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1. Basics 

n   What’s about 
n   Background on possibility theory 
n  Degree of uncertainty vs. degree of truth 
n  Standard possibilistic logic (syntax and 

semantics) 
n  Inconsistency handling 
n  Guaranteed possibility-based logic 



What’s about? 

n  (p, a)   
n   p : classical logic formula 
n   a : level in a scale  (0,1]  
n   N(p) ≥ a      N : necessity measure 
n   N(p) ≥ a, N(¬p ∨ q) ≥ b |-  N(q) ≥ min(a, b) (Prade, 1982) 
n   Theophrastus   
n  Nicholas Rescher (Plausible Reasoning,1976) 



Developed with many co-authors 

Including 
n   Didier Dubois 
n   Jérôme Lang 
n   Salem Benferhat 
n   Souhila Kaci 
n   Steven Schockaert 
n  … 



 can be used for modeling 
 
n  uncertainty 
(p, a) p is true with certainty a 
 
n  preferences 
(p, a)  making p true is a goal with priority a 
 



BOOLEAN POSSIBILITY THEORY 

Set-functions acting as measures of uncertainty  
 

If all we know is that x ∈ E then 
 

- Event A is possible if A ∩ E ≠ Ø 
   (logical consistency) 
	
 	
 	
 	
Π(A) = 1, and 0 otherwise 

-  Event A is sure if E ⊆ A (logical deduction) 
    N(A) = 1, and 0 otherwise 

-  Axiom : Π(A ∪ B) = max(Π(A), Π(B));  
-  Axiom : N(A ∩ B) = min(N(A), N(B)).  
-  Close to a simple modal logic (KD45) 
 



   Possibility theory - 1  
n π a possibility distribution 

n  π(u) = 0 means X = u is totally excluded 
n  π(u) = 1 means X = u is completely possible 
n  Possibility measure 
n  Π(A) = sup{π(u) : u ∈ A}   to what extent event 

A is consistent with the information X is F 
n              Π(A∪B) = max(Π(A), Π(B)) 

distance 

possibility 
level 

1 

0 

“ not too close  
and not far ” 

fully 
rejected 

fullyrejected 
fully 
acceptable 



Possibility theory - 2  

n  L. A. Zadeh, 1978 
n  G. L. S. Shackle, 1949-1962 degree of surprise 
n   also  
    L. J. Cohen, D. Lewis, Grove, Maslov, Shilkret, … 
 
For Zadeh:  linguistic terms à possibility distribution 

   Peter is young 
Here possibility distribution defined on a set of 
interpretations induced by a logical language 



     Possibility theory - 3 

n Ν(A) = 1 – Π(Ac) 
             = 1 – sup{π(u) : u ∉ A} 
to what extent event A is implied by the information  
n  N(A) = 1:  
    A is certain (true in all non-impossible situations) 
n  N(A) > 0: Given that X is F, A is normally true 

(true in all the most plausible situations) 
n                N(A ∩ B) = min(N(A), N(B)) 
 



Degree of uncertainty vs.    
        degree of truth 
n   Π(A∪B) = max(Π(A), Π(B)) 
n   Π(A∩ B) ≤ min (Π(A), Π(B))  ! 

n   N(A ∩ B) = min(N(A), N(B)) 
n   N(A ∪ B) ≥ max(N(A), N(B)) ! 

n   Π, N are increasing wrt set inclusion 
                                     fuzzy measure, capacity 

 



n   Degree of uncertainty cannot be decomposable 
wrt to all logical connectives   

degrees of uncertainty pertain to classical formulas 
                    Boolean lattice 
 
n  Degree of truth may be decomposable wrt to all 

logical connectives   

degrees of truth pertain to non classical formulas    
  distributive lattice 

 



          Possibility theory - 4 

n  Modeling ignorance 

    Π(A∪Ac) = max(Π(A), Π(Ac)) 
    N(A ∩ Ac) = min(N(A), N(Ac)) 

 

n  Qualitative possibility theory 
       vs. Quantitative possibility theory 

     Π(A∩B) = Π(A⎮B) ∗ Π(B) 
   with  ∗ = min    or   ∗ = × 
n    Bayesian possibilistic network 

 
 
 



