Possibilistic logic
 1. Basics
 2. Applications
 3. Extensions
 4. Possibility theory/ECA

Henri Prade

Institut de Recherche en Informatique de Toulouse

1. Basics

- What's about
- Background on possibility theory
- Degree of uncertainty vs. degree of truth
- Standard possibilistic logic (syntax and semantics)
- Inconsistency handling
- Guaranteed possibility-based logic

What's about?

■ (p, \mathbf{a})

- p : classical logic formula
- a : level in a scale $(0,1]$
- $\mathrm{N}(p) \geq \mathrm{a} \quad \mathrm{N}:$ necessity measure

■ $\mathrm{N}(p) \geq \mathrm{a}, \mathrm{N}(\neg p \vee q) \geq \mathbf{b} \mid-\mathrm{N}(q) \geq \min (\mathbf{a}, \mathbf{b})$ (Prade, 1982)

- Theophrastus

■ Nicholas Rescher (Plausible Reasoning,1976)

Developed with many co-authors

Including

- Didier Dubois
- Jérôme Lang
- Salem Benferhat
- Souhila Kaci
- Steven Schockaert

can be used for modeling

- uncertainty
$(p, \mathbf{a}) p$ is true with certainty \mathbf{a}
- preferences
(p, \mathbf{a}) making p true is a goal with priority \mathbf{a}

BOOLEAN POSSIBILITY THEORY

Set-functions acting as measures of uncertainty
If all we know is that $\boldsymbol{x} \in \boldsymbol{E}$ then

- Event A is possible if $\mathrm{A} \cap \mathrm{E} \neq \varnothing$
(logical consistency)

$$
\Pi(\mathrm{A})=1 \text {, and } 0 \text { otherwise }
$$

- Event A is sure if $\mathrm{E} \subseteq \mathrm{A}$ (logical deduction)

$$
\mathrm{N}(\mathrm{~A})=1 \text {, and } 0 \text { otherwise }
$$

- Axiom : $\Pi(\mathrm{A} \cup \mathrm{B})=\max (\Pi(\mathrm{A}), \Pi(\mathrm{B}))$;
- Axiom : $\mathrm{N}(\mathrm{A} \cap \mathrm{B})=\min (\mathrm{N}(\mathrm{A}), \mathrm{N}(\mathrm{B}))$.
- Close to a simple modal logic (KD45)

Possibility theory - 1

$■ \pi$ a possibility distribution

- $\pi(\mathrm{u})=0$ means $\mathrm{X}=\mathrm{u}$ is totally excluded
- $\pi(\mathrm{u})=1$ means $\mathrm{X}=\mathrm{u}$ is completely possible
- Possibility measure
$■ \Pi(\mathbf{A})=\boldsymbol{\operatorname { s u p }}\{\boldsymbol{\pi}(\mathbf{u}): \mathbf{u} \in \mathbf{A}\}$ to what extent event A is consistent with the information X is F

$$
\Pi(\mathbf{A} \cup \mathbf{B})=\boldsymbol{\operatorname { m a x }}(\Pi(\mathbf{A}), \Pi(\mathbf{B}))
$$

Possibility theory - 2

- L. A. Zadeh, 1978

■ G. L. S. Shackle, 1949-1962 degree of surprise

- also
L. J. Cohen, D. Lewis, Grove, Maslov, Shilkret, ...

For Zadeh: linguistic terms \rightarrow possibility distribution Peter is young
Here possibility distribution defined on a set of interpretations induced by a logical language

Possibility theory - 3

$\square \mathrm{N}(\mathbf{A})=\mathbf{1}-\Pi\left(\mathbf{A}^{\mathbf{c}}\right)$

$$
=1-\sup \{\pi(u): u \notin A\}
$$

to what extent event A is implied by the information
$\square \mathbf{N}(\mathbf{A})=1$:
A is certain (true in all non-impossible situations)

- $\mathbf{N}(\mathbf{A})>\mathbf{0}$: Given that X is F, A is normally true (true in all the most plausible situations)

$\mathbf{N}(\mathbf{A} \cap \mathbf{B})=\boldsymbol{\operatorname { m i n }}(\mathbf{N}(\mathbf{A}), \mathbf{N}(\mathbf{B}))$

Degree of uncertainty vs. degree of truth
 - $\Pi(\mathbf{A} \cup \mathbf{B})=\boldsymbol{\operatorname { m a x }}(\Pi(\mathbf{A}), \Pi(\mathbf{B}))$
 - $\Pi(\mathbf{A} \cap \mathbf{B}) \leq \min (\Pi(\mathbf{A}), \Pi(\mathbf{B}))$!

- $\mathbf{N}(\mathbf{A} \cap \mathrm{B})=\min (\mathbf{N}(\mathbf{A}), \mathbf{N}(\mathbf{B}))$
- $\mathbf{N}(A \cup B) \geq \max (\mathbf{N}(A), \mathbf{N}(B))$!
- $\boldsymbol{\Pi}, \mathbf{N}$ are increasing wrt set inclusion
fuzzy measure, capacity
- Degree of uncertainty cannot be decomposable wrt to all logical connectives
degrees of uncertainty pertain to classical formulas Boolean lattice
- Degree of truth may be decomposable wrt to all logical connectives
degrees of truth pertain to non classical formulas distributive lattice

Possibility theory - 4

- Modeling ignorance

$$
\begin{aligned}
& \Pi\left(\mathbf{A} \cup \mathbf{A}^{\mathbf{c}}\right)=\max \left(\Pi(\mathbf{A}), \Pi\left(\mathbf{A}^{\mathbf{c}}\right)\right) \\
& \mathbf{N}\left(\mathbf{A} \cap \mathbf{A}^{\mathbf{c}}\right)=\min \left(\mathbf{N}(\mathbf{A}), \mathbf{N}\left(\mathbf{A}^{\mathbf{c}}\right)\right)
\end{aligned}
$$

