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Leonardo da Vinci’s perspective

Perspective is nothing else than
seeing a place or objects behind
a plane of glass, quite transpar-
ent, on the surface of which the
objects behind the glass are to
be drawn.

Leonardo da Vinci

Leonardo da Vinci’s window



When you think of computer cables, ...

mental picture of a knot Photo:

a loop with a number of crossings Visual:

a2 + a2z2 + a4z2 + a6 + a6z2a8 Geometric:



Our perspective

mental or physical

verbal or visual

algebraic or geometric

logical or spatial



What is tightly connected?

Equality ?



A diversity of mathematical ideas

Human Activity Mathematical Idea

Counting to arithmetic and number theory
Measuring to real numbers, calculus, analysis
Shaping to geometry, topology
Forming to symmetry, group theory
Estimating to probability, measure theory, statistics
Moving to mechanics, calculus, dynamics
Calculating to algebra, numerical analysis
Proving to logic
Puzzling to combinatorics, number theory
Grouping to set theory, combinatorics



Interaction of mathematical ideasSAUNDERS MAC LANE [Aug.- Sept. 

TABLE1 
Origins of Concepts of Abstract Algebra 

(Counting) (Ca l cu l a t i ng )  (Measuring) 

[Na tu ra l  Numbers] [ l n t e g e r s l  [Ra t iona l  Numbers] [Real Numbers] {Linear  Order} 

I 
[ c a r d i n a l s ]  

I 
[primes] {Algebraic  Operat ions}  [o rde red  S e t s ]  

[ s e t s ]  {Ordered F i e l d s }  [ ~ o r p h i s m s l  

(Shaping) (Moving) (Solving)  

[Coordinates]  [Su r f aces ]  

/" \ 
[Reals]  {Vector  Spaces} 

I 

[Ro ta t i ons ]  

I \  
[Quaternions]  

i 
[Symmetry] 

[Higher Equat ions]  

For example, the notion of a group, though axiomatically very simple, reveals common properties 
of motion (rotation and translation groups), of symmetry (crystal groups), and of algebraic 
manipulations (Galois groups, Lie groups for differential equations). Many other mathematical 
concepts (function, partial order) are similarly both simple in structuretand pervasive in applica- 
tion. The simplicity and the applicability are made effective by the formal treatment of the 
notions involved. 

In this view, mathematics is formal, but not simply "formalistic"- since the forms studied in 
mathematics are derived from human activities and used to understand those activities. 

The actual structure of mathematical ideas is an ipcredibly elaborate development of this 
simple description. Consider just the case of algebra. Algebra first involved manipulation to solve 
equations. Then geometry was reduced to coordinates, and thus geometrical problems to algebraic 
ones. Next, simple Euclidean spaces are described by vectors in two, three, and then higher 
dimensions. The resulting notion of a vector space, often one equipped with a (quadratic) inner 
product, worked even in infinite dimensions and then served to codify some of the methods of 
solving functional equations. The linear transformations acting on these vector spaces could be 
represented by matrices, which also cropped up in group theory, in numerical analysis, and in 
number theory. Presently vector spaces over a field were subsumed under modules over a ring. 



Everything is a mathematical structure!



A diversity of mathematical opinions

David Hilbert, Über das Unendliche, Mathematische Annalen (95):
161-190 (1926) said:

Noone will drive us from the paradise which Cantor created for us.

Some ‘attacked’ set theory.

For example, Wittgenstein replied

If one person can see it as a paradise of mathematicians,
why should not another see it as a joke?



A diversity of mathematical opinions

Others like Mac Lane felt that this

is a mistakenly one-sided view of mathematics

and his letter

Mathematical Models: A Sketch for the Philosophy of Mathematics.

The American Mathematical Monthly, 88 (7) (1981) p 462-472.

may be interpreted as saying that

In spite of the fundamental achievements of set theory,
the perfect paradise is still to be found.



What is a mathematical structure?

Following the Hilbert program of 1920 and assuming set theory,
a structure is a formal axiomatic system consisting of:

Vocabulary: symbols and connectives

Axioms: capturing properties of certain symbols and connectives

Rules: combining symbols and connectives and reasoning about them.



Not all mathematical structures are first-order theories

A topological space requires the specification of a family of open sets,
with no restriction on their cardinalities.

Every reflexive transitive relation gives rise to a topological space, and all
finite topological spaces arise in this way.

BUT ...

The number of topologies on a set of infinite cardinality α is 22α

whereas
the number of first-order structures over a fixed language L is only 2α if
α > |L|.



