Qualitative spatial reasoning I: Crisp contact structures

Ivo Düntsch

Department of Computer Science,
Brock University,
St. Catharines, Ontario
duentsch@brocku.ca

Plan

- An example of spatial reasoning
- What is space made of?
> Some musings on pointless geometry/topology.
- A brief overview of the history of "qualitative spatial reasoning" (QSR).
- Relational concepts
- Contact structures
- A review of topological concepts.
- Concrete regions: Regular closed sets.
> Abstract regions: Boolean contact algebras.
- Bringing it all together - a representation theorem.

An example of spatial reasoning: The confederation

1. The confederation consists of exactly 7 countries/provinces (a, b, c, d, e, f, g) on an island.
2. a shares a border with another country.
3. Country a and country d have no common border.
4. Country c is surrounded by country e.
5. Country d consists of two provinces f and g.
6. Country e and a have no common border.

Question: Do a and b share a common border?

The confederation

A derivation

- Countries and provinces are regions on the island.
- Regions are collections of locations.
> $x C y$ denotes the property of two regions to share at least one common border.

1. $a C a^{*}(=b+c+d+e+f+g)$.
2. $a(-C) d \Rightarrow a C(b+c+e+f+g)$.
3. $d=f+g \stackrel{2)}{\Rightarrow} a C(b+c+e)$.
4. c is strictly inside $c+e$, i.e. every
 country which does not have a border with e cannot share a border with c.
5. $e(-C) a \stackrel{3}{\Rightarrow} a C b$.

Properties of the example

- Basic entities are regions.
> Spatial information is given with respect to other regions. No information about locations (points) is assumed.
> The information given is incomplete, so a derivation mechanism is needed.

What is space made of?

- The basic entity of Euclidean geometry are points.
- Points are abstract entities and do not exist in the physical world. How do points relate to everyday objects in space?
- Reasoning about regions ($=$ sets of points) requires $2^{\text {nd }}$ order logic.
- Alternative: Choose regions as basic entity instead of points and define points (if at all) via sets of regions, see e.g. Biacino and Gerla [4], but also Schoop [31].

Points vs aggregates

A.N. Whitehead: The Organization of Thought, 1917

SPACE, TLME, AND RELATIVITY 195

Our space concepts are concepts of relations between things in space. Thus there is no such entity as a self-subsistent point. A point is merely the name for some peculiarity of the relations between the matter whieh is, in common language, said to be in space.

It follows from the relative theory that a point should be definable in terms of the relations between material things. So far as I am aware, this outcome of the theory has escaped the notice of mathematicians, who have invariably assumed the point as the ultimate starting ground of their reasoning. Many years ago I explained some types of ways in which we might aehieve such a definition, and more recently have added some others. Similar explanations apply to time. Before the theories of space and time have been carried to a satisfactory conclusion on the relational basis, a long and careful serutiny of the definitions of points of space and instants of time will have to be undertaken, and many ways of effecting these definitions will have to be tried and compared. This is an unwritten chapter of mathematies, in mueh the same state as

Qualitative spatial reasoning - Mereotopology

- Investigates properties of relations "part-of" (P) and "contact"

- "Foundations of the General Theory of Sets" (Leśniewski, 1916)
- "Point, line, and surface as sets of solids" (de Laguna, 1922)
- "Geometry in a sensible world", (Nicod, 1924)
- "Foundation of the geometry of solids" (Tarski, 1929)
- "Process and reality" (Whitehead, 1929)
- "Axiomatization of Geometry without Points" (Grzegorczyk, 1960)

Modern approaches

- A calculus of individuals based on 'connection' (Clarke [6, 7], but see Biacino and Gerla [3])
- Computing Transitivity Tables: A Challenge for Automated Theorem Provers (Randell et al. [30])
- Parts, wholes, and part-whole relations: The prospect of mereotopology (Varzi [36])
- The mereotopology of discrete space (Galton [17])
- A note on proximity spaces and connection based mereology (Vakarelov et al. [35])
- Pointless Geometries (Gerla [18])
- Handbook of Spatial Logics (Aiello et al. [1])
- Qualitative Spatial and Temporal Reasoning (Ligozat [25])

Today's applications

> Geographical information systems.

- Computer games.
- Semantic web (Ontologies are regions).
- Biological systems.
- Mobile robot navigation.
- Computer aided design
> more
See Wolter and Wallgrün [38].

Today's applications

> Geographical information systems.

- Computer games.
- Semantic web (Ontologies are regions).
- Biological systems.
- Mobile robot navigation.
- Computer aided design
> more
See Wolter and Wallgrün [38].
"Spatial databases will benefit from the composition table of topological relations if it is applied during data acquisition to integrate independently collected topological information and to derive new topological knowledge ; to detect consistency violations among spatial data about some otherwise non-evident topological facts; or during query processing, when spatial queries are less expensive to be executed or involve less objects." (Egenhofer [16])

Binary relations

- A binary relation on U is a subset of $U \times U, \operatorname{Rel}(U)=2^{U \times U}$.
- Convention: $\langle x, y\rangle \in R \Longleftrightarrow x R y$.
- Special relations: $\emptyset, V, 1,0^{\prime}$, where

$$
\begin{aligned}
& V=U \times U \\
& 1^{\prime}=\{\langle x, x\rangle: x \in U\} \\
& 0^{\prime}=\{\langle x, y\rangle: x, y \in U, x \neq y\}=V \backslash 1^{\prime}
\end{aligned}
$$

- $\langle\operatorname{Rel}(U), \cap, \cup,-, \emptyset, V\rangle$ is a Boolean algebra.

Relative operations

Composition (relative multiplication):

$$
R ; S=\{\langle x, y\rangle:(\exists z)[x R z \text { and } z S y]\}
$$

Relative operations

Composition (relative multiplication):

$$
R ; S=\{\langle x, y\rangle:(\exists z)[x R z \text { and } z S y]\}
$$

Converse:

$$
R^{\smile}=\{\langle y, x\rangle: x R y\} .
$$

Properties of the operators $[5,22]$

1. ; is associative, i.e. $(R ; S) ; T=R ;(S ; T)$.
2. $1^{\prime} ; R=R=R ; 1^{\prime}$.
$\Rightarrow\left\langle\operatorname{Re}(U), ;, 1^{\prime}\right\rangle$ is a monoid.