- Qualitative possibility theory vs. Quantitative possibility theory

$$
\Pi(\mathbf{A} \cap \mathbf{B})=\Pi(\mathbf{A} \mid \mathbf{B}) * \Pi(\mathbf{B})
$$

with $*=\min$ or $*=x$

- Bayesian possibilistic network

Possibility theory - 5

- $\Pi(\mathbf{A})=\mathbf{1}$ and $\mathrm{N}(\mathbf{A})=\mathbf{1} \quad$ A certainly true
- $\Pi(\mathbf{A})=\mathbf{1}$ and $N(\mathbf{A})>\mathbf{0} \quad$ A true somewhat certain
- $\Pi(\mathbf{A})=\mathbf{1}$ and $N(A)=0 \quad$ total ignorance about A
- $\Pi(A)<\mathbf{1}$ and $\mathrm{N}(\mathrm{A})=\mathbf{0} \quad \mathrm{A}$ false somewhat certain
- $\Pi(A)=\mathbf{0}$ and $N(A)=\mathbf{0} \quad$ A certainly false

Possibility theory - 6

- Guaranteed (strong) possibility measure
- $\quad \Delta(\mathbf{A})=\inf \{\pi(\mathbf{u}): \mathbf{u} \in \mathbf{A}\}$
- to what extent all situations where A is true are possible for sure

$$
\Delta(\mathbf{A} \cup \mathbf{B})=\min (\Delta(\mathbf{A}), \Delta(\mathbf{B}))
$$

- decreasing w.r.t. set inclusion
- $\quad \nabla(\mathbf{A})=1-\Delta\left(\mathbf{A}^{\mathbf{c}}\right) \quad$ (weak necessity) $\nabla(\mathbf{A} \cap \mathbf{B})=\boldsymbol{\operatorname { m a x }}(\nabla(\mathbf{A}), \nabla(\mathbf{B}))$

Possibility theory - 7

- $\Delta(\mathbf{A} \cup \mathrm{B})=\min (\Delta(\mathbf{A}), \Delta(\mathrm{B}))$
- $\Delta(\mathbf{A} \cap \mathbf{B}) \geq \max (\Delta(\mathbf{A}), \Delta(\mathbf{B}))$
- $\nabla(\mathbf{A} \cap \mathbf{B})=\max (\nabla(\mathbf{A}), \nabla(\mathbf{B}))$
- $\nabla(\mathrm{A} \cup \mathrm{B}) \leq \min (\nabla(\mathrm{A}), \nabla(\mathrm{B}))$
- Δ, ∇ are decreasing set functions

Possibility theory - 8

- П(A) max over A
- $\mathrm{N}(\mathbf{A}) \quad 1-\max$ over $\mathbf{A}^{\mathbf{c}}$
- $\Delta(\mathbf{A}) \quad \min$ over \mathbf{A}
- $\boldsymbol{\nabla}(\mathbf{A}) \quad 1-\min$ over $\mathbf{A}^{\mathbf{c}}$

Certainty-qualification

- Attaching a degree of certainty α to event A
- It means $N(A)=\alpha \Leftrightarrow \Pi\left(A^{c}\right)=\sup _{s \notin A} \pi(\mathrm{~s})=1-\alpha$
- The least informative π sanctioning $\mathrm{N}(\mathrm{A}) \geq \alpha$ is :
$\square \boldsymbol{\pi}(\mathbf{s})=1$ if $\mathbf{s} \in \mathbf{A}$ and $1-\alpha$ if $\mathbf{s} \notin \mathbf{A}$
- In other words: $\pi(\mathrm{s})=\max \left(\mu_{\mathrm{A}}, 1-\alpha\right)$

Standard propositional possibilistic logic

- syntax and semantics
- inconsistency handling

■ guaranteed possibility-based logic

Possibilistic logic: syntax

- A possibilistic formula is a certainty qualified proposition (p, α), where \mathbf{p} is a classical proposition and $\alpha \in(0,1]$ is the minimal certainty of p.
- (p, α) means « p is α-certain »: $\mathrm{N}([\mathrm{p}]) \geq \alpha$
- A possibilistic knowledge base is a totally preordered logical base $=\mathcal{B}_{1} \cup \mathcal{B}_{2} \ldots \cup \mathcal{B}_{2}$
$\square \quad \mathcal{B}_{\mathrm{i}}=\left\{\left(\mathrm{P}_{\mathrm{ij}} \alpha_{\mathrm{i}}\right), \mathrm{j}=1, \ldots\right\}$ is the α_{i}-layer,
\square priorities $\alpha_{1}>\alpha_{2}>\ldots \alpha_{m}$ lie in some ordinal scale.

Possibilistic logic: inference

- Inference in poslog is a straightforward extension of classical inference : $\mathcal{B} \mid-(\mathrm{p}, \alpha)$ iff \mathcal{B}_{α} classically implies $\mathrm{p}: \mathcal{B}_{\alpha} \mid-\mathrm{p}$
- A set of formulas $\left(p_{i}, \alpha\right)$ for any given α is deductively close (wrong for probabilities except if $\alpha=1$)
- Basic principles
\square The weight of a chain of inference is the weight of the weakest link
\square The weight of the conclusion is the weight of the strongest chain of inference that produces it

Possibilistic logic: proof method

- Valid inference patterns

Modus ponens: $\{(\mathrm{p}, \alpha),(\neg \mathrm{p} \vee \mathrm{q}, \beta)\} \mid-(\mathrm{q}, \min (\alpha, \beta))$
Resolution: $\{(\mathrm{p} \vee \mathrm{q}, \alpha),(\neg \mathrm{p} \vee \mathrm{r}, \beta)\} \mid-(\mathrm{q} \vee \mathrm{r}, \min (\alpha, \beta))$
Fusion: $\{(\mathrm{p}, \alpha),(\mathrm{p}, \beta)\} \mid-(\mathrm{p}, \max (\alpha, \beta))$