Some problems with set theory

I Although set theory allows to define all structures of interest, it does
not suggest any general concept of a structure-preserving map.

I The axioms of set theory are too complicated: on the one hand we
all seem to use them every day, and on the other hand only the
experts in set theory can properly formulate them.



What is a mathematical structure?

Following Bourbaki, we start with two finite collections of sets:

Constant sets: E ,E1, . . . ,Em

Variable sets: X ,X1, . . . ,Xn

A scale is a sequence of sets obtained from the above sets by taking finite
products and power sets, and by iterating these operations.

For example, P(P(X )),P(X1 × X2 × X3),P(X × P(X )).



A type is a uniformly defined subset T (X1, . . . ,Xn) of a set in a scale.

For example,

T (X ) = {τ ∈ P(P(X )) | τ is closed under arbitrary unions and
finite intersections}

A structure of a type T (X1, . . . ,Xn) is an element s ∈ T (X1, . . . ,Xn).



Isomorphisms

Let (X1, . . . ,Xn, s) and (X ′1, . . . ,X
′
n, s
′) be mathematical structures of the

same type T . An isomorphism

(f1, . . . fn) : (X1, . . . ,Xn, s)→ (X ′1, . . . ,X
′
n, s
′)

is a family of bijections fi : Xi → X ′i (i = 1, . . . n) such that

T (f1, . . . fn)(s) = s ′.



In general, no structure-preserving maps (homomorphisms)

Let us make now an attempt to define this on all maps – not just
bijections.

The most natural way to do so seems to be to use the following two
constructions:

(a) for arbitrary maps fi : Xi → X ′i (i = 1, . . . , n), the induced map
f1 × . . .× fn : X1 × . . .× Xn → X ′1 × . . .× X ′n is defined by

(f1 × . . .× fn)(x1, . . . , xn) = (f1(x1), . . . , fn(xn));

(b) for a map f : X → X ′, the induced map P(f ) : P(X )→ P(X ′) is
defined by P(f )(A) = f (A).



Let us apply this to the case of groups, or, more generally magmas, that
is, sets equipped with a binary operation with no further assumptions.

We will conclude that a morphism f : (X ,m)→ (X ′,m′) of magmas is a
map f : X → X ′ with f (m) = m′, which means that

{(f (x), f (y), f (m(x , y)) | x , y ∈ X} = {(x ′, y ′,m(x ′, y ′)) | x ′, y ′ ∈ X ′},

and in particular f must be surjective.

That is, we will get a bad definition . . ..



Bourbaki morphisms

Let T be a type, and (X1, . . . ,Xn, s) and (X ′1, . . . ,X
′
n, s
′) be structures of

the same type T .

A map
(f1, . . . fn) : (X1, . . . ,Xn, s)→ (X ′1, . . . ,X

′
n, s
′)

is a family of maps fi : Xi → X ′i (i = 1, . . . n).

A class M of such maps is said to be a class of morphisms, if it satisfies
the following conditions

(a) If (f1, . . . fn) : (X1, . . . ,Xn, s)→ (X ′1, . . . ,X
′
n, s
′) and

(f ′1 , . . . f
′
n) : (X ′1, . . . ,X

′
n, s
′)→ (X ′′1 , . . . ,X

′′
n , s
′′) are in M

then so is (f ′1 f1, . . . f
′
n fn) : (X1, . . . ,Xn, s)→ (X ′′1 , . . . ,X

′′
n , s
′′)

(b) The class of invertible morphisms in M coincide with the class of
isomorphisms.



Category Theory arises naturally

These insights inspired two eminent mathematicians

Saunders Mac Lane
(1909-2005)

and

Samuel Eilenberg
(1913-1998)

to introduce between 1942 and 1945 a modern mathematical framework,
called Category Theory, that deals with mathematical structures and
structure-preserving maps between them.



Categories

The objects of a category capture a very abstract
essence of a structure that is powerful enough to
express deep properties of classical mathemati-
cal structures and simple enough to justify those
properties and to help proving them.

The morphisms between objects of a cate-
gory capture structure-preserving maps between
structures.



What is tightly connected?

Relate opposites by turning things around ...

Duality!



Escher duality



Escher duality



Contravariant duality

The fundamental idea of contravariant duality is:

I Any entity is determined by its properties.
This is Leibnitz’ principle of the Identity of Indiscernibles.

I Any property is determined by the collection of all entities having
that property.
This is the Extensionality Principle.