        Possibility theory - 5 

n   Π(A) = 1 and  N(A) = 1    A certainly true 
n   Π(A) = 1 and  N(A) > 0    A true somewhat certain 
n   Π(A) = 1 and  N(A) = 0    total ignorance about A 
n   Π(A) < 1 and  N(A) = 0    A false somewhat certain 
n   Π(A) = 0 and  N(A) = 0    A certainly false 



       Possibility theory - 6 

n   Guaranteed (strong) possibility measure 
n             Δ(A) = inf{ π(u) : u ∈ A}   
n  to what extent all situations where A is true  

 are possible for sure 
n           Δ(A∪ B) = min(Δ(A), Δ(B)) 
n        decreasing w. r. t. set inclusion 
n       ∇(A) = 1 - Δ(Ac)   (weak necessity) 
n           ∇(A∩ B) = max(∇(A), ∇(B)) 
 
 



Possibility theory - 7 

n  Δ(A∪ B) = min(Δ(A), Δ(B)) 
n  Δ(A ∩ B) ≥ max(Δ(A), Δ(B))  

n   ∇(A ∩ B) = max(∇(A), ∇(B)) 
n    ∇(A∪B) ≤ min(∇(A), ∇(B)) 

n  Δ, ∇ are decreasing set functions 



Possibility theory - 8 

n   Π(A)   max over A 
n   N(A)    1 -   max over Ac 
n   Δ(A)   min over A 
n   ∇(A)      1 - min over Ac 



Certainty-qualification 

n  Attaching a degree of certainty α to event A 
n  It means N(A) = α ⇔ Π(Ac) =sup s ∉ Aπ(s) = 1 – α 
n  The least informative π sanctioning N(A) ≥ α is : 

¨ π(s) =  1 if s ∈ A  and  1 – α if s ∉ A 
n  In other words: π(s) = max(µA, 1 – α)  

1

0
A

1 – !

!x



Standard propositional 
possibilistic logic 
n  syntax and semantics 
n  inconsistency handling 
n  guaranteed possibility-based logic 



Possibilistic logic: syntax 
n  A possibilistic formula is a certainty qualified 

proposition (p, α), where p is a classical 
proposition and α ∈(0, 1] is the minimal 
certainty of p. 

n  (p, α) means « p is α-certain » :  N([p]) ≥ α 
n  A possibilistic knowledge base is a totally  pre-

ordered logical base = B 1 ∪ B 2 … ∪ B 2  
¨  B i = {(pij αi), j = 1, …} is the α i-layer,  
¨  priorities α1 >  α2 > …αm lie in some 

ordinal scale. 



Possibilistic logic: inference 

n  Inference in poslog is a straightforward extension of 
classical inference : B |- (p, α) iff Bα classically implies 
p :Bα  |- p 

n  A set of formulas (pi, α)  for any given α is deductively 
close (wrong for probabilities except if  α=1) 

n  Basic principles 
¨ The weight of a chain of inference is the weight of the 

weakest link 
¨ The weight of the conclusion is the weight of the strongest 

chain of inference that produces it 



Possibilistic logic: proof method 
n  Valid inference patterns 
    Modus ponens:  {(p, α), (¬p ∨ q, β)} |– (q, min(α, β)) 
    Resolution: {(p∨ q, α), (¬p ∨ r, β)}|– (q∨ r, min(α, β)) 
    Fusion:  {(p, α), (p , β)}|– (p, max(α, β)) 
•   if p |- q classically, (p, α) |- (q, α) 
•   if α ≥ β then (p, α) |- (p, β) 
n  Certainty of a conclusion p: max{α, B |—(p, α)} 
n  Degree of contradiction : 

  Inc(B) = sup{α:B |—(⊥, α) } 
n  Refutation:  

         B |—(p, α) iff B ∪ (¬p, 1) |—(⊥, α) 



Possibilistic logic: semantics 

A set of sentences B with priorities models certainty-
qualified assertions;  

n  (p, α) means « x is A is α-certain » :  N(A) ≥ α 
n  Models of (p, α) form a fuzzy set:   
n  π(p, α)(s) =  1 if s satisfies p ,  
                  1 – α if s does not satisfy p 
n  B is interpreted by the least specific possibility 

distribution on the set of interpretations obeying 
the constraints {N(Aij) ≥ αi, i = 1, n} where Aij is 
the set of models of pij: 