- if $\mathrm{p} \mid-\mathrm{q}$ classically, $(\mathrm{p}, \alpha) \mid-(\mathrm{q}, \alpha)$
- if $\alpha \geq \beta$ then $(p, \alpha) \mid-(p, \beta)$
- Certainty of a conclusion p: $\max \{\alpha, \mathcal{B} \mid-(p, \alpha)\}$
- Degree of contradiction :

$$
\operatorname{Inc}(\mathcal{B})=\sup \{\alpha: \mathcal{B} \mid-(\perp, \alpha)\}
$$

- Refutation:

$$
\mathcal{B} \mid-(p, \alpha) \text { iff } \mathcal{B} \cup(\neg \mathrm{p}, 1) /-(\perp, \alpha)
$$

Possibilistic logic: semantics

A set of sentences \mathcal{B} with priorities models certaintyqualified assertions;
$\square(\mathrm{p}, \alpha)$ means «x is A is α-certain »: $\mathrm{N}(\mathrm{A}) \geq \alpha$
■ Models of (p, α) form a fuzzy set:

- $\pi_{(\mathrm{p}, \alpha)}(\mathrm{s})=1$ if s satisfies p ,

$$
1-\alpha \text { if } s \text { does not satisfy } p
$$

■ \mathcal{B} is interpreted by the least specific possibility distribution on the set of interpretations obeying the constraints $\left\{\mathrm{N}\left(\mathrm{A}_{\mathrm{ij}}\right) \geq \alpha_{\mathrm{i}}, \mathrm{i}=1, \mathrm{n}\right\}$ where A_{ij} is the set of models of p_{ij} :

$$
\pi_{\mathcal{B}}=\min _{\mathrm{ij}} \max \left(\mu_{\mathrm{Aij}}, 1-\alpha_{\mathrm{i}}\right)
$$

SOUNDNESS AND COMPLETENESS

- Semantic inference: $\mathcal{B} \mid=(\mathrm{p}, \alpha)$ means $\pi_{\mathcal{B}} \leq \pi_{(\mathrm{p}, \alpha)}$
- $\{(\mathrm{p}, \alpha),(\mathrm{q}, \alpha)\}$ is semantically equivalent to $\{(\mathrm{p} \wedge \mathrm{q}$, $\alpha)\}$: one may put any base in a conjunctive normal form as a set of weighted clauses.
- Main theorem : Possibilistic logic is sound and complete w.r.t. this semantics :

$$
\mathcal{B} \mid=(p, \alpha) \text { iff } \mathcal{B} \mid-(p, \alpha),
$$

- An inconsistent \mathcal{B} may yield non-trivial conclusions

Inconsistency-Tolerant inference

- Degree of inconsistency of a possibilistic belief base: $\operatorname{Inc}(\mathcal{B})=\max \{\alpha, \mathcal{B} \mid-(\perp, \alpha)\}\left(=1-\max _{\omega} \boldsymbol{\pi}_{\mathcal{B}}(\omega)\right)$
\square For all $\mathrm{p}, \mathcal{B} \mid-(\mathrm{p}, \operatorname{Inc}(\mathcal{B}))$ (trivial part),
- Inconsistency-Tolerant inference:
$\left.\mathcal{B}\right|_{\text {Pref }} \mathrm{p}$ if $\mathcal{B} \mid-(\mathrm{p}, \alpha)$ with $\alpha>\operatorname{Inc}(\mathcal{B})$.
- The set of non-trivial consequences of \mathcal{B} are those of the largest set $\left\{\mathrm{p}_{\mathrm{ij}} \in \mathcal{B}_{1} \cup \mathcal{B}_{2} \ldots \mathcal{B}_{\mathrm{i}}\right\}$ that is not inconsistent $\left(\operatorname{Inc}(\mathcal{B})=\alpha_{i+1}\right)$.
- This inference is non-monotonic : one may have
$\mathcal{B} \varliminf_{\text {Pref }} \mathrm{p}$ and $\mathcal{B} \cup(\mathrm{q}, 1) \varliminf_{\text {Pref }} \neg \mathrm{p}$.

Example

- $\mathrm{K}=\{(\neg \operatorname{Stu}(\mathrm{x}) v \mathrm{You}(\mathrm{x}), \mathrm{a} 1)(\neg \mathrm{You}(\mathrm{x}) v \mathrm{Ba}(\mathrm{x}), \mathrm{a} 2)(\neg \operatorname{Stu}(\mathrm{x}) v$ $\neg \operatorname{Par}(\mathrm{x}) ~ v \neg \mathrm{Ba}(\mathrm{x}), \mathrm{a} 3$) (Stu(Léa), 1) $\}$
with $\mathbf{a 3}>$ a1
- $\operatorname{Inc}(\mathrm{K})=0: \mathrm{K} \mid-(\mathrm{Ba}($ Léa $), \min (\mathrm{a} 1, \mathrm{a} 2))$

$$
\left.\mathrm{K}\right|_{-{ }_{\text {Pref }}}(\mathrm{Ba}(\text { Léa }) \quad(\text { cannot infer } \neg \mathrm{Ba}(\text { Léa) })
$$

- But $\mathrm{K} \cup(\operatorname{Par}(\mathrm{Léa}), 1)$ is partially inconsistent:
$\operatorname{Inc}(\mathrm{K} \cup(\operatorname{Par}(L e ́ a), 1))=\min (\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3)=\min (\mathrm{a} 1, \mathrm{a} 2)$
- $\left.\mathrm{K} \cup\{(\operatorname{Par}($ Léa $), 1)\}\right|_{\text {Pref }} \neg \mathrm{Ba}($ Léa) since
$\mathrm{K} \cup\{(\operatorname{Par}(\mathrm{Léa}), 1)\} \mid-(\neg \mathrm{Ba}($ Léa), a3) : nonmon!!!! and $\mathrm{a} 3>\min (\mathrm{a} 1, \mathrm{a} 2)$.