Properties of the operators $[5,22]$

1. ; is associative, i.e. $(R ; S) ; T=R ;(S ; T)$.
2. $1^{\prime} ; R=R=R ; 1^{\prime}$.
$\Rightarrow\left\langle\operatorname{Re}(U), ;, 1^{\prime}\right\rangle$ is a monoid.
3. $R^{\smile}=R$.
4. $(R ; S)^{\smile}=S^{\smile} ; R^{\smile}$.
$\rightarrow{ }^{\wedge}$ is an involution w.r.t. ; .

Properties of the operators $[5,22]$

1. ; is associative, i.e. $(R ; S) ; T=R ;(S ; T)$.
2. $1^{\prime} ; R=R=R ; 1^{\prime}$.
$\Rightarrow\left\langle\operatorname{Re}(U), ;, 1^{\prime}\right\rangle$ is a monoid.
3. $R^{\smile}=R$.
4. $(R ; S)^{\smile}=S^{\smile} ; R^{\smile}$.
$\rightarrow{ }^{\wedge}$ is an involution w.r.t. ; .
5. For all $R, S \in \operatorname{Rel}(U)$ there is a largest $T \in \operatorname{Rel}(U)$ such that $R ; T \subseteq S . T$ is the residual of S by R, denoted by $R \backslash_{\text {res }} S$.

$$
\begin{gathered}
R \backslash_{\text {res }} S=-\left(R^{\smile} ;-S\right) \\
x\left(R \backslash_{\text {res }} S\right) y \Longleftrightarrow R^{\smile}(x) \subseteq S^{\smile}(y)
\end{gathered}
$$

Properties of the operators $[5,22]$

1. ; is associative, i.e. $(R ; S) ; T=R ;(S ; T)$.
2. $1^{\prime} ; R=R=R ; 1^{\prime}$.
$\Rightarrow\left\langle\operatorname{Rel}(U), ;, 1^{\prime}\right\rangle$ is a monoid.
3. $R^{\smile}=R$.
4. $(R ; S)^{\smile}=S^{\smile} ; R^{\smile}$.
$\Rightarrow{ }^{\wedge}$ is an involution w.r.t. ; .
5. For all $R, S \in \operatorname{Rel}(U)$ there is a largest $T \in \operatorname{Rel}(U)$ such that $R ; T \subseteq S . T$ is the residual of S by R, denoted by $R \backslash_{\text {res }} S$.

$$
\begin{gathered}
R \backslash_{\text {res }} S=-\left(R^{\smile} ;-S\right) \\
x\left(R \backslash_{\text {res }} S\right) y \Longleftrightarrow R^{\smile}(x) \subseteq S^{\smile}(y)
\end{gathered}
$$

6. $(R ; S) \cap T=\emptyset \Longleftrightarrow\left(T ; S^{\smile}\right) \cap R=\emptyset \Longleftrightarrow\left(R^{\smile} ; T\right) \cap S=\emptyset$.

Algebras of binary relations

- $\left\langle\operatorname{Rel}(U), \cap, \cup,-, \emptyset, V, ;,^{\iota}, 1^{\prime}\right\rangle$ is called the full algebra of binary relations on U.
- If $A \subseteq \operatorname{Rel}(U)$ is closed under the operations and contains the distinguished constants $\emptyset, V, 1^{\prime}$, it is called an algebra of binary relations (BRA).

Algebras of binary relations

- $\left\langle\operatorname{Rel}(U), \cap, \cup,-, \emptyset, V, ;{ }^{\smile}, 1^{\prime}\right\rangle$ is called the full algebra of binary relations on U.
- If $A \subseteq \operatorname{Rel}(U)$ is closed under the operations and contains the distinguished constants $\emptyset, V, 1^{\prime}$, it is called an algebra of binary relations (BRA).
- If $\mathscr{R} \subseteq \operatorname{Rel}(U)$, the BRA generated by \mathscr{R} is the set of all binary relations on U which are definable in the (language of the) relational structure $\langle U, \mathscr{R}\rangle$ by first order formulas using at most three variables, two of which are free [34].

Algebras of binary relations

- $\left\langle\operatorname{Rel}(U), \cap, \cup,-, \emptyset, V, ;{ }^{\smile}, 1^{\prime}\right\rangle$ is called the full algebra of binary relations on U.
- If $A \subseteq \operatorname{Rel}(U)$ is closed under the operations and contains the distinguished constants $\emptyset, V, 1^{\prime}$, it is called an algebra of binary relations (BRA).
- If $\mathscr{R} \subseteq \operatorname{Rel}(U)$, the BRA generated by \mathscr{R} is the set of all binary relations on U which are definable in the (language of the) relational structure $\langle U, \mathscr{R}\rangle$ by first order formulas using at most three variables, two of which are free [34].
- The equational theory of (B)RAs can express inequality:

$$
\tau \neq \sigma \Longleftrightarrow \tau \oplus \sigma \neq \emptyset \Longleftrightarrow V ;(\tau \oplus \sigma) ; V=V
$$

Algebras of binary relations

- $\left\langle\operatorname{Rel}(U), \cap, \cup,-, \emptyset, V, ;{ }^{\smile}, 1^{\prime}\right\rangle$ is called the full algebra of binary relations on U.
- If $A \subseteq \operatorname{Rel}(U)$ is closed under the operations and contains the distinguished constants $\emptyset, V, 1^{\prime}$, it is called an algebra of binary relations (BRA).
- If $\mathscr{R} \subseteq \operatorname{Rel}(U)$, the BRA generated by \mathscr{R} is the set of all binary relations on U which are definable in the (language of the) relational structure $\langle U, \mathscr{R}\rangle$ by first order formulas using at most three variables, two of which are free [34].
- The equational theory of (B)RAs can express inequality:

$$
\tau \neq \sigma \Longleftrightarrow \tau \oplus \sigma \neq \emptyset \Longleftrightarrow V ;(\tau \oplus \sigma) ; V=V
$$

E BRAs are not locally finite.