                  πB = minij max(µAij, 1 – αi) 



SOUNDNESS AND COMPLETENESS 

n   Semantic inference: B |= (p, α) means πB ≤ π(p, α) 
n  {(p, α), (q, α)} is semantically equivalent to {(p∧q, 
α)} : one may put any base in a conjunctive normal 
form as a set of weighted clauses.  

n  Main theorem : Possibilistic logic is sound and 
complete w.r.t. this semantics :  

B |= (p, α) iff B |— (p, α),   
n   An inconsistent B may yield non-trivial conclusions 

  
 



Inconsistency-Tolerant inference 

n  Degree of inconsistency of a possibilistic belief base: 
Inc(B) = max{α, B |— (⊥, α)} (= 1 ‒ maxω πB(ω) ) 
¨ For all p, B |— (p,  Inc(B)) (trivial part),  

n  Inconsistency-Tolerant inference:  
      B |—Pref p if B |— (p, α) with  α > Inc(B). 
n  The set of non-trivial consequences of B are those of  

the largest set {pij ∈ B1 ∪ B2 … Bi } that is not 
inconsistent (Inc(B) = αi+1).  

n  This inference is non-monotonic : one may have  
B |—Pref p  and  B ∪ (q, 1)  |—Pref ¬p  . 



Example 
n  K = {(¬Stu(x) ∨ You(x), a1) (¬You(x) ∨ Ba(x), a2) (¬Stu(x) ∨ 

¬ Par(x) ∨ ¬Ba(x), a3) (Stu(Léa), 1)}  
 with   a3 > a1 

n  Inc(K) = 0 : K |– (Ba(Léa), min(a1,a2))   
 K |– Pref  (Ba(Léa)  (cannot infer ¬Ba(Léa)) 

n  But K ∪ (Par(Léa), 1) is partially inconsistent: 
            Inc (K ∪ (Par(Léa), 1)) = min(a1, a2, a3) = min(a1,a2) 

n     K ∪  {(Par(Léa), 1)} |– Pref  ¬Ba(Léa)  since  
K ∪  {(Par(Léa), 1)} |– (¬Ba(Léa), a3) : nonmon!!!! 

   and a3 > min(a1,a2). 
     



The Syntactic approach:  
Conditional assertions 

n  A |~ B denotes a conditional assertion « generally if A then  B » 
where A and B are propositional sentences. 

n  Postulates of System P (Kraus et al, 1989) 
¨ A |~ A (reflexivity) 
¨ If B ≡ C then C |~ A iff B |~ A (Left logical equivalence) 
¨ If B |= C then A |~ B implies A |~ C (Right Weakening) 
¨ If B |~ A and C |~ A then B∪C|~A (OR) 
¨ A |~ B and A |~ C then A ∩C |~ B (Cautious Monotony) 
¨ A |~ B and A ∩C |~ B  then A |~ C (Cut) 
¨ If A |~ B and A |~ C then A |~ B∩C (AND) 



Belief construction in System P 

n  Beliefs of an agent about a situation  are inferred from generic 
knowledge AND observed singular evidence about the case at hand. 

n  Commonsense inference : a two-tiered scheme  
¨ Generic knowledge = set of conditional assertions ∆ 
¨ Singular observed facts = proposition A (all you know) 
¨ Inferred belief = proposition B 
¨ Method : first infer a rule A |~ B (adapted to your 

singular information A) from ∆, then believe B 
¨ Inference of rules in system P is monotonic,  
¨ Inference of beliefs is  not : 

     may have ∆ |– (A∩C|~ ¬ B) 



Possibilistic logic encoding 

n  A set of defaults ∆ = {Ai |~ Bi}  i = 1,n 
n   each A |~ B is associated with the constraint            
Π(A ∩ B) > Π(A ∩ ¬B)   iff   N(B | A) > 0 

          with N(B | A) = 1 – Π(¬B | A) 
n  Two entailments: 
 - preferential entailment 
For all Π s.t. Π(Ai ∩ Bi) > Π(Ai ∩ ¬Bi) i = 1,n 
 we have Π(A ∩ B) > Π(A ∩ ¬B)  
    equivalent to  ∆ |–  A|~ B 
- rational closure 