The Syntactic approach: Conditional assertions

- A $\mid \sim$ B denotes a conditional assertion «generally if A then B » where A and B are propositional sentences.
- Postulates of System P (Kraus et al, 1989)
$\square \mathrm{A} \mid \sim \mathrm{A}$ (reflexivity)
\square If $\mathrm{B} \equiv \mathrm{C}$ then $\mathrm{C} \mid \sim \mathrm{A}$ iff $\mathrm{B} \mid \sim \mathrm{A}$ (Left logical equivalence)
\square If $\mathrm{B} \mid=\mathrm{C}$ then $\mathrm{A} \mid \sim \mathrm{B}$ implies $\mathrm{A} \mid \sim \mathrm{C}$ (Right Weakening)
\square If $\mathrm{B} \mid \sim \mathrm{A}$ and $\mathrm{C} \mid \sim \mathrm{A}$ then $\mathrm{B} \cup \mathrm{C} \mid \sim \mathrm{A}$ (OR)
$\square \mathrm{A} \mid \sim \mathrm{B}$ and $\mathrm{A} \mid \sim \mathrm{C}$ then $\mathrm{A} \cap \mathrm{C} \mid \sim \mathrm{B}$ (Cautious Monotony)
$\square \mathrm{A} \mid \sim \mathrm{B}$ and $\mathrm{A} \cap \mathrm{C} \mid \sim \mathrm{B}$ then $\mathrm{A} \mid \sim \mathrm{C}$ (Cut)
\square If $\mathrm{A} \mid \sim \mathrm{B}$ and $\mathrm{A} \mid \sim \mathrm{C}$ then $\mathrm{A} \mid \sim \mathrm{B} \cap \mathrm{C}$ (AND)

Belief construction in System P

- Beliefs of an agent about a situation are inferred from generic knowledge AND observed singular evidence about the case at hand.
- Commonsense inference : a two-tiered scheme
\square Generic knowledge $=$ set of conditional assertions Δ
\square Singular observed facts $=$ proposition A (all you know)
\square Inferred belief = proposition B
\square Method : first infer a rule $\mathrm{A} \mid \sim \mathrm{B}$ (adapted to your singular information A) from Δ, then believe B
\square Inference of rules in system P is monotonic,
\square Inference of beliefs is not :

$$
\text { may have } \Delta \mid-(A \cap C \mid \sim \neg B)
$$

Possibilistic logic encoding

- A set of defaults $\Delta=\{\mathrm{Ai} \mid \sim \mathrm{Bi}\} \quad \mathrm{i}=1, \mathrm{n}$
- each $\mathrm{A} \mid \sim \mathrm{B}$ is associated with the constraint $\Pi(\mathrm{A} \cap \mathrm{B})>\Pi(\mathrm{A} \cap \neg \mathrm{B})$ iff $\mathrm{N}(\mathrm{B} \mid \mathrm{A})>0$ with $\mathbf{N}(B \mid A)=1-\Pi(\neg B \mid A)$
- Two entailments:
- preferential entailment

For all Π s.t. $\Pi(\mathrm{Ai} \cap \mathrm{Bi})>\Pi(\mathrm{Ai} \cap \neg \mathrm{Bi}) \mathrm{i}=1, \mathrm{n}$ we have $\Pi(\mathrm{A} \cap \mathrm{B})>\Pi(\mathrm{A} \cap \neg \mathrm{B})$ equivalent to $\quad \Delta|-\mathrm{A}| \sim \mathrm{B}$

- rational closure

Rational closure

- Compute the largest possibility distribution (it is the least informative)
corresponding to constraints $\Pi(\mathrm{Ai} \cap \mathrm{Bi})>\Pi(\mathrm{Ai} \cap \neg \mathrm{Bi}) \mathrm{i}=1, \mathrm{n}$
$\square \mathrm{RC}(\Delta)=\{\mathrm{A} \rightarrow \mathrm{B}, \Pi(\mathrm{A} \cap \mathrm{B})>\Pi(\mathrm{A} \cap \neg \mathrm{B})\}$
\square This is rational closure in possibilistic logic we use pairs $(\neg \mathrm{A} \cup \mathrm{B}, \mathrm{N}(\neg \mathrm{A} \cup \mathrm{B})$)

Example

- Penguin \rightarrow Bird, Bird \rightarrow Flies, Penguin $\rightarrow \neg$ Flies

1. $\Pi(\mathrm{P} \wedge \mathrm{B})>\Pi(\mathrm{P} \wedge \neg \mathrm{B})$ (examples $>$ counterexamples);
2. $\Pi(\mathrm{B} \wedge \mathrm{F})>\Pi(\mathrm{B} \wedge \neg \mathrm{F})$;
3. $\Pi(\mathrm{P} \wedge \neg \mathrm{F})>\Pi(\mathrm{P} \wedge \mathrm{F})$.

- Step 1 : Finding Normal cases

Exceptional cases are $(\mathrm{P} \wedge \neg \mathrm{B}) \vee(\mathrm{B} \wedge \neg \mathrm{F}) \vee(\mathrm{P} \wedge \mathrm{F})$
Normal cases are thus the other models :

$$
(\neg \mathrm{P} \vee \mathrm{~B}) \wedge(\neg \mathrm{B} \vee \mathrm{~F}) \wedge(\neg \mathrm{P} \vee \neg \mathrm{~F}))=\neg \mathbf{P} \wedge(\neg \mathbf{B} \vee \mathbf{F})
$$

(Non-penguins that, if they are birds, fly).