Composition tables

- A finite BRA is a complete atomic Boolean algebra, and the action of the Boolean operators are uniquely determined by the atoms.
> Since ; and ${ }^{`}$ distribute over \cup it suffices to specify composition and converse of atoms.

$$
\begin{array}{|c|c|c|}
\hline ; & S & R ; S=T_{0} \cup T_{1} \cup \ldots \cup T_{k} \\
\hline R & T_{0}, T_{1}, \ldots, T_{k} & R ; \\
\hline
\end{array}
$$

- Atoms below 1^{\prime} need not be listed.

Weak composition

- Splitting equality leads to two kinds of theorem:

$$
\begin{aligned}
& (\forall x, y, z)\left[x R z \wedge z S y \Rightarrow x T_{0} y \vee \cdots \vee x T_{k} y\right] \\
& (\forall x, y)\left[x T_{i} y \Rightarrow(\exists z) x R z \wedge z S y\right]
\end{aligned}
$$

> Considering only the first direction leads to weak composition:

$$
\begin{array}{|c|c|c|}
\hline ; w & S & R ; S \subseteq T_{0} \cup T_{1} \cup \ldots \cup T_{k} \\
\hline R & T_{0}, T_{1}, \ldots, T_{k} & R ; \\
\hline
\end{array}
$$

- An interpretation of a weak composition table is extensional or path consistent if ; w = .
- A table - regarded as an abstract structure - can have extensional and non-extensional interpretations.

Contact structures

A contact structure is a triple $\langle U, P, \mathscr{C}\rangle$ where U is a set (of regions), P a partial order on U, and \mathscr{C} a binary relation ("contact") which satisfies

1. \mathscr{C} is symmetric, i.e. $a \mathscr{C} b$ implies $b \mathscr{C} a$ for all $a, b \in U$.
2. \mathscr{C} is reflexive, i.e. $a \mathscr{C} a$ for all $a \in U$.
3. \mathscr{C} is compatible with P, i.e. $\mathscr{C} ; P \subseteq \mathscr{C}$.

Contact structures

A contact structure is a triple $\langle U, P, \mathscr{C}\rangle$ where U is a set (of regions), P a partial order on U, and \mathscr{C} a binary relation ("contact") which satisfies

1. \mathscr{C} is symmetric, i.e. $a \mathscr{C} b$ implies $b \mathscr{C} a$ for all $a, b \in U$.
2. \mathscr{C} is reflexive, i.e. $a \mathscr{C} a$ for all $a \in U$.
3. \mathscr{C} is compatible with P, i.e. $\mathscr{C} ; P \subseteq \mathscr{C}$.
$\Rightarrow P \subseteq \mathscr{C}$: Let $x P y$.

$$
\text { 2. } \Rightarrow x \mathscr{C} x \stackrel{3}{\Rightarrow} x \mathscr{C} y
$$

Contact structures

A contact structure is a triple $\langle U, P, \mathscr{C}\rangle$ where U is a set (of regions), P a partial order on U, and \mathscr{C} a binary relation ("contact") which satisfies

1. \mathscr{C} is symmetric, i.e. $a \mathscr{C} b$ implies $b \mathscr{C} a$ for all $a, b \in U$.
2. \mathscr{C} is reflexive, i.e. $a \mathscr{C} a$ for all $a \in U$.
3. \mathscr{C} is compatible with P, i.e. $\mathscr{C} ; P \subseteq \mathscr{C}$.
$\Rightarrow P \subseteq \mathscr{C}$: Let $x P y$.

$$
\text { 2. } \Rightarrow x \mathscr{C} x \stackrel{3}{\Rightarrow} x \mathscr{C} y
$$

$\Leftrightarrow x P y \Rightarrow \mathscr{C}(x) \subseteq \mathscr{C}(y):$

$$
x \mathscr{C} z \stackrel{1}{\Rightarrow} z \mathscr{C} x \stackrel{3}{\Rightarrow} z \mathscr{C} y \stackrel{2}{\Rightarrow} y \mathscr{C} z
$$

Contact structures

A contact structure is a triple $\langle U, P, \mathscr{C}\rangle$ where U is a set (of regions), P a partial order on U, and \mathscr{C} a binary relation ("contact") which satisfies

1. \mathscr{C} is symmetric, i.e. $a \mathscr{C} b$ implies $b \mathscr{C} a$ for all $a, b \in U$.
2. \mathscr{C} is reflexive, i.e. $a \mathscr{C} a$ for all $a \in U$.
3. \mathscr{C} is compatible with P, i.e. $\mathscr{C} ; P \subseteq \mathscr{C}$.
$\Rightarrow P \subseteq \mathscr{C}$: Let $x P y$.

$$
\text { 2. } \Rightarrow x \mathscr{C} x \stackrel{3}{\Rightarrow} x \mathscr{C} y
$$

$\Leftrightarrow x P y \Rightarrow \mathscr{C}(x) \subseteq \mathscr{C}(y):$

$$
x \mathscr{C} z \stackrel{1}{\Rightarrow} z \mathscr{C} x \stackrel{3}{\Rightarrow} z \mathscr{C} y \stackrel{2}{\Rightarrow} y \mathscr{C} z
$$

\mathscr{C} is called extensional iff $\mathscr{C}(x) \subseteq \mathscr{C}(y) \Rightarrow x P y$.