Rational closure 

n Compute the largest possibility distribution   
(it is the least informative) 
corresponding  to 
constraints Π(Ai ∩ Bi) > Π(Ai ∩ ¬Bi) i = 1,n 
 

n RC(∆) = {A → B, Π(A ∩ B) > Π(A ∩ ¬B)} 
n This is rational closure in possibilistic logic  
we use pairs (¬A ∪ B, N (¬A ∪ B))  



Example 
n  Penguin →Bird, Bird →Flies,  Penguin →¬ Flies  

 1. Π(P∧B) > Π(P∧¬B)  (examples  > counterexamples);  
 2. Π(B∧F) > Π(B∧¬F) ;  
 3. Π(P∧¬F) > Π(P∧F). 

n  Step 1 : Finding Normal cases  
 Exceptional  cases are (P∧¬B) ∨ (B∧¬F) ∨ (P∧F) 
 Normal cases are thus the other models : 
 (¬P ∨ B) ∧ (¬B ∨ F) ∧ (¬P ∨ ¬F)) = ¬P∧(¬B ∨ F) 

                             (Non-penguins that, if they are birds, fly). 
n  Since (B∧F) ∧¬P∧(¬B ∨ F) = B∧F∧¬P ≠ Ø, we can give 

up rule 2. 



Example 

n  Step 2 : Less normal cases are in P∨ (B ∨ F) and are not 
exceptions to rules 1 and 3 (i.e., not ( P∧¬F)∨(P∧B)):  

 ¬(( P∧¬F)∨(P∧B)) ∧ (P∨ (B ∨ F)) =  B ∧ ¬F 
  (birds that do not fly) 

n  Stop : B ∧ ¬F is consistent with examples P∧B et P∧¬F.  
n  Totally abnormal cases:  

 ¬[(B ∧ ¬F) ∨ (¬P∧(¬B ∨ F)] = P∧ (¬B ∨ F) 
  (Penguins that fly, or are not birds) 



Back to possibilistic logic 

n  The well-ordered partition is a possibility 
distribution:  

   Π(¬P∧(¬B ∨ F)) > Π(B ∧ ¬F) > Π(P∧( ¬B ∨ F)) 

n  For each rule A → B define a possibilistic formula  
(¬A ∨ B, N (¬A ∨ B)) : BΠ 

n  N(¬B ∨ F) < N(¬P ∨ B) = N(¬P ∨ ¬F)  
n  A → B is in RC(∆) iff (A, 1) ∪ BΠ |– B 



Reasoning with rational closure 

n  Any well-ordered partition can be modeled by a set of 
default under rational closure. 

n  Non-intuitive conclusions can be repaired by adding the 
proper default information: 

n  If  RC(∆) contains a counterintuitive conclusion A → B, 
then it is possible to add rules r to ∆ so that RC(∆ ∪{r}), 
if not inconsistent,  contains A → ¬B. (Benferhat D&P, 
Applied Intelligence 1998) 



Perceived Causality. An Example 
 
n  We were at “...”, I was surprised by the person 
who braked in front of me, not having the option 
of changing lane and the road being wet, I could 
not stop completely in time. 
 
n  Driver A follows Driver B 



 
n Abnormal facts are privileged 
when providing causal explanations  
 
n Material implication is insufficient 

 for representing causation 
 
n  => Nonmonotonic logic-based approaches for 

causal ascriptions 



Nonmonotonic Consequence Approach 
 n  An agent learns of the sequence ¬Bt , At , Bt+k 
n  Kt (context): 
 conjunction of all other facts known by the agent 
n  |~ a nonmonotonic consequence relation 
(in the sense of System P of Kraus et al., 1990).  
Given the sequence ¬B , A , B 
n  if the agent believes K |~ ¬B and K ∧ A |~ B, the agent 

perceives A to cause B in context K denoted A ⇒c B 
n  If the agent believes that K |~ ¬B and K ∧ A |⁄~ ¬B 

(rather than K ∧ A |~ B), then A is perceived as 
facilitating B     denoted  A ⇒f B 



n  Variables 
n  Acc (occurrence of an accident)  
n  Wet (road being wet) ; Sur (A is surprised) 
n  Brak (driver B brakes in front of driver A)  
n  ReacL: driver A brakes after B brakes, with a delay 
n  common core of knowledge is :  |~ ¬Acc; |~ ¬Sur;  