- Since $(\mathrm{B} \wedge \mathrm{F}) \wedge \neg \mathrm{P} \wedge(\neg \mathrm{B} \vee \mathrm{F})=\mathrm{B} \wedge \mathrm{F} \wedge \neg \mathrm{P} \neq \varnothing$, we can give up rule 2.

Example

■ Step 2 : Less normal cases are in $\mathrm{P} \vee(\mathrm{B} \vee \mathrm{F})$ and are not exceptions to rules 1 and 3 (i.e., $\operatorname{not}(\mathrm{P} \wedge \neg \mathrm{F}) \vee(\mathrm{P} \wedge \mathrm{B}))$:

$$
\neg((\mathrm{P} \wedge \neg \mathrm{~F}) \vee(\mathrm{P} \wedge \mathrm{~B})) \wedge(\mathrm{P} \vee(\mathrm{~B} \vee \mathrm{~F}))=\mathbf{B} \wedge \neg \mathbf{F}
$$

(birds that do not fly)

- Stop : $\mathrm{B} \wedge \neg \mathrm{F}$ is consistent with examples $\mathrm{P} \wedge \mathrm{B}$ et $\mathrm{P} \wedge \neg \mathrm{F}$.
- Totally abnormal cases:

$$
\neg[(\mathrm{B} \wedge \neg \mathrm{~F}) \vee(\neg \mathrm{P} \wedge(\neg \mathrm{~B} \vee \mathrm{~F})]=\mathbf{P} \wedge(\neg \mathbf{B} \vee \mathbf{F})
$$

(Penguins that fly, or are not birds)

Back to possibilistic logic

- The well-ordered partition is a possibility distribution:

$$
\Pi(\neg \mathbf{P} \wedge(\neg \mathbf{B} \vee \mathbf{F}))>\Pi(\mathbf{B} \wedge \neg \mathbf{F})>\Pi(\mathbf{P} \wedge(\neg \mathbf{B} \vee \mathbf{F}))
$$

- For each rule $\mathrm{A} \rightarrow \mathrm{B}$ define a possibilistic formula $(\neg \mathrm{A} \vee \mathrm{B}, \mathrm{N}(\neg \mathrm{A} \vee \mathrm{B})): \mathcal{B}_{\Pi}$
- $\mathrm{N}(\neg \mathrm{B} \vee \mathrm{F})<\mathrm{N}(\neg \mathrm{P} \vee \mathrm{B})=\mathrm{N}(\neg \mathrm{P} \vee \neg \mathrm{F})$
- $\mathrm{A} \rightarrow \mathrm{B}$ is in $\operatorname{RC}(\Delta) \operatorname{iff}(\mathrm{A}, 1) \cup \mathcal{B}_{\Pi} \mid-\mathrm{B}$

Reasoning with rational closure

- Any well-ordered partition can be modeled by a set of default under rational closure.
- Non-intuitive conclusions can be repaired by adding the proper default information:
- If $\mathrm{RC}(\Delta)$ contains a counterintuitive conclusion $\mathrm{A} \rightarrow \mathrm{B}$, then it is possible to add rules r to Δ so that $\operatorname{RC}(\Delta \cup\{r\})$, if not inconsistent, contains $\mathrm{A} \rightarrow \neg \mathrm{B}$. (Benferhat D\&P, Applied Intelligence 1998)

Perceived Causality. An Example

■ We were at "...", I was surprised by the person who braked in front of me, not having the option of changing lane and the road being wet, I could not stop completely in time.

- Driver A follows Driver B
- Abnormal facts are privileged when providing causal explanations
- Material implication is insufficient
for representing causation

■ => Nonmonotonic logic-based approaches for causal ascriptions

Nonmonotonic Consequence Approach

- An agent learns of the sequence $\neg \mathrm{B}_{\mathbf{t}}, \mathrm{A}_{\mathbf{t}}, \mathrm{B}_{\mathbf{t}+\mathbf{k}}$
- K_{t} (context):
conjunction of all other facts known by the agent
- $\mid \sim$ a nonmonotonic consequence relation
(in the sense of System P of Kraus et al., 1990).
Given the sequence $\neg \mathrm{B}, \mathrm{A}, \mathrm{B}$
- if the agent believes $K \mid \sim \neg B$ and $K \wedge A \mid \sim B$, the agent perceives A to cause B in context K denoted $A \Rightarrow c B$
- If the agent believes that $K \mid \sim \neg B$ and $K \wedge A \nvdash \sim \neg B$ (rather than $K \wedge A \mid \sim B$), then A is perceived as facilitating B denoted $A \Rightarrow f B$

■ Variables

- Acc (occurrence of an accident)

■ Wet (road being wet) ; Sur (A is surprised)

- Brak (driver B brakes in front of driver A)
- ReacL: driver A brakes after B brakes, with a delay

■ common core of knowledge is : $\mid \sim \neg$ Acc; $\mid \sim \neg$ Sur; ReacL \wedge Wet $\mid \sim$ Acc .
■ we derive ReacL \wedge Wet $\Rightarrow \mathrm{c}$ Acc.

- cause of the accident s the conjunction of braking late and the road being wet.
\square ReacL $\nsim \sim \neg$ Acc long-delay reacting alone facilitated the accident
- In the definitions of $\Rightarrow \mathrm{c}$ and $\Rightarrow \mathrm{f}, \mid \sim$ is a preferential entailment, and a rational closure entailment,
- respectively Causes and facilitations are abnormal in context:
- If $A \Rightarrow f B$ or $A \Rightarrow c B$ then $K \mid \sim \neg A$.
- Causality is transitive only in particular cases:

If A is the normal way of getting B in context K, i.e.,
$K \wedge B \mid \sim A$, and if $A \Rightarrow c B$ and $B \Rightarrow c C$, then $A \Rightarrow c C$.

- The distinction between causation and facilitation, as well as the restricted transitivity property, have been validated by behavioral experiments.