Contact structures

A contact structure is a triple $\langle U, P, \mathscr{C}\rangle$ where U is a set (of regions), P a partial order on U, and \mathscr{C} a binary relation ("contact") which satisfies

1. \mathscr{C} is symmetric, i.e. $a \mathscr{C} b$ implies $b \mathscr{C} a$ for all $a, b \in U$.
2. \mathscr{C} is reflexive, i.e. $a \mathscr{C} a$ for all $a \in U$.
3. \mathscr{C} is compatible with P, i.e. $\mathscr{C} ; P \subseteq \mathscr{C}$.
$\Rightarrow P \subseteq \mathscr{C}$: Let $x P y$.

$$
\text { 2. } \Rightarrow x \mathscr{C} x \stackrel{3}{\Rightarrow} x \mathscr{C} y
$$

$\Leftrightarrow x P y \Rightarrow \mathscr{C}(x) \subseteq \mathscr{C}(y):$

$$
x \mathscr{C} z \stackrel{1}{\Rightarrow} z \mathscr{C} x \stackrel{3}{\Rightarrow} z \mathscr{C} y \stackrel{2}{\Rightarrow} y \mathscr{C} z .
$$

\mathscr{C} is called extensional iff $\mathscr{C}(x) \subseteq \mathscr{C}(y) \Rightarrow x P y$.
$\Leftrightarrow \mathscr{C}$ is extensional iff $\mathscr{C}(x)=\mathscr{C}(y) \Longleftrightarrow x=y$ iff $P=\mathscr{C} \backslash_{\text {res }} \mathscr{C}$.

Mereological relations

$$
\begin{aligned}
P P & =P \backslash 1^{\prime}, \\
O & =P^{\vee} ; P \\
P O & =O \backslash\left(P \cup P^{\vee}\right) \\
D R & =(U \times U) \backslash O
\end{aligned}
$$

proper part
overlap
partial overlap
disjoint

Mereological relations

$$
\begin{aligned}
P P & =P \backslash 1^{\prime}, \\
O & =P^{\vee} ; P \\
P O & =O \backslash\left(P \cup P^{\cup}\right) \\
D R & =(U \times U) \backslash O
\end{aligned}
$$

proper part
overlap
partial overlap
disjoint

Note: $O \subseteq \mathscr{C}$:

$$
x O y \Rightarrow(\exists z)\left[x P^{\smile} z P y\right] \Rightarrow(\exists z)[x \mathscr{C} z P y] \Rightarrow x(\mathscr{C} ; P) y \Rightarrow x \mathscr{C} y
$$

RCC5 relations:

$$
U \times U=1^{\prime} \quad \cup P P \quad \cup P P^{\cup} \quad \cup P O \quad \cup \quad D R .
$$

RCC5 relations on open disks

Let U be the collection of all open disks in the plane, and

$$
x P y \Longleftrightarrow x \subseteq y
$$

The BRA generated by P on $\operatorname{Rel}(U)$ has five atoms and the table

$;$	$P P$	$P P^{\vee}$	$P O$	$D R$
$P P$	$P P$	V	$P P, P O, D R$	$D R$
$P P^{\vee}$	$-D R$	$P P^{\vee}$	$P P^{\vee}, P O$	$P P^{\wedge}, P O, D R$
$P O$	$P P, P O$	$P P^{\vee}, P O, D R$	V	$P P^{\wedge}, P O, D R$
$D R$	$P P, P O, D R$	$D R$	$P P, P O, D R$	V

$\mathscr{C}=P \cup P^{\checkmark} \cup P O$ is extensional!.

RCC8 relations

If $\mathscr{C} \neq 0, P P$ and \mathscr{C} are split:

$$
\begin{array}{cl}
E C \stackrel{\text { def } f}{=} \mathscr{C} \cap-O & \text { external contact } \\
T P P \stackrel{\text { def }}{=} P P \cap(E C ; E C) & \text { tangential proper part } \\
N T P P \stackrel{\text { def }}{=} P P \cap-T P P & \text { non-tangential proper part } \\
D C \stackrel{\text { def }}{=}-\mathscr{C} & \text { disconnected } \tag{4}
\end{array}
$$

The RCC8 relations

$$
1^{\prime}, T P P, T P P^{\smile}, N T P P, N T P P^{\smile}, P O, E C, D C
$$

partition $U \times U$.
These are the two-dimensional version of Allen's interval relations [2], see [11] for details.

RCC8 relations on closed disks (RCC8, [30])

Closed disk composition table

;	C						
	DR		0				
			PO	PP		PP	
	DC	EC		TPP	NTPP	TPP ${ }^{\circ}$	NTPP ${ }^{\circ}$
DC	V	DR,PO,PP	DR,PO,PP	DR,PO,PP	DR,PO,PP	DC	DC
EC	DR,PO,PP ${ }^{\circ}$	$\begin{aligned} & \text { 1',DR,PO, } \\ & \text { TPP } \\ & \text { TPP } \end{aligned}$	DR,PO,PP	EC,PO,PP	PO,PP	DR	DC
PO	DR,PO,PP*	DR,PO,PP ${ }^{\circ}$	V	PO,PP	PO,PP	DR,PO,PP	DR,PO,PP ${ }^{-}$
TPP	DC	DR	DR,PO,PP	PP	NTPP	$\begin{aligned} & \text { 1',DR,PO, } \\ & \text { TPP,TPP } \end{aligned}$	$\begin{aligned} & \mathrm{DR}, \mathrm{PO}, \\ & \mathrm{PP}^{\text {- }} \end{aligned}$
NTPP	DC	DC	DR,PO,PP	NTPP	NTPP	DR,PO,PP	1
TPP ${ }^{\circ}$	DR,PO,PP ${ }^{\circ}$	EC, PO, PP ${ }^{\circ}$	PO,PP ${ }^{\text { }}$	$\begin{aligned} & \text { 1',PO, } \\ & \text { TPP,TPP } \end{aligned}$	PO,PP	PP ${ }^{\circ}$	NTPP ${ }^{*}$
NTPP ${ }^{\circ}$	DR,PO, PP ${ }^{\circ}$	PO,PP ${ }^{\circ}$	PO,PP ${ }^{\circ}$	PO,PP ${ }^{\text { }}$	0	NTPP ${ }^{\circ}$	NTPP ${ }^{\circ}$

- Also known as the RCC8 composition table (a misnomer).
- \mathscr{C} is extensional.

Empiricism and rationalism (Pratt-Hartmann [29])

The empiricist:

1. Select a group of primitive spatial relations corresponding to familiar spatial concepts and illustrate their meaning with a few examples.
2. Write down axioms to govern these primitives.
3. Propose various definitions for a range of familiar spatial relations not included in the primitive ones.