Transformations between structures
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Transformations between structures
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Transformations between structures
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A challenge

Given a space one can always find an algebra with which to talk about
the space.

However, given an algebra, in general, it is not obvious whether there is a
space that can be used to talk about the algebra, or whether having such
a space would be useful for the algebra.



Marshall Stone (1936, 1937) provided the required insight:

A cardinal principle of modern mathematical research may be
stated as a maxim: “One must always topologize.”

Here ‘topologize’ means introduce a topology (that is, a collection of sets
closed under finite intersections and arbitrary unions).



A Hierarchy of Dualities



Birkhoff’s duality
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Find a suitable structural relationship amongst the subsets of the other structure.



Birkhoff’s duality
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Identify all those objects which have exactly one object below them

— join-irreducible elements.

An element j 6= 0 of L is join-irreducible if j ≤ a∨ b implies j ≤ a or j ≤ b



What is duality?
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Consider the downsets formed from these objects.



What is duality?
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Take downsets.



Birkhoff’s Representation Theorem

Underlying this example is the embedding

L→ P(J (L))

of a bounded distributive lattice L in the power set of its join-irreducible
elements, defined by

a 7→ {x ∈ J (L) | x ≤ a}.

The image of this map is completely determined by the order on J (L),
namely it is the set O(J (L)) of order ideals of J (L).

Any finite distributive lattice can be represented as the lattice of upsets
(downsets) of some poset.



What about infinite distributive lattices?

... there may be no join-irreducible elements

For example, in the lattice of cofinite subsets of a given infinite set
S , every cofinite set A ⊆ S may be written as

A = (A− {x}) ∪ (A− {y}),

for distinct x , y ∈ A.

However,

I in a finite distributive lattice,
↑x is a prime filter iff x is a join-irreducible element.

I for distributive lattices, in general, the Prime Filter Theorem ensures
the existence of prime filters.

So prime filters will serve as suitable alternative building blocks to
join-irreducible elements for bounded distributive lattices.



Consider the mapping
L→ P(F(L))

of a bounded distributive lattice L into the power set of its prime filters
defined, for ay a ∈ L, by

φ(a) = {F ∈ F(L) | a ∈ F}.

Then

I φ is a lattice homomorphism from L into P(F(L));

I For each a ∈ L, φ(a) ∈ U(F(L));

I φ is 1-1 (proof requires the Prime Filter Theorem);

But ...

... L may not be isomorphic to U(F(L)).

Indeed, U(F(L)) is always a complete lattice even if L is not complete.



Discrete duality for bounded distributive lattices

Bounded distributive lattices: (L,∨,∧, 0, 1)

Distributive lattice frames: (X ,≤) – non-empty posets

Canonical frame of a bounded distributive lattice L is (F(L),⊆)

Complex algebra of distributive lattice frame X is (U(X ),∨c ,∧c , 0c , 1c)
where

U(X ) = {A ⊆ X | A is upclosed}
= {A ⊆ X | [≤]A = A}

A ∨c B = A ∪ B

A ∧c B = A ∩ B

0c = ∅
1c = X



Discrete duality for bounded distributive lattices

Every bounded distributive lattice is embeddable in the complex algebra
of its canonical frame.

Stone mapping h : L→ U(F(L)) defined by

h(a) = {F ∈ F(L) | a ∈ F}

provides the required embedding.

Every distributive lattice frame is embeddable into the canonical frame of
its complex algebra.

The mapping k : X → F(U(X )) defined by

k(x) = {U ∈ U(L) | x ∈ U}

provides the required embedding.



This representation can be ...

I extended by adding operators;

I generalised by weakening the basis of the algebra;

I fine-tuned by identifying the h-image of L within U(F(L))



Discrete duality for possibility lattices
Possibility lattice: bounded distributive lattice (L,∨,∧, 0, 1) with a unary
operator f satisfying

f (a ∨ b) = f (a) ∨ f (b) and f (0) = 0.

Possibility frame: partially ordered set (X ,≤) with a binary relation
satisfying

(≥; R;≥) ⊆ R

Canonical frame of a possibility lattice (L, f ) is (F(L),⊆,Rf ) where
Rf ⊆ F(L)×F(L) is defined by

FRf G iff G ⊆ f −1(F ).

Complex algebra of a possibility frame (X ,≤,R) is (U(X ), fR) where
fR : U(X )→ U(X ) is defined by

fR(A) = {x ∈ X | R(x) ∩ A 6= ∅}.
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Discrete duality for necessity lattices
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Discrete duality for sufficiency lattices
Sufficiency lattice: bounded distributive lattice (L,∨,∧, 0, 1) with a unary
operator f satisfying

f (a ∨ b) = f (a) ∧ f (b) and f (0) = 1.