Representions of preferences

- different formats
- bipolarity

Possibilistic logic base

$$
\begin{gathered}
\triangle \mathcal{B}=\left\{\left(\mathbf{B}_{\mathbf{j}}, \boldsymbol{\beta}_{\mathrm{j}}\right), \mathrm{j}=1, \mathrm{~m}\right\} \\
\mathbf{N}\left(\mathbf{B}_{\mathrm{j}}\right) \geq \boldsymbol{\beta}_{\mathrm{j}} \\
\mathscr{B}=\left\{\left(\mathbf{p}_{1}, \mathbf{1}\right),\left(\mathbf{p}_{2}, \boldsymbol{\alpha}_{2}\right),\left(\mathbf{p}_{3}, \boldsymbol{\alpha}_{3}\right)\right\}
\end{gathered}
$$

$\left.\min \left(\mu_{P_{1}}^{\pi}(d)\right)_{\max } \overline{\overline{\operatorname{an}}}\left(\mu_{P_{2}}(d), 1-\alpha_{2}\right), \max \left(\mu_{P_{3}}(d), 1-\alpha_{3}\right)\right)$.

Example

'near the sea' and 'affordable price'

$$
\begin{aligned}
& \text { 'near' (the sea) } \\
& \pi_{1}\left(\mathrm{u}_{1}\right)=1 \text { if } \mathrm{u}_{1} \leq \mathbf{5} ; \\
& =.7 \text { if } \mathbf{5}<\mathrm{u}_{1} \leq \mathbf{1 0} ; \\
& =.2 \text { if } \mathbf{1 0}<\mathrm{u}_{1} \leq \mathbf{1 5} ; \\
& =0 \text { if } \mathrm{u}_{1}>\mathbf{1 5} \\
& \text { 'affordable' }(\text { price }) \\
& \boldsymbol{J}_{2}\left(\mathrm{u}_{2}\right)=1 \text { if } \mathrm{u}_{2} \leq \mathbf{2 0 0} ; \\
& =.5 \text { if } \mathbf{2 0 0}<\mathrm{u}_{2} \leq \mathbf{4 0 0} ; \\
& =0 \text { if } \mathrm{u}_{2}>\mathbf{4 0 0} \quad \begin{array}{l}
\text { associated to } \\
\mathscr{B}=\{(\mathrm{d} \leq 15,1),(\mathrm{d} \leq 10, .8),(\mathrm{d} \leq 5, .3), \\
\quad(\mathrm{p} \leq 400,1),(\mathrm{p} \leq 200, .5)\}
\end{array}
\end{aligned}
$$

Example (2)

'near the sea' or 'affordable price'

$$
\pi=\max \left(\pi_{1}, \pi_{2}\right)
$$

$$
\begin{aligned}
\boldsymbol{B}^{\prime}= & \{(\mathrm{d} \leq 15 \vee \mathrm{p} \leq 400,1),(\mathrm{d} \leq 10 \vee \mathrm{p} \leq 400, .8), \\
& (\mathrm{d} \leq 10 \vee \mathrm{p} \leq 200, .5),(\mathrm{d} \leq 5 \vee \mathrm{p} \leq 200, .3)\}
\end{aligned}
$$

- $\mathcal{B}^{\mathbf{t n}}=\mathcal{B}^{1} \cup \mathcal{B}^{2} \cup\left\{(\mathrm{pi} \vee \mathrm{qj}, \operatorname{ct}(\alpha \mathrm{i}, \beta \mathrm{jj})) \mid(\mathrm{pi}, \alpha \mathrm{i}) \in \mathcal{B}^{1}\right.$

$$
\text { and } \left.(\mathrm{qj}, \beta \mathrm{j}) \in \mathcal{B}^{2}\right\},
$$

- $\mathscr{B}^{\mathrm{ct}}=\left\{(\mathrm{pi} \vee \mathrm{qj}, \operatorname{tn}(\alpha i, \beta \mathrm{j})) \mid(\mathrm{pi}, \alpha \mathrm{i}) \in \mathcal{B}^{1}\right.$ and $\left.(\mathrm{qj}, \beta \mathrm{jj}) \in \mathcal{B}^{2}\right\}$

$$
\operatorname{ct}(\alpha, \beta)=1-\operatorname{tn}(1-\alpha, 1-\beta)
$$

2nd logical reading

■ Situations having a guaranteed satisfaction level

Guaranteed possibility $\Delta(\mathbf{C})=\min \{\boldsymbol{\pi}(\mathbf{u}) \mid \mathbf{u} \in \mathbf{C}\}$ $\Delta\left(\mathrm{C}^{\mathrm{i}-1}\right) \geq \alpha^{\mathrm{i}}$

$\boldsymbol{\pi}$ also equivalent to a set $\left\{\left[\mathbf{C l}^{\mathbf{i}-1}, \alpha^{\mathbf{i}}\right], \mathbf{i}=\mathbf{2}, \mathbf{n}\right\}$
set of situations $\mathbf{C}^{\mathbf{i}-1}$ with guaranteed satisfaction $\boldsymbol{\alpha}^{\mathbf{i}}$

$$
\begin{aligned}
& \forall \mathrm{u} \in \mathrm{U}, \boldsymbol{\pi}_{\left[\mathrm{C}^{\mathrm{i}-1}, \alpha^{\mathbf{i}}\right]}(\mathrm{u}) \\
&\left.\boldsymbol{\pi}_{\left[\mathrm{C}^{\mathrm{i}-1}, \alpha^{\mathbf{i}}\right]}=\alpha^{\mathrm{i}} \text { if } \mathrm{u}\right)=0 \text { otherwise }
\end{aligned}
$$

values in $\mathbf{C}^{\mathrm{i}-1}$ are possible at least to a degree $\boldsymbol{\alpha}^{\mathbf{i}}$