Empiricism and rationalism (Pratt-Hartmann [29])

The empiricist:

1. Select a group of primitive spatial relations corresponding to familiar spatial concepts and illustrate their meaning with a few examples.
2. Write down axioms to govern these primitives.
3. Propose various definitions for a range of familiar spatial relations not included in the primitive ones.

The rationalist:

1. Select a group σ of predicate letters to represent primitive spatial relations corresponding to familiar spatial concepts.
2. Using some familiar point-based model of space, select a set A of subsets of that space to count as regions recognized by the theory.
3. Interpret the symbols from σ over the regions in A using the standard definitions to obtain a structure $A(\sigma)$.
4. Systematically investigate its properties as a structure.

Brief review of topological terms

- A topology over a set X is a collection τ of subsets of X such that

1. $\emptyset, X \in \tau$,
2. $O_{1}, O_{2} \in \tau$ implies $O_{1} \cap O_{2} \in \tau$,
3. $\left\{O_{i}: i \in I\right\} \subseteq \tau$ implies $\cup\left\{O_{i}: i \in I\right\} \in \tau$

- Elements of τ are called open sets and their complements closed sets.
- For $Y \subseteq X, \operatorname{int}(Y)$ is the largest open set contained in Y, and $\mathrm{cl}(Y)$ the smallest closed sets containing Y.
- The boundary of Y is the set $\operatorname{bd}(Y)=\mathrm{cl}(Y) \backslash \operatorname{int}(Y)$.
- An open basis for τ is a subset \mathscr{B} of τ such that each $O \in \tau$ is a union of elements of \mathscr{B}.
- A closed basis for τ is a set \mathscr{B} of closed sets 2^{X} such that every closed set is an intersection of elements of \mathscr{B}.

Separation axioms

Let $\mathscr{X}=\langle X, \tau\rangle$ be a topological space. \mathscr{X} is called a

1. T_{0} space if for all $x, y \in \tau$ there is some $O \in \tau$ such that $x \in O$ and $y \notin O$ or $x \notin O$ and $y \in O$.
2. T_{1} space if for all $x, y \in X$ there is some $O \in \tau x \in O$ and $y \notin O$.
3. T_{2} space if for all $x, y \in X, x \neq y$ there are $O_{1}, O_{2} \in \tau$ such that $x \in O_{1}, y \in O_{2}$ and $O_{1} \cap O_{2}=\emptyset$.
4. regular space, if for every $x \in X$ and every closed set A with $x \notin A$ there are open sets O_{1}, O_{2} such that $x \in O_{1}, A \subseteq O_{2}$ and $O_{1} \cap O_{2}=\emptyset$.
5. weakly regular space, if for every $x \in X$ and every regular closed set A with $x \notin A$ there are open sets O_{1}, O_{2} such that $x \in O_{1}, A \subseteq O_{2}$ and $O_{1} \cap O_{2}=\emptyset$.

Regular sets and more

- $Y \subseteq X$ is regular open if $\operatorname{int}(\mathrm{cl}(Y))=Y$, and regular closed if $\mathrm{cl}(\operatorname{int}(Y))=Y$.

Figure: Regular and nonregular sets (from Pratt and Schoop [27])

- A topology τ is called semiregular if it has a basis of regular open sets.
- A topology τ is called connected if the only closed-open sets are \emptyset and X.
- A topology τ is called totally disconnected if every open set is the union of closed-open sets.

Pathological regular sets (from Pratt and Schoop [28])

Pathological regular sets (from Pratt and Schoop [28])

- One may exclude pathological regions by considering polygonal or semi-algebraic sets as regions [27, 28, 31].

A hole in the plane
$x H y$ iff $x E C y$ and $(\forall z)[z E C x \Rightarrow z O y]$.

A hole in space

Gotts' doughnuts [19, 20]

Our setup

- Concrete : Regions in a topological space and operations and relations among them.
- Abstract : A contact structure $\langle U, P, C\rangle$ and an algebraic structure on U which is in some sense compatible with C.
- Bridge : Sound and complete axiomatizations and representation theorems.

Be parsimonious!

Picture of the situation

Concrete structures - Regular closed sets

- Regions are regular closed sets of some semiregular topological space.
- The regular closed sets of a topological space X form a complete Boolean algebra under the operations

$$
\begin{gathered}
a+b=a \cup b, \\
a \cdot b=\mathrm{cl}(\operatorname{int}(a \cap b)), \\
-a=\mathrm{cl}(X \backslash a), 0=\emptyset, 1=X
\end{gathered}
$$

Observe that it is possible that $a \cdot b=0$, but $a \cap b \neq \emptyset$.

- A standard contact structure is a subalgebra B of the Boolean algebra $\operatorname{RegCl}(X)$ of regular closed sets of a (semiregular) topological space $\langle X, \tau\rangle$, enhanced by a contact relation C_{τ} such that for all regular closed sets $a, b \in B$

$$
a \mathscr{C}_{\tau} b \Longleftrightarrow a \cap b \neq \emptyset
$$

The part-of relation P is set inclusion.

Abstract structures - Boolean contact algebras

A Boolean contact algebra $\langle B, \leq, \mathscr{C}\rangle$ is a Boolean algebra B together with its ordering \leq and a binary relation \mathscr{C} on B which satisfies for all $x, y, z \in B$

Co. $0(-\mathscr{C}) x$
$C_{1} . x \neq 0$ implies $x \mathscr{C} x$
C2. $x \mathscr{C} y$ implies $y \mathscr{C} x$
C3. $x \mathscr{C} y$ and $y \leq z$ implies $x \mathscr{C} z$.
C4. $x \mathscr{C}(y+z)$ implies $(x \mathscr{C} y$ or $x \mathscr{C} z)$
(domain reflexivity)
(symmetry)
(compatibility (distributivity)
B is connected if

- $x \neq 0$ and $x \neq 1$ implies $x \mathscr{C}-x$
(connectivity).
B is extensional if
- If $x \mathscr{C} z \Longleftrightarrow y \mathscr{C} z$ for all $z \in B$, then $x=y$
(extensionality) (Whitehead!).
Recall : If \mathscr{C} is extensional, then \leq can be defined by \mathscr{C} !