Sufficiency frame: partially ordered set (X ,≤) with a binary relation
satisfying

(≤; R;≥) ⊆ R

Canonical frame of a sufficiency lattice (L, f ) is (F(L),⊆,Rf ) where
Rf ⊆ F(L)×F(L) is defined by

FRf G iff f −1(F ) ⊆ −G .

Complex algebra of a sufficiency frame (X ,≤,R) is (U(X ), fR) where
fR : U(X )→ U(X ) is defined by

fR(A) = {x ∈ X | R(x) ⊆ −A}.
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Discrete duality for bounded distributive lattices with
operators

Every bounded distributive lattice with operators is embeddable in the
complex algebra of its canonical frame.

Stone mapping h : L→ U(F(L)) defined by

h(a) = {F ∈ F(L) | a ∈ F}

preserves the unary operator f , that is, for any a ∈ L,

h(f (a)) = fRf
(h(a)).

Every lattice with operator frame is embeddable into the canonical frame
of its complex algebra.

The mapping k : X → F(U(X )) defined by

k(x) = {U ∈ U(L) | x ∈ U}

preserves the binary relation R, that is, for any x , y ∈ X ,
xRy iff k(x)RfR k(y).



Distributive lattice with De Morgan negation
De Morgan lattice: distributive lattice (L,∨,∧) with greatest element 1
and unary operator ¬ satisfying

¬(a ∨ b) = ¬a ∧ ¬b and a = ¬¬a

De Morgan frame: partially ordered set (X ,≤) with N : X → X such
that for all x , y ∈ X ,

x ≤ y ⇒ N(x) ≤ N(y) and N(N(x)) = x .

Canonical frame of a De Morgan lattice L is (F(L),⊆,Nc) where

Nc(F ) = L− (¬F ).

Complex algebra of De Morgan frame X is U(X ) with a unary operator
¬c defined by

¬cA = X − N(A) = {x | N(x) 6∈ A}.
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Relatively pseudocomplemented lattice

Relatively pseudo-complemented lattice: lattice (L,∨,∧) with a binary
operation → satisfying, for any a, b, c ∈ L,

a ∧ c ≤ b iff c ≤ a→ b

Note: that any relatively pseudo-complemented lattice is a distributive
lattice with greatest element 1 defined by a→ a.

Relatively pseudo-complemented lattice frame: poset (X ,≤)

Canonical frame of relatively pseudo-complemented lattice L is (F(L),⊆)

Complex algebra of relatively pseudo-complemented lattice frame X is
(U(X ),→≤) where, for A,B ∈ U(X ),

A→≤ B = [≤](−A ∪ B)
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Heyting algebra

Heyting algebra is a relatively pseudo-complemented lattice (L,∨,∧,→)
with a unary operation ¬ satisfying, for any a, b, c ∈ L,

a→ ¬b = b → ¬a iff ¬(a→ a)→ b = 1.

Note: that any Heyting algebra as a smallest element 0 defined by
0 = ¬1.

Heyting frame: poset (X ,≤)

Canonical frame of Heyting algebra L is (F(L),⊆)

Complex algebra of Heyting frame X is (U(X ),→≤,¬≤) where, for
A ∈ U(X ),

¬≤(A) = [≤](−A)
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Boolean lattice

Boolean lattice is a bounded distributive lattice (L,∨,∧, 0, 1) such that
for any a ∈ L there is an element b ∈ L such that

a ∨ b = 1 iff a ∧ b = 0.

Note that a Boolean algebra is a Boolean lattice in which for each a ∈ L
there is only one element b satisfying these conditions.

Boolean frame: a non-empty set X – poset with the discrete order

Canonical frame of Boolean lattice L is F(L)

Complex algebra of Boolean frame X is P(X )
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Bounded lattices

Bounded (non-distributive) lattices (L,∨,∧, 0, 1)

Doubly-ordered sets (X ,≤1,≤2) where X is non-empty and the
pre-orders ≤1 and ≤2 satisfy , for any x , y ∈ X ,

x ≤1 y and x ≤2 y imply x = y

Canonical frame of bounded lattice L is (X (L),⊆1,⊆2)