Distribution obtained as a

\llcorner disjunctive combination

$$
\pi(\mathbf{u})=\max \left\{\pi_{\left[C^{i}-1\right.}, \alpha_{1}(\mathbf{u}) \mid i=2, n\right\}
$$

$$
\mathscr{D}=\left\{\left[\mathrm{D}_{\mathrm{k}}, \delta_{\mathrm{k}}\right] \mid \mathrm{k}=1, \mathrm{r}\right\}
$$

$\forall \mathrm{u} \in \mathrm{U}, \mathbf{\Pi}_{\mathscr{D}}(\mathrm{u})=\max \left\{\boldsymbol{\delta}_{\mathbf{k}} \mid\left[\mathrm{D}_{\mathrm{k}}, \mathrm{\delta}_{\mathrm{k}}\right] \in \mathscr{D}\right.$ and $\left.\mathrm{u} \in \mathrm{D}_{\mathrm{k}}\right\}$ if $u \in D_{1} \cup \ldots \cup D_{r}$
$\boldsymbol{\pi}_{\mathscr{D}}(\mathrm{u})=0$ otherwise

Example (continued)

'near the sea' and 'affordable price'
$\pi=\min \left(\pi_{1}, \pi_{2}\right)$
$\mathscr{D}=\{[\mathrm{d} \leq 5 \wedge \mathrm{p} \leq 200,1],[5<\mathrm{d} \leq 10 \wedge \mathrm{p} \leq 200, .7]$,
$[\mathrm{d} \leq 10 \wedge 200<\mathrm{p} \leq 400, .5],[10<\mathrm{d} \leq 15 \wedge \mathrm{p} \leq 400, .2]\}$
'near the sea' or 'affordable price'
$\pi=\max \left(\pi_{1}, \pi_{2}\right)$
$\mathscr{D}^{\prime}=\{[\mathrm{d} \leq 5,1],[\mathrm{d} \leq 10, .7],[\mathrm{d} \leq 15, .2],[\mathrm{p} \leq 400, .5]$, $[p \leq 200,1]\}$

Conditional preferences

"I prefer to take a tea (\mathbf{t}).
If there is no tea then I will take a coffee (c)"
$\Pi(\mathrm{t})>\Pi(\neg \mathrm{t})$
$\Pi(\neg \mathrm{t} \wedge \mathrm{c})>\Pi(\neg \mathrm{t} \wedge \neg \mathrm{c})$
There exists a unique possibility distribution which is
minimally specific and satisfies a given set of consistent constraints (such as the above ones)

$$
\begin{aligned}
& \pi(c t)=1 ; \pi(\neg c t)=1 ; \pi(c \neg t)=\alpha \\
& \pi(\neg c \neg t)=\beta \text { with } \alpha>\beta
\end{aligned}
$$

associated to \mathbf{N}^{-}anf Δ^{-}type possibilistic bases:
$\rightarrow \mathscr{B}=\{(\mathrm{c} \vee \mathrm{t}, 1-\beta),(\mathrm{t}, 1-\alpha)\}$
$\rightarrow \mathcal{D}=\{[\mathrm{t}, 1],[\mathrm{c} \wedge \neg \mathrm{t}, \alpha],[\neg \mathrm{c} \wedge \neg \mathrm{t}, \beta]\}$
one can go from a representation format to another

Graphical representation

Graphical encoding by a possibilistic Bayesian network

- $\pi(\mathrm{t})=1 \quad \pi(\neg \mathrm{t})=1$
- $\quad \pi(\mathrm{c} \mid \neg \mathrm{t})=\lambda \quad \pi(\neg \mathrm{c} \mid \neg \mathrm{t})=0$
$\pi(\mathrm{c} \mid \mathrm{t})=1 \quad \pi(\neg \mathrm{c} \mid \mathrm{t})=1$
$\boldsymbol{\pi}(\mathbf{x}, \mathbf{y})=\min (\boldsymbol{\pi}(\mathbf{y} \mid \mathbf{x}), \boldsymbol{\pi}(\mathbf{x}))$
conditional non-interactivity
translation procedures without loss of information

CP-nets Motivating Example

(P1): he prefers black vest to white vest $\left\{\mathrm{V}_{\mathrm{b}}, \mathrm{V}_{\mathrm{w}}\right\}$ (P2): he prefers black pants to white pants $\left\{\mathrm{P}_{\mathrm{b}}, \mathrm{P}_{\mathrm{w}}\right\}$
(P3): when vest and pants have the same color, he prefers red shirt to white shirt otherwise he prefers white shirt $\left\{\mathrm{S}_{\mathrm{r}}, \mathrm{S}_{\mathrm{w}}\right\}$
(P4): when the shirt is red then he prefers red shoes otherwise he prefers white shoes $\left\{\mathrm{C}_{\mathrm{r}}, \mathrm{C}_{\mathrm{w}}\right\}$