Basic facts on BCAs

Let B be a Boolean algebra.
> There is exactly one contact relation \mathscr{C} if $B=\{0,1\}$, namely, $\mathscr{C}=\{\langle 1,1\rangle\}$.

Basic facts on BCAs

Let B be a Boolean algebra.

- There is exactly one contact relation \mathscr{C} if $B=\{0,1\}$, namely, $\mathscr{C}=\{\langle 1,1\rangle\}$.
- The smallest contact relation on B is given by

$$
C_{\min }=\{\langle x, y\rangle: x \cdot y \neq 0\} .
$$

$\mathscr{C}_{\text {min }}$ is the overlap relation, usually denoted by O. $\mathscr{C}_{\text {min }}$ is extensional but (usually) not connected.

Basic facts on BCAs

Let B be a Boolean algebra.

- There is exactly one contact relation \mathscr{C} if $B=\{0,1\}$, namely, $\mathscr{C}=\{\langle 1,1\rangle\}$.
- The smallest contact relation on B is given by

$$
C_{\text {min }}=\{\langle x, y\rangle: x \cdot y \neq 0\} .
$$

$\mathscr{C}_{\text {min }}$ is the overlap relation, usually denoted by O.
$\mathscr{C}_{\text {min }}$ is extensional but (usually) not connected.

- The largest contact relation on B is

$$
\mathscr{C}_{\max }=\{\langle x, y\rangle: x, y \neq 0\} .
$$

$\mathscr{C}_{\text {max }}$ is connected but (usually) not extensional.

Basic facts on BCAs

Let B be a Boolean algebra.
> There is exactly one contact relation \mathscr{C} if $B=\{0,1\}$, namely, $\mathscr{C}=\{\langle 1,1\rangle\}$.

- The smallest contact relation on B is given by

$$
C_{\min }=\{\langle x, y\rangle: x \cdot y \neq 0\} .
$$

$\mathscr{C}_{\text {min }}$ is the overlap relation, usually denoted by O.
$\mathscr{C}_{\text {min }}$ is extensional but (usually) not connected.
> The largest contact relation on B is

$$
\mathscr{C}_{\max }=\{\langle x, y\rangle: x, y \neq 0\} .
$$

$\mathscr{C}_{\text {max }}$ is connected but (usually) not extensional.
> The class of finite Boolean contact algebras has the joint embedding property and the amalgamation property (Düntsch and Li [12]).

Atomless BCAs

- If \mathscr{C} is connected and extensional, then B is atomless [13]. Preparation: \mathscr{C} is extensional if and only for all $a \neq 0,1$ there is some $b \neq 0$ such that $a(-\mathscr{C}) b$.
Proof.
Assume a is an atom of B. Since \mathscr{C} is connected, we have $a \mathscr{C}-a$. Now, $-a$ is an antiatom, so, if $b \neq 0, a$, then $b \cdot-a \neq 0$. Hence, $-a$ is in contact with all nonzero elements of B, contradicting that \mathscr{C} is extensional.

Atomless BCAs

- If \mathscr{C} is connected and extensional, then B is atomless [13]. Preparation: \mathscr{C} is extensional if and only for all $a \neq 0,1$ there is some $b \neq 0$ such that $a(-\mathscr{C}) b$.
Proof.
Assume a is an atom of B. Since \mathscr{C} is connected, we have $a \mathscr{C}-a$. Now, $-a$ is an antiatom, so, if $b \neq 0, a$, then $b \cdot-a \neq 0$. Hence, $-a$ is in contact with all nonzero elements of B, contradicting that \mathscr{C} is extensional.
- If B is an atomless $B A$, then there is an extensional and connected contact relation on B [23].

Proof.

Exercise.

A simple construction of contact algebras
(Düntsch and Winter [15], Koppelberg et al. [23]
Let B be a subalgebra of $\mathscr{P}(X)$, and R a symmetric and reflexive relation on X. R induces a contact relation \mathscr{C} on B by

$$
b \mathscr{C} c \Longleftrightarrow(\exists x, y \in X)[x \in b \text { and } y \in c \text { and } x R y],
$$

i.e.

$$
\Longleftrightarrow(b \times c) \cap R \neq \emptyset .
$$

A simple construction of contact algebras (Düntsch and Winter [15], Koppelberg et al. [23]

Let B be a subalgebra of $\mathscr{P}(X)$, and R a symmetric and reflexive relation on X. R induces a contact relation \mathscr{C} on B by

$$
b \mathscr{C} c \Longleftrightarrow(\exists x, y \in X)[x \in b \text { and } y \in c \text { and } x R y],
$$

i.e.

$$
\Longleftrightarrow(b \times c) \cap R \neq \emptyset .
$$

If B is a BCA, the relation R on $\operatorname{Ult}(B)$ defined by

$$
x R y \Longleftrightarrow x \times y \subseteq \mathscr{C}
$$

is symmetric, reflexive and closed in the product topology of $\mathrm{Ult}(B)$.

From concrete to abstract

Let $\mathscr{X}=\langle X, \tau\rangle$ be a semiregular space, and $\operatorname{RegCl}(\mathscr{X})$ be the BA of regular closed sets with standard connection \mathscr{C}, i.e.

$$
x \mathscr{C} y \Longleftrightarrow x \cap y \neq \emptyset
$$

- $\operatorname{RegCl}(\mathscr{X})$ is a Boolean contact algebra (see Biacino and Gerla [4]).

From concrete to abstract

Let $\mathscr{X}=\langle X, \tau\rangle$ be a semiregular space, and $\operatorname{RegCl}(\mathscr{X})$ be the BA of regular closed sets with standard connection \mathscr{C}, i.e.

$$
x \mathscr{C} y \Longleftrightarrow x \cap y \neq \emptyset
$$

> $\operatorname{RegCl}(\mathscr{X})$ is a Boolean contact algebra (see Biacino and Gerla [4]).
> \mathscr{C} is extensional if and only if τ is weakly regular [14].
$>\mathscr{C}$ is connected if and only if τ is connected [14].