(F , I ) ∈ X (L)

iff F is a maximal filter in family of filters disjoint from I

I is a maximal ideal in family of ideals disjoint from F

F ∩ I = ∅

(F1, I1) ⊆1 (F2, I2) iff F1 ⊆ F2

(F1, I1) ⊆2 (F2, I2) iff I1 ⊆ I2
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Complex algebra of X ∈ Frm is (C(X ),∨c ,∧c , 0c , 1c) where

C(X ) = {A ⊆ X | lr(A) = A}
A ∨c B = l(r(A) ∩ r(B))

A ∧c B = A ∩ B

0c = ∅
1c = X

where, for A ⊆ X ,

l(A) = {x ∈ X | ∀y x ≤1 y implies y 6∈ A} = [≤1](−A)
r(A) = {x ∈ X | ∀y x ≤2 y implies y 6∈ A} = [≤2](−A)



Discrete duality for bounded lattices

Every bounded lattice is embeddable into the complex algebra of its
canonical frame.

Define h : L→ C(X (L)) by

h(a) = {(F , I ) ∈ X (L) : a ∈ F}

Then

I h(a) is l-stable, for each a ∈ L.

I h is a lattice-embedding.



Observations

Suppose (L,∨,∧) is a distributive lattice.
Then

I in (X ,≤1,≤2) ≤2 = ≤−1
1

I in the canonical frame X (L) the filter-ideal pairs (F , I ) satisfy:

I F is a prime filter of L
I I is a prime ideal of L
I F = −I



Topologising

The embedding
L→ U(F(L))

of a bounded distributive lattice L into the lattice of upsets of its prime
filters given by

a 7→ {F ∈ F(L) | a ∈ F}

may be characterised by:

I using set inclusion as a natural order on the prime filters, and

I generating a topology on the prime filters using the sets

Na = {F ∈ F(L) | a ∈ F}, for a ∈ L

and their complements as a subbasis.

The resulting prime filter space (F(L),⊆,ΩF(L)) is a compact totally
order disconnected topological space, called a Priestley space (or ordered
Stone space).



Topological Representation Theorems

Distributive lattices [Priestley 1972]

I Every bounded distributive lattice is isomorphic to the lattice of all
clopen upsets of some Priestley space.

I Every Priestley space is order-homeomorphic to the Priestley space
of some bounded distributive lattice.

Boolean algebras [Stone 1937]

I Every Boolean algebra is isomorphic to the lattice of all clopen set of
some Stone space.

I Every Stone space is homeomorphic to the Stone space of some
Boolean algebra.
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Discrete duality:

When algebraic and frame semantics are equivalent



Discrete duality

Alg – a class of algebras (L, operations)
Frm – a class of frames (X , relations)
Canonical frames of algebras L ∈ Alg (X (L), relationsc)
Complex algebras of frames X ∈ Frm (C(X ), operationsc)

Prove:

I For every L ∈ Alg, the canonical frame X (L) ∈ Frm.

I For every X ∈ Frm, the complex algebra C(X ) ∈ Alg.

I For every algebra L ∈ Alg, L is embeddable into C(X (L)).

I For each frame X ∈ Frm, X is embeddable into X (C(X )).

What are the appropriate notions of truth?
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Logical language

Lan - a propositional language built up as follows

Countably infinite set Var of propositional variables.

Formulae are built up from propositional variables using the propositional
connectives ∨ and ∧.

Note:

I For a bounded distributive lattice we endow the language Lan with
propositional constants T and F .

I By a sequent we mean an expression α ` β where α, β in Lan.
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Notion of truth determined by Alg

A valuation v in L is a function v : Var→ L such that
v(φ ∨ ψ) = v(φ) ∨ v(ψ) v(φ ∧ ψ) = v(φ) ∧ v(ψ)

A formula α in Lan is true in L in Alg whenever for every v : Var→ L
extended homomorphically to all the formulae of Lan, v(α) = 1 .

A formula α is Alg-valid (or an Alg-tautology) if α is true in every
algebra from Alg.

Note:

I For distributive lattices we define v(T ) = 1 and v(F ) = 0.

I If Alg does not have a designated element 1 or there are no
Alg-tautologies in the language, then the notion of truth applies to
sequents α ` β, where α, β ∈ Lan. A sequent α ` β is true in
algebra L whenever for every valuation v , v(α) ≤ v(β).
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Notion of truth determined by Frm

A model based on a frame X in Frm is a system M = (X ,m) where
m : Var→ C(X ) is a meaning function. If X is a bounded distributive
lattice frame then m(T ) = X and m(F ) = ∅.
The satisfaction relation |= is defined for all formulae α, β of Lan by:

M, x |= p iff x ∈ m(p), for every p ∈ Var

M, x |= α ∨ β iff M, x |= α or M, x |= β,

M, x |= α ∧ β iff M, x |= α and M, x |= β,

Note:

I If M is based on a bounded distributive lattice frame, then
M, x |= T and M, x 6|= F .



