aC b, i.e. a∩b 6= /0, a contradiction.
�⇐�: Let a 6= /0,X and a(−C )−a. Thus, a∩ cl(X \a) = /0 and
a∪ cl(X \a) = X , showing that τ is not connected.
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From abstract to concrete

Famous representation results:

I Each �nite group is isomorphic to a group of permutations.

I Each Boolean algebra is isomorphic to an algebra of sets.

Task : Given a BCA 〈B,≤,C 〉, �nd a topological space 〈X ,τ〉 with
standard contact Cτ and an embedding from 〈B,≤,C 〉 into
〈RegCl(X ),⊆,Cτ〉.

Preliminary de�nitions : A clan is a nonempty subset Γ of B such
that

1. If a ∈ Γ and a ≤ b, then b ∈ Γ.

2. If a,b ∈ Γ, then aC b.

3. If a+b ∈ Γ, then a ∈ Γ or b ∈ Γ.
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Representation Theorem([9, 14])

Let X be the set of all clans on B and de�ne h : B → 2X by

h(a) = {Γ ∈ X : a ∈ Γ}.

B = {h(a) : a ∈ B} is closed under union:

h(a)∪h(b) = {Γ ∈ X : a ∈ Γ}∪{Γ ∈ X : b ∈ Γ}
= {Γ ∈ X : a ∈ Γ or b ∈ Γ}
= {Γ ∈ X : a+b ∈ Γ}
= h(a+b)

Let τ be the topology the basis {X \h(a) : a ∈ B}. Then,
ä Each h(a) is regular closed.

ä The mapping h : B → RegCl(X ) is injective and preserves the
Boolean operations.

ä aC b if and only if h(a)Cτh(b).



A representation theorem for Boolean algebras

0. On each atomless Boolean algebra there is a connected and

extensional contact relation (Koppelberg et al. [23]).

1. For every Boolean algebra B there is a totally disconnected

compact regular T1 space X such that B is isomorphic to a

subalgebra of RegCl(X ) (Stone [32]).

2. For every connected and extensional Boolean contact algebra

there is a connected compact weakly regular T1 space X such

that B is isomorphic to a subalgebra of 〈RegCl(X ),Cw 〉
(Dimov and Vakarelov [10], Düntsch and Winter [14]).

3. For every atomless Boolean algebra B there is a connected

compact weakly regular T1 space X such that B is isomorphic

to a subalgebra of RegCl(X ).
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