ReacL ∧ Wet |~ Acc . 
n   we derive ReacL ∧ Wet ⇒c Acc.  
n   cause of the accident s the conjunction of braking late 

and the road being wet. 
n  ReacL |⁄~ ¬Acc long-delay reacting alone facilitated 

the accident 
 



n  In the definitions of ⇒c and ⇒f, |~ is a preferential 
entailment,  and a rational closure entailment,  

n  respectively Causes and facilitations are abnormal in 
context: 

n  If A ⇒f B or A ⇒c B then K|~ ¬A.  
n  Causality is transitive only in particular cases: 
If A is the normal way of getting B in context K, i.e.,  
K ∧ B |~ A, and if A ⇒c B and B ⇒c C, then A ⇒c C. 
n  The distinction between causation and facilitation, as 

well as the restricted transitivity property, have been 
validated by behavioral experiments. 



Representions of preferences 
  
- different formats 
 
- bipolarity  
 



Possibilistic logic base 

n  B = {(Bj, βj), j = 1, m}   
    
   N(Bj) ≥ βj 
	

 
    B = {(p1, 1), (p2, α2) , (p3, α3)} 
 
πB (d) = 

! 

µP* (d) = min(µP1
(d),max(µP2

(d),1" #2 ),max(µP3
(d),1" #3 )).



Example     
  ‘near the sea’ and ‘affordable price’	

	

‘near’(the sea)	

π1(u1)	
= 1 if u1 ≤ 5; 	

	
= .7 if 5 < u1 ≤ 10 ; 	

	
= .2 if 10 < u1 ≤ 15 ; 	

	
=  0 if u1 > 15	


	


  ‘affordable’ (price) 	

π2(u2) = 1 if u2 ≤ 200 ; 	

	
= .5 if 200 < u2 ≤ 400 ; 	

	
= 0 if u2 > 400	


	


9   π = min(π1, π2)       associated to 	

B = {(d ≤ 15, 1), (d ≤ 10, .8), (d ≤ 5, .3), 	

                                  (p ≤ 400, 1), (p ≤ 200, .5)}	




Example (2) 
   ‘near the sea’ or ‘affordable price’  

 
 

    π = max(π1, π2)  
 
 

        B’ = {(d ≤ 15 ∨ p ≤ 400, 1), (d ≤ 10 ∨ p ≤ 400, .8),  
   (d ≤ 10 ∨ p ≤ 200, .5), (d ≤ 5 ∨ p ≤ 200, .3)} 

 

    
n  Btn = B1∪B2∪{(pi∨qj, ct(αi,βj)) | (pi , αi)∈B1  

       and (qj, βj)∈B2}, 

n   Bct = {( pi ∨ qj, tn(αi,βj)) | (pi, αi)∈B1 and (qj, βj)∈B2} 
   ct(α, β) = 1 − tn(1 − α, 1 − β) 



2nd logical reading 

n  Situations having a guaranteed satisfaction level 

   Guaranteed possibility 	

  Δ(C) = min{π(u) | u ∈ C}	


	
 	
 	
   Δ(Ci - 1) ≥ αi 	

	


   π  also equivalent to a set {[Ci - 1, αi], i = 2, n} 	

	


     set of situations Ci - 1 with guaranteed satisfaction αi	


 	

    ∀u ∈ U, π[Ci -1, αi](u) = αi if u ∈ Ci - 1 	
	

	
               π[Ci -1, αi](u) = 0  otherwise	


	

  values in Ci - 1 are possible at least to a degree αi	




Distribution obtained as a 

9     disjunctive combination 

      π(u) = max{π[C i -1, αi](u)⏐ i = 2, n } 
 
 

 
  D  = {[Dk,δk] ⏐k = 1, r } 

 
∀u ∈ U, πD(u) = max{δk⏐ [Dk,δk] ∈ D  and u ∈ Dk}  

            if u ∈ D1∪…∪Dr  
      

             πD(u) = 0 otherwise 



Example (continued) 
‘near the sea’ and ‘affordable price’ 	

	
 	
π = min(π1, π2) 	


	


D = {[d ≤ 5 ∧ p ≤ 200 , 1], [5 < d ≤ 10 ∧ p ≤ 200, .7],	

[d ≤ 10 ∧ 200 < p ≤ 400, .5], [10 < d ≤ 15 ∧ p ≤ 400, .2]}	

	

 ‘near the sea’ or ‘affordable price’  	

	
 	
π = max(π1, π2) 	


	


D’ = {[d ≤ 5, 1], [d ≤ 10, .7], [d ≤ 15 , .2], [p ≤ 400, .5], 	

	
 	
[p ≤ 200, 1]}	




Conditional preferences 
“I prefer to take a tea (t). 	