Notion of truth determined by Frm

A formula α ∈ Lan is true in a model M whenever for every x ∈ X we
have M, x |= α.

A formula α ∈ Lan is true in a frame (X ,R) iff α is true in every model
based on this frame.

A formula α ∈ Lan is true in the class Frm of frames iff it is true in every
frame X ∈ Frm.

Note:

I A sequent α ` β is true in M whenever m(α) ⊆ m(β), where
m(α) = {x ∈ X | M, x |= α}.
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Assuming that the algebras from Alg are based on lattices with a greatest
element, we have:

Complex Algebra Theorem
For every formula φ ∈ Lan and for every X ∈ Frm, the following
conditions are equivalent:

I φ is true in all models based on X

I φ is true in the complex algebra C(X ) of X .

Duality via truth theorem
For every formula α of Lan the following conditions are equivalent:

I α is true in all algebras L ∈ Alg,

I α is true in all models (X ,m), for X ∈ Frm.
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A Scheme of Duality via Truth

A formal language
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Duality via Truth Theorem: the notions of truth determined by Alg
and Frm are equivalent. This means that Alg and Frm are dual



Duality: obtaining the ‘right window’ to a problem
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Abstract. The data structures dealt with in formal concept analysis
are referred to as contexts. In this paper we study contexts within the
framework of discrete duality. We show that contexts can be adequately
represented by a class of sufficiency algebras called context algebras. On
the logical side we define a class of context frames which are the semantic
structures for context logic, a lattice-based logic associated with the class
of context algebras. We prove a discrete duality between context alge-
bras and context frames, and we develop a Hilbert style axiomatization of
context logic and prove its completeness with respect to context frames.
Then we prove a duality via truth theorem showing that both context al-
gebras and context frames provide the adequate semantic structures for
context logic. We discuss applications of context algebras and context
logic to the specification and verification of various problems concerning
contexts such as implications (attribute dependencies) in contexts, and
derivation of implications from finite sets of implications.

Keywords: Duality, duality via truth, representation theorem, formal
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1 Introduction

A fundamental structure arising in formal concept analysis (FCA) [7,21] is that
of a ‘context’. In this paper we will consider this notion within the framework
of what we refer to as discrete duality. While a classical duality, such as that
of, for example, Stone [19] and Priestley [18], includes a representation of a
class of algebras in terms of a topological structure, a discrete duality includes
a representation for a class of algebras in terms of the relational structures
that provide the frame semantics (or equivalently, Kripke-style semantics) of the
lattice-based logic associated with the class of algebras. The frame semantics is
given in terms of a relational structure without a (non-discrete) topology which
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Contexts

A formal context is a triple (G ,M, I ) where G and M are sets and
I ⊆ G ×M.

Elements of G are objects.
Elements of M are features.
Relation I is the incidence of the context.

Central in formal concept analysis is the notion of a Galois connection
between objects and features.
Algebraically the Galois connection may be captured by two maps e and i .

i(O) = {a ∈ M | ∀o ∈ O, oIa} for O ⊆ G

e(A) = {o ∈ G | ∀a ∈ A, oIa} for A ⊆ M.

Relationally the Galois connection may be captured by a relation
R ⊆ G ×M.
We formalise this in the notions of context algebra and context frame.



Context algebra

A context algebra (L,∨,∧,¬, 0, 1, e, i) is a Boolean algebra
(L,∨,∧,¬, 0, 1) endowed with two unary operators e, i satisfying:

(1) ∀a, b ∈ L, g(a ∨ b) = g(a) ∧ g(b) for g = e, i
(2) g(0) = 1 for g = e, i
(3) ∀a ∈ L, a ≤ e(i(a))
(4) ∀a ∈ L, a ≤ i(e(a)).

It follows that the operators e and i are antitone and form a Galois
connection, that is,

a ≤ i(b) iff b ≤ e(a), for a, b ∈ L.



From a complete and atomic context algebra A = (L,∨,∧,¬, 0, 1, e, i)
we may define the formal context CA = (GA,MA, IA) where, using At(L)
to denote the set of atoms of L,

GA = i [At(L)] = ∪{i({a} | {a} ∈ At(L)}
MA = e[At(L)] = ∪{e({a} | {a} ∈ At(L)}

IA = {(o, a) | o ∈ e({a})}.