From concrete to abstract

Let $\mathscr{X}=\langle X, \tau\rangle$ be a semiregular space, and $\operatorname{RegCl}(\mathscr{X})$ be the BA of regular closed sets with standard connection \mathscr{C}, i.e.

$$
x \mathscr{C} y \Longleftrightarrow x \cap y \neq \emptyset
$$

> $\operatorname{RegCl}(\mathscr{X})$ is a Boolean contact algebra (see Biacino and Gerla [4]).
> \mathscr{C} is extensional if and only if τ is weakly regular [14]. $>\mathscr{C}$ is connected if and only if τ is connected [14].

Proof.

" \Rightarrow ": Assume there are disjoint nonempty open sets a, b whose union is X. Then, a, b are regular closed and $b=-a$. Since \mathscr{C} is connected, $a \mathscr{C} b$, i.e. $a \cap b \neq \emptyset$, a contradiction.
" \Leftarrow ": Let $a \neq \emptyset, X$ and $a(-\mathscr{C})-a$. Thus, $a \cap \operatorname{cl}(X \backslash a)=\emptyset$ and $a \cup \mathrm{cl}(X \backslash a)=X$, showing that τ is not connected.

From abstract to concrete

Famous representation results:

- Each finite group is isomorphic to a group of permutations.
- Each Boolean algebra is isomorphic to an algebra of sets.

From abstract to concrete

Famous representation results:

- Each finite group is isomorphic to a group of permutations.
- Each Boolean algebra is isomorphic to an algebra of sets.

Task: Given a BCA $\langle B, \leq, \mathscr{C}\rangle$, find a topological space $\langle X, \tau\rangle$ with standard contact \mathscr{C}_{τ} and an embedding from $\langle B, \leq, \mathscr{C}\rangle$ into $\left\langle\operatorname{RegCl}(X), \subseteq, \mathscr{C}_{\tau}\right\rangle$.

Preliminary definitions: A clan is a nonempty subset Γ of B such that

1. If $a \in \Gamma$ and $a \leq b$, then $b \in \Gamma$.
2. If $a, b \in \Gamma$, then $a \mathscr{C} b$.
3. If $a+b \in \Gamma$, then $a \in \Gamma$ or $b \in \Gamma$.

Representation Theorem([9, 14])

Let X be the set of all clans on B and define $h: B \rightarrow 2^{X}$ by

$$
h(a)=\{\Gamma \in X: a \in \Gamma\} .
$$

$\mathscr{B}=\{h(a): a \in B\}$ is closed under union:

$$
\begin{aligned}
h(a) \cup h(b) & =\{\Gamma \in X: a \in \Gamma\} \cup\{\Gamma \in X: b \in \Gamma\} \\
& =\{\Gamma \in X: a \in \Gamma \text { or } b \in \Gamma\} \\
& =\{\Gamma \in X: a+b \in \Gamma\} \\
& =h(a+b)
\end{aligned}
$$

Let τ be the topology the basis $\{X \backslash h(a): a \in B\}$. Then,

- Each $h(a)$ is regular closed.
- The mapping $h: B \rightarrow \operatorname{RegCl}(X)$ is injective and preserves the Boolean operations.
$>a \mathscr{C} b$ if and only if $h(a) \mathscr{C}_{\tau} h(b)$.

A representation theorem for Boolean algebras

0. On each atomless Boolean algebra there is a connected and extensional contact relation (Koppelberg et al. [23]).

A representation theorem for Boolean algebras

0. On each atomless Boolean algebra there is a connected and extensional contact relation (Koppelberg et al. [23]).
1. For every Boolean algebra B there is a totally disconnected compact regular T_{1} space X such that B is isomorphic to a subalgebra of $\operatorname{RegCl}(X)$ (Stone [32]).

A representation theorem for Boolean algebras

0. On each atomless Boolean algebra there is a connected and extensional contact relation (Koppelberg et al. [23]).
1. For every Boolean algebra B there is a totally disconnected compact regular T_{1} space X such that B is isomorphic to a subalgebra of $\operatorname{RegCl}(X)$ (Stone [32]).
2. For every connected and extensional Boolean contact algebra there is a connected compact weakly regular T_{1} space X such that B is isomorphic to a subalgebra of $\left\langle\operatorname{RegCl}(X), \mathscr{C}_{w}\right\rangle$ (Dimov and Vakarelov [10], Düntsch and Winter [14]).

A representation theorem for Boolean algebras

0. On each atomless Boolean algebra there is a connected and extensional contact relation (Koppelberg et al. [23]).
1. For every Boolean algebra B there is a totally disconnected compact regular T_{1} space X such that B is isomorphic to a subalgebra of $\operatorname{RegCl}(X)$ (Stone [32]).
2. For every connected and extensional Boolean contact algebra there is a connected compact weakly regular T_{1} space X such that B is isomorphic to a subalgebra of $\left\langle\operatorname{RegCl}(X), \mathscr{C}_{w}\right\rangle$ (Dimov and Vakarelov [10], Düntsch and Winter [14]).
3. For every atomless Boolean algebra B there is a connected compact weakly regular T_{1} space X such that B is isomorphic to a subalgebra of $\operatorname{RegCl}(X)$.