	
If there is no tea then I will take a coffee (c)”	


Π(t) > Π(¬t)	

Π(¬t ∧ c) > Π(¬t ∧¬c)	

There exists a unique possibility distribution which is 

minimally specific and satisfies a given set of consistent 
constraints (such as the above ones)	

	
π(ct) = 1 ; π(¬ct) = 1; π(c¬t) = α ; 	

	
π(¬c¬t) = β with α > β	


associated to N- anf Δ-type possibilistic bases :	

9  B = {(c ∨ t, 1- β), (t, 1 - α)}	

9  D = {[t, 1], [c∧¬t, α], [¬c∧¬t, β]}	

one can go from a representation format to another	




Graphical representation 

Graphical encoding by a possibilistic Bayesian network	

	
	


§     π(t) = 1       π(¬ t) = 1 	

	


§    π(c⏐¬ t) = λ    π(¬ c⏐¬ t) = 0	

       π(c⏐ t) = 1       π(¬ c⏐ t) = 1	

	

	
π(x, y) = min(π(y⏐x), π(x))	


	


conditional non-interactivity	

	

translation procedures without loss of information	




	
CP-nets    Motivating Example	

	


(P1): he prefers black vest to white vest   {Vb, Vw}	

(P2): he prefers black pants to white pants   {Pb, Pw}	

(P3): when vest and pants have the same color, 	


	
 	
he prefers red shirt to white shirt 	

         otherwise he prefers white shirt  {Sr, Sw}	

(P4): when the shirt is red then he prefers red shoes 	

         otherwise he prefers white shoes {Cr, Cw}	

	

   Ω = 	


	
{VbPbSrCr, VbPbSwCr, VbPwSrCr, VbPwSwCr, 	

	
  VwPbSrCr, VwPbSwCr, VwPwSrCr, VwPwSwCr, 	

	
  VbPbSrCw, VbPbSwCw, VbPwSrCw, VbPwSwCw, 	

	
  VwPbSrCw, VwPbSwCw, VwPwSrCw, VwPwSwCw}	


	




P1: 	
{(Vb, 1 − α)} 	

P2: 	
{(Pb, 1 − β)} 	

P3: {(¬Vb ∨ ¬Pb ∨ Sr, 1 − γ), 	


	
(¬Vw 	
∨ ¬Pw ∨ Sr, 1 − η),	

	
(¬Vw 	
∨ ¬Pb	
∨ Sw, 1 − δ), 	

	
(¬Vb 	
∨ ¬Pw ∨ Sw, 1 − ε)}	


P4: 	
{(¬Sr ∨ Cr, 1 − θ), (¬Sw  ∨ Cw, 1 − ρ)}	

	

• assumed to belong to a linearly ordered scale 1> 1−α  α>0	

• 1 − α, 1 − β , 1 − γ, 1 − η, 1 − δ, 1 − ε, 1 − θ, 1 − ρ are 
unknown	

• no particular ordering is assumed between them	








Bipolar preferences 
Positive information refers to what is desired	

	

Negative information refers to what is rejected	

	


	
Pair of possibility distributions (π*, π*)	

	

π*   fuzzy set of values guaranteed to be satisfactory	

	

π*   evaluates what is non-impossible	

1 - π*(u) evaluates the extent to which u is impossible 	

	




coherence condition 	

	

for the pair  (π*, π*) :	

     	


	


    ∀u, π*(u) ≤ π*(u) 	
	

	


	
B* = {(pi, αi), i =1, n} 	

and 	

        D* = {[qj, γj], j =1, m}	

	




Application to flexible queries 	

	

distinction is made between 	

	

   constraints, whose violation has a negative effect, 	

	

and	

	

	


   wishes to satisfy if possible, 	

       whose satisfaction has a positive effect 	

(non satisfaction has no impact on the evaluation)	

	


	
symbolic optimization problem	

	




N - Resolution:	

	