Then
e = [[IA]] and i = [[I−1

A ]],

where for R ⊆ X × Y and Q ⊆ Y ,

[[R]](Q) = {x ∈ X | Q ⊆ R(x)}.



From a formal context C = (G ,M, I ) we may define a complete and
atomic context algebra (LC , iC , eC) where

LC = 2G∪M

eC = [[I ]]

iC = [[I−1]],

where for any A ∈ LC and T = I , I−1,

[[T ]](A) = {x ∈ G ∪M | ∀y , y ∈ A ⇒ xTy}.

Then
e = eC and i = iC .



Context frame

A context frame C = (X ,R,S) is a non-empty set X endowed with
binary relations R and S such that S = R−1.

From a context frame F = (X ,R,S) we may define the formal context
CF = (GF ,MF , IF ) where

GF = dom(R)

MF = ran(R)

IF = R.

Then
[[R]] = eF and [[S ]] = iF .



From a formal context C = (G ,M, I ) we may define a context frame
(XC ,RC ,SC) where

XC = G ∪M

RC = I

SC = I−1.

Then
e = [[RC]] and i = [[SC]].



‘Cancellations’

I If a context C = (G ,M, I ) satisfies G = dom(I ) and M = ran(I ),
then C = CAC .

I If a context algebra A = (L,∨,∧,¬, 0, 1, e, i) is complete and
atomic,
then A = ACA .

I If a context C = (G ,M, I ) satisfies G = dom(I ) and M = ran(I ),
then C = CFC .

I If a context frame F = (X ,R,S) satisfies X = dom(R) ∪ ran(R),
then F = FCF .



Canonical frame and complex algebra

Canonical frame of a context algebra (L,∨,∧,¬, 0, 1, e, i) ∈ Alg is the
relational structure (X (L),Rc ,Sc), where X (L) is the family of prime
filters of L, and for any F ,G ∈ X (L),

FRcG iff e(G ) ∩ F 6= ∅ and FScG iff i(G ) ∩ F 6= ∅.

Complex algebra of a context frame (X ,R,S) ∈ Frm is the powerset
Boolean algebra with sufficiency operators (C(X ), ec , ic), where
C(X ) = 2X ,
ec : C(X )→ C(X ) is defined by

ec(A) = {x ∈ X | A ⊆ R(x)} for A ⊆ X ,

and ic : C(X )→ C(X ) is defined by

ic(A) = {x ∈ X | A ⊆ S(x)} for A ⊆ X .
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Preservation properties

I The mapping h : L→ C(X (L)) defined, for any a ∈ L, by

h(a) = {F ∈ X (L) | a ∈ F}

preserves the operators e and i , that is, for all a ∈ L,

h(e(a)) = ec(h(a)) and h(i(a)) = ic(h(a)).

I The mapping k : X → X (C(X )) defined, for any x ∈ X , by

k(x) = {A ∈ C(X ) | x ∈ A}

preserves the relations R and S in the sense that, for all x , y ∈ X ,

xRy iff k(x)Rck(y) and xSy iff k(x)Sck(y).
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A discrete duality for contexts

I The complex algebra of a context frame is a context algebra.

I The canonical frame of a context algebra is a context frame.

I Any context algebra (L,∨,∧,¬, 0, 1, e, i) is lattice-embeddable into
the complex algebra of its canonical frame.

I Any context frame (X ,R,S) is order-embeddable into the canonical
frame of its complex algebra.
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Involutions on Relational Program Calculi
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Abstract

The standard Galois connection between the relational and
predicate-transformer models of sequential programming (defined in
terms of weakest precondition) confers a certain similarity between
them. This paper investigates the extent to which the important in-
volution on transformers (which, for instance, interchanges demonic
and angelic nondeterminism, and reduces the two kinds of simulation
in the relational model to one kind in the transformer model) carries
over to relations. It is shown that no exact analogue exists; that the
two complement-based involutions are too weak to be of much use; but
that the translation to relations of transformer involution under the
Galois connection is just strong enough to support Boolean-algebra-
style reasoning, a claim that is substantiated by proving properties
of deterministic computations. Throughout, the setting is that of
the guarded-command language augmented by the usual specification
commands; and where possible algebraic reasoning is used in place of
the more conventional semantic reasoning.

1 Introduction

We adopt the familiar view that a semantic model for programming, and for
the development of programs from specifications through designs to code,
consists of a partially-ordered space. The elements of the space are de-
signs expressed in code—‘programs’—and designs (including specifications)
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Duality and Involutions

Let (B,∨,∧,¬, 0, 1) be a Boolean algebra.