[1] Aiello, M., Pratt-Hartmann, I., and van Benthem, J., editors (2007). Handbook of Spatial Logics. Springer.
[2] Allen, J. F. (1983). Maintaining Knowledge about Temporal Intervals. cacm, 26(11):832-843.
[3] Biacino, L. and Gerla, G. (1991). Connection Structures. Notre Dame Journal of Formal Logic, 32:242-247.
[4] Biacino, L. and Gerla, G. (1996). Connection Structures: Grzegorczyk's and Whitehead's definition of point. Notre Dame Journal of Formal Logic, 37:431-439.
[5] Chin, L. and Tarski, A. (1951). Distributive and modular laws in the arithmetic of relation algebras. University of California Publications in Mathematics, 1:341-384.
[6] Clarke, B. L. (1981). A calculus of individuals based on 'connection'. Notre Dame Journal of Formal Logic, 22:204-218.
[7] Clarke, B. L. (1985). Individuals and points. Notre Dame Journal of Formal Logic, 26:61-75.
[8] de Laguna, T. (1922). Point, line and surface as sets of solids. The Journal of Philosophy, 19:449-461.
[9] Dimov, G. and Vakarelov, D. (2006a). Contact algebras and region-based theory of space: A proximity approach - I. Fundamenta Informaticae, 74:209-249.
[10] Dimov, G. and Vakarelov, D. (2006b). Contact algebras and region-based theory of space: A proximity approach - I,II.
Fundamenta Informaticae, 74:209-282.
[11] Düntsch, I. (2005). Relation algebras and their application in temporal and spatial reasoning. Artificial Intelligence Review, 23:315-357.
[12] Düntsch, I. and Li, S. (2012). Extension properties of Boolean contact algebras. In Kahl, W. and Griffin, T., editors, Proceedings of RaMiCS 2012, volume 7560 of Lecture Notes in Computer Science, pages 342-356, Heidelberg. Springer Verlag.
[13] Düntsch, I., Wang, H., and McCloskey, S. (2001). A relation algebraic approach to the Region Connection Calculus. Theoretical Computer Science, 255:63-83.
[14] Düntsch, I. and Winter, M. (2005). A Representation
Theorem for Boolean Contact Algebras. Theoretical Computer Science (B), 347:498-512.
[15] Düntsch, I. and Winter, M. (2008). The lattice of contact relations on a Boolean algebra. In Berghammer, R., Möller, B., and Struth, G., editors, Proceedings of the $10^{\text {th }}$ International Conference on Relational Methods in Computer Science and the $5^{\text {th }}$ International Workshop on Applications of Kleene Algebra, volume 4988 of Lecture Notes in Computer Science, pages 99-109. Springer Verlag, Heidelberg.
[16] Egenhofer, M. (1994). Deriving the Composition of Binary Topological Relations. Journal of Visual Languages and Computing, 5:133-149.
[17] Galton, A. (1999). The mereotopology of discrete space. In Freksa, C. and Mark, D. M., editors, Spatial Information Theory, Proceedings of the International Conference COSIT '99, Incs, pages 251-266. sv.
[18] Gerla, G. (1995). Pointless Geometries. In Buekenhout, F., editor, Handbook of Incidence Geometry, chapter 18, pages 1015-1031. Eslevier Science B.V.
[19] Gotts, N. M. (1994a). Defining a 'doughnut' made difficult. In Eschenbach, C., Habel, C., and Smith, B., editors, Topological

Foundations of Cognitive Science, volume 37 of Reports of the Doctoral programme in Cognitive Science. University of Hamburg.
[20] Gotts, N. M. (1994b). How far can we C? defining a 'doughnut' using connection alone. In J Doyle, E. S. and Torasso, P., editors, Principles of Knowledge Representation and Reasoning: Proceedings of the 4th International Conference (KR94), San Francisco. Morgan Kaufmann.
[21] Grzegorczyk, A. (1960). Axiomatization of Geometry without Points. Synthese, 12:228-235.
[22] Jónsson, B. and Tarski, A. (1951). Boolean algebras with operators I. American Journal of Mathematics, 73:891-939.
[23] Koppelberg, S., Düntsch, I., and Winter, M. (2012). Remarks on contact relations on Boolean algebras. Algebra Universalis, 68:353-366.
[24] Leśniewski, S. (1916). Podstawy ogólnej teoryi mnogosci.I (Foundations of the General Theory of Sets). Prace Polskiego Koła Naukowe w Moskwie, Sekcya matematycznoprzyrodnicza, 2.
[25] Ligozat, G. (2012). Qualitative Spatial and Temporal Reasoning. Wiley.
[26] Nicod, J. (1924). Geometry in a sensible world. Doctoral thesis, Sorbonne, Paris. English translation in Geometry and Induction, Routledge and Kegan Paul, 1969.
[27] Pratt, I. and Schoop, D. (1998). A complete axiom system for polygonal mereotopology of the real plane. Journal of Philosophical Logic, 27(6):621-658.
[28] Pratt, I. and Schoop, D. (2000). Expressivity in polygonal, plane mereotopology. Journal of Symbolic Logic, 65(2):822-838.
[29] Pratt-Hartmann, I. (2001). Empiricism and rationalism in region-based theories of space. Fundamenta Informaticae, 46:159-186.
[30] Randell, D. A., Cohn, A. G., and Cui, Z. (1992). Computing Transitivity Tables: A Challenge for Automated Theorem Provers. In Kapur, D., editor, Proceedings of the 11th International Conference on Automated Deduction (CADE-11), volume 607 of LNAI, pages 786-790, Saratoga Springs, NY. Springer.
[31] Schoop, D. (2001). Points in point-free mereotopology.
Fundamenta Informaticae, 46:129-143.
[32] Stone, M. (1936). The theory of representations for Boolean algebras. Trans. Amer. Math. Soc., 40:37-111.
[33] Tarski, A. (1929). Les fondements de la géométrie du corps. Ksiega Pamiạtkowa Pierwszego Polskiego Zjazdu Matematycznego, pages 29-33. Summary of an address given to the First Polish Mathematical Congress, Lwów, 1927. English translation in J. H. Woodger (Ed.) (1956) Logic, Semantics, Metamathematics, Clarendon Press.
[34] Tarski, A. and Givant, S. (1987). A formalization of set theory without variables, volume 41 of Colloquium Publications. Amer. Math. Soc., Providence.
[35] Vakarelov, D., Düntsch, I., and Bennett, B. (2001). A note on proximity spaces and connection based mereology. In Welty, C. and Smith, B., editors, FOIS '01: Proceedings of the international conference on Formal Ontology in Information Systems, pages 139-150, New York, NY, USA. ACM Press.
[36] Varzi, A. C. (1996). Parts, wholes, and part-whole relations: The prospect of mereotopology. Data \& Knowledge Engineering, 20:259-286.
[37] Whitehead, A. N. (1929). Process and reality. MacMillan, New York.
[38] Wolter, D. and Wallgrün, J. O. (2012). Qualitative spatial reasoning for applications: New challenges and the SparQ toolbox. In Hazarika, S. M., editor, Qualitative Spatio-Temporal Representation and Reasoning: Trends and Future Directions, pages 336-362. Hershey.