 {(p∨ q, α), (¬p ∨ r, β)}|– (q∨ r, min(α, β))	

	

Δ - Resolution:	

	

[p ∧ q, α], [¬p ∧ r, β] |–  [q ∧ r, min(α, β)]	

	


Reasoning with bipolar knowledge	




Deductive bipolar reasoning 
 

  rules : if X is Ai then Y is Bi 
express that 
 

n  Situations where X is Ai  and Y is not-Bi are impossible 
  not Ai or Bi  

  conjunctive combination of rules : 
 B’ = A’ ° ∩i (Ai → Bi)    B’ = Bi     if A’ = Ai 

n  Situations where X is Ai  and Y is Bi are guaranted possible  
  Ai and Bi  

 disjunctive combination of rules :   ∪i (Ai × Bi) 

 B’ = {y s.t. ∀ x ∈ A’and (x,y) ∈  ∪i(Ai × Bi)} 
 B’ = Bi  if A’ = Ai 



n  Example: 
- R1: if an employee is in category 1 then his salary is 

 necessarily in [1000, 2000] 
  typically in [1500, 1800] 

-  R2: : if an employee is in category 2 then his salary is  
            necessarily in [1500, 2500] 

   typically in [1700, 2000].  

* B’ = A’ ° ∩i (Ai → Bi)   A’ = {cat.1, cat.2}  
  A1 = {cat.1}, B1 = [1000, 2000]  
  A2 = {cat.2}, B2= [1500, 2500]  
  ⇒       B’ = B1 ∪ B2 = [1000, 2500]  

*   B’ = {y  s.t. ∀ x ∈ A’ and (x,y) ∈ ∪i(Ai × Bi)},  
B1 = [1500, 1800], B2 = [1700, 2000],  

⇒  B’ = B1 ∩ B2 = [1700, 1800]  guaranted possible 



formula <p, a>  	

	

encoding the contrainte Π(p) ≥ a	

	

Mixed resolution rule: 
	

   (¬p ∨ q, a); <p ∨ r, b>  |--  <q ∨ r, b>    if b > 1 - a	

	

Reasoning about ignorance	


Reasoning with possibilistic lower bounds 	

in possibilistic logic 	




Multiple-agent extension 
  of possibilistic logic  

n Multiple-agent extension 
  of possibilistic logic  

n   Modeling epistemic states  
in generalized possibilistic logic  
 



Generalized possibilistic logic and ASP 
n  Generalized possibilistic logic can capture 	

    logic programing	

n  with negation as a failure,	

n  “q is certain provided that p is certain  
  and that one has no proof of r” 

n  i.e.    if N(p) ≥ a and Π(¬r) ≥ b then N(q) ≥ a 

n  Which corresponds to formula   
  ¬(p, a) ∨ ¬<¬r, b> ∨ (q, a)	


 



Nested formula 
  (p, α) is true ou false! 

possibilistic knowledge base K 
n  either NK(p) ≥ α  

 (p, α) holds as (certainly) true 
n  either NK(p) < α and (p, α) is false 
 

 ((p, α), β)  ?           
possibility distribution over possibility distributions (Zadeh 1978)  
-  possible at level 1 that the correct representation of information is 
 π = π{(p, α)} = max(µ[p], 1 - α) 
- possible at level 1 -   β  that correct representation of information is π = 1 
everywhere (complete ignorance) 
π = max(min(π{(p,α)},1), min(1, 1-β)) = max(µ[p],1- min(α,β)) 
 

((p, α), β) equivalent to (p, min(α, β))    (discounting)  
 

 counterpart of identity ¨¨p ≡ ¨p  S5 



 Other applications 

n   Information fusion,   preferences fusion 
 

n   Reasoning under inconsistency 
 

n   Expressing qualitative independence 
 

n   Qualitative decision under uncertainty 

      ➢  pessimistic criterion, optimistic criterion 

n   Logical reprentation of a Sugeno integral 
  

n   Formal concept analysis 



Conclusion 
n  The setting of possibilistic logic is suitable for 

handling a large number of issues in knowledge 
representation in AI 

n   close to classical logic, rich modal language 

n   Besides, in quantitative possibility theory 
     ➢  a possibility distribution represents a family of 
probability distributions 
     ➢ imprecise regression 
     ➢  possibility theory complementary to 

 probability theory 