For any function f : B → B, its dual is defined, for any a ∈ B, by

f ∗(a) = ¬f (¬a).

This operator ∗ on functions over a Boolean algebra is an involution, that
is,

f ∗∗ = f .

Is there also an involution operator on binary relations?



NO!

Let R(X ,Y ) be family of binary relations r ⊆ X × Y .

Theorem There is no function ∗ on R(X ,Y ) that is an involution, obeys
either of the De Morgan laws and distributes over sequential
composition, that is,

(a) ∀r ∈ R(X ,Y ), r∗∗ = r

(b) either, ∀r , s ∈ R(X ,Y ), (r ∩ s)∗ = r∗ ∪ s∗

or ∀r , s ∈ R(X ,Y ), (r ∪ s)∗ = r∗ ∩ s∗.
(c) ∀r , s ∈ R(X ,Y ), (r ; s)∗ = r∗; s∗.

Proof: We argue by contradiction, establishing an untenable identity.



From assumptions (a) and (b) we may establish equivalence of two De
Morgan laws in (b), that is,
(d) (r ∪ s)∗ = r∗ ∩ s∗ ≡ (r ∩ s)∗ = r∗ ∪ s∗.
Assume first De Morgan law holds. Then

(r ∪ s)∗ = (r∗∗ ∪ s∗∗) = (r∗ ∩ s∗)∗∗ = r∗ ∩ s∗.

Similarly, if second De Morgan law holds.
Now, for all r , s, t ∈ R(X ,Y ),

r ; (s ∪ t) = r ; s ∪ r ; t

(s ∪ t); r = s; r ∪ t; r

r ; (s ∩ t) ⊆ r ; s ∩ r ; t

The reverse inclusion of the last property holds if r is a function.



However, assuming (a), (b) and (c) we have

r ; (s ∩ t) = (r ; (s ∩ t))∗∗ by (a)

= (r∗; (s ∩ t)∗)∗ by (c)

= (r∗; (s∗ ∪ t∗)∗ by (b)

= (r∗; s∗ ∪ r∗; t∗)∗

= (r∗; s∗)∗ ∩ (r∗; t∗)∗ by (b)

= (r ; s)∗∗ ∩ (r ; t)∗∗ by (c)

= r ; s ∩ r ; t by (a).

Thus
r ; (s ∩ t) = r ; s ∩ r ; t

A contradiction!



A Galois connection

Algebra (T (X ),≤) of monotone maps f : 2x → 2X where, for any
f , g ∈ T (X ),

f ≤ g iff ∀Q ∈ 2X , f (Q) ⊆ g(Q).

Algebra (R(X ),⊆) of binary relations r ⊆ X × X .

For any r ∈ R(X ) we may define a map fr ∈ T (X ) by

fr = [r ].

For any f ∈ T (X ) we may define a relation rf ∈ R(X ) by

xrf y iff ∀Q ∈ 2X , x ∈ f (Q)⇒ y ∈ Q.
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Two sufficiency operators:

f(−) : (R(X ),⊆)→ (T (X ),≤)

and
r(−) : (T (X ),≤)→ (R(X ),⊆)

with the property that

f ≤ fr iff r ⊆ rf ,

or equivalently,
f ≤ frf and r ⊆ rfr .

Thus
((R(X ),⊆), f(−),R(−), (T (X ),≤))

is a Galois pair.



A solution!

Given r ∈ R(X ), define r+ ∈ R(X ) by

r+ = r[r ]∗ = r〈r〉

Then r++ = r〈r〈r〉〉

Properties:

I r ⊆ s implies r+ ⊇ s+

I r ⊆ r++

I r ⊆ s+ iff s ⊆ r+

I (r ∪ s)+ = r+ ∩ s+

I (r ∩ s)+ ⊇ r+ ∪ s+

I (r ; s)+ = r+; s+

I ∅+ = X × X

I (X × X )+ = ∅
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Duality: potentially the ‘right window’ to further problem



Concluding remark

It is characteristic of the most successful theories, in
mathematics as well as in natural sciences, that they can be
presented in several apparently independent ways, which are in
a useful sense provably equivalent.

Sir C.A.R. Hoare, 1995.



Concluding remark

A mathematical structure is
nothing else than seeing an ac-
tivity or an entity or a theory
through a window to the mathe-
matical world, with duality pro-
viding a tight connection be-
tween these windows.