$$
\Omega=
$$

$$
\begin{aligned}
& \left\{V_{b} P_{b} S_{r} C_{r}, V_{b} P_{b} S_{w} C_{r}, V_{b} P_{w} S_{r} C_{r}, V_{b} P_{w} S_{w} C_{r},\right. \\
& V_{w} P_{b} S_{r} C_{r}, V_{w} P_{b} S_{w} C_{r}, V_{w} P_{w} S_{r} C_{r}, V_{w} P_{w} S_{w} C_{r}, \\
& V_{b} P_{b} S_{r} C_{w}, V_{b} P_{b} S_{w} C_{w}, V_{b} P_{w} S_{r} C_{w}, V_{b} P_{w} S_{w} C_{w}, \\
& \left.\mathrm{~V}_{\mathrm{w}} \mathrm{P}_{\mathrm{b}} \mathrm{~S}_{\mathrm{r}} \mathrm{C}_{\mathrm{w}}, \mathrm{~V}_{\mathrm{w}} \mathrm{P}_{\mathrm{b}} \mathrm{~S}_{\mathrm{w}} \mathrm{C}_{\mathrm{w}}, \mathrm{~V}_{\mathrm{w}} \mathrm{P}_{\mathrm{w}} \mathrm{~S}_{\mathrm{r}} \mathrm{C}_{\mathrm{w}}, \mathrm{~V}_{\mathrm{w}} \mathrm{P}_{\mathrm{w}} \mathrm{~S}_{\mathrm{w}} \mathrm{C}_{\mathrm{w}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { P1: }\{(\mathrm{Vb}, 1-\alpha)\} \\
& \text { P2: }\{(\mathrm{Pb}, 1-\beta)\} \\
& \text { P3: }\{(\neg \mathrm{Vb} \vee \neg \mathrm{~Pb} \vee \mathrm{Sr}, 1-\gamma), \\
&(\neg \mathrm{Vw} \vee \neg \mathrm{Pw} \vee \mathrm{Sr}, 1-\eta), \\
&(\neg \mathrm{Vw} \vee \neg \mathrm{~Pb} \vee \mathrm{Sw}, 1-\delta), \\
&(\neg \mathrm{Vb} \vee \neg \mathrm{Pw} \vee \mathrm{Sw}, 1-\varepsilon)\} \\
& \mathrm{P} 4:\{(\neg \mathrm{Sr} \vee \mathrm{Cr}, 1-\theta),(\neg \mathrm{Sw} \vee \mathrm{Cw}, 1-\varrho)\}
\end{aligned}
$$

- assumed to belong to a linearly ordered scale $1>1-\alpha \alpha>0$
$\cdot 1-\alpha, 1-\beta, 1-\gamma, 1-\eta, 1-\delta, 1-\varepsilon, 1-\theta, 1-\varrho$ are

unknown

- no particular ordering is assumed between them

	(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)	satisfaction levels
$V_{b} P_{b} S_{r} C_{r}$	1	1	1	1	1	1	1	1	$(1,1,1,1,1,1,1,1)$
$V_{b} P_{b} S_{w} C_{r}$	1	1	γ	1	1	1	1	ρ	$(1,1, \gamma, 1,1,1,1, \rho)$
$V_{b} P_{w} S_{r} C_{r}$	1	β	1	1	1	ε	1	1	$\left(1, \beta, 1,1,1, \varepsilon_{1}, 1,1\right)$
$V_{b} P_{w} S_{w} C_{r}$	1	β	1	1	1	1	1	ρ	$(1, \beta, 1,1,1,1,1, \rho)$
$V_{w} P_{b} S_{r} C_{r}$	α	1	1	1	δ	1	1	1	$(\alpha, 1,1,1, \delta, 1,1,1)$
$V_{w} P_{b} S_{w} C_{r}$	α	1	1	1	1	1	1	ρ	$(\alpha, 1,1,1,1,1,1, \rho)$
$V_{w} P_{w} S_{r} C_{r}$	α	β	1	1	1	1	1	1	$(\alpha, \beta, 1,1,1,1,1,1)$
$V_{w} P_{w} S_{w} C_{r}$	α	β	1	η	1	1	1	ρ	$(\alpha, \beta, 1, \eta, 1,1,1, \rho)$
$V_{b} P_{b} S_{r} C_{w}$	1	1	1	1	1	1	θ	1	$(1,1,1,1,1,1, \theta, 1)$
$V_{b} P_{b} S_{w} C_{w}$	1	1	γ	1	1	1	1	1	$(1,1, \gamma, 1,1,1,1,1)$
$V_{b} P_{w} S_{r} C_{w}$	1	β	1	1	1	ε	θ	1	$(1, \beta, 1,1,1, \varepsilon, \theta, 1)$
$V_{b} P_{w} S_{w} C_{w}$	1	β	1	1	1	1	1	1	$(1, \beta, 1,1,1,1,1,1)$
$V_{w} P_{b} S_{r} C_{w}$	α	1	1	1	δ	1	θ	1	$(\alpha, 1,1,1, \delta, 1, \theta, 1)$
$V_{w} P_{b} S_{w} C_{w}$	α	1	1	1	1	1	1	1	$(\alpha, 1,1,1,1,1,1,1)$
$V_{w} P_{w} S_{r} C_{w}$	α	β	1	1	1	1	θ	1	$(\alpha, \beta, 1,1,1,1, \theta, 1)$
$V_{w} P_{w} S_{w} C_{w}$	α	β	1	η	1	1	1	1	$(\alpha, \beta, 1, \eta, 1,1,1,1)$

Bipolar preferences

Positive information refers to what is desired

Negative information refers to what is rejected

$$
\text { Pair of possibility distributions }\left(\pi_{*}, \pi^{*}\right)
$$

π_{*} fuzzy set of values guaranteed to be satisfactory
π^{*} evaluates what is non-impossible
$\mathbf{1}-\boldsymbol{\pi}^{*}(\mathbf{u})$ evaluates the extent to which \mathbf{u} is impossible

coherence condition

for the pair $\left(\pi_{*}, \pi^{*}\right)$:

$$
\forall \mathrm{u}, \pi_{*}(\mathbf{u}) \leq \pi^{*}(\mathbf{u})
$$

$$
\mathscr{B}^{*}=\left\{\left(\mathbf{p}_{i}, \alpha_{i}\right), \mathbf{i}=\mathbf{1}, \mathbf{n}\right\}
$$

and

$$
\mathcal{D}_{*}=\left\{\left[\mathbf{q}_{\mathrm{j}}, \gamma_{\mathrm{j}}\right], \mathbf{j}=\mathbf{1}, \mathbf{m}\right\}
$$

Application to flexible queries

distinction is made between
constraints, whose violation has a negative effect, and
wishes to satisfy if possible, whose satisfaction has a positive effect
(non satisfaction has no impact on the evaluation)
symbolic optimization problem

Reasoning with bipolar knowledge

N-Resolution:
$\{(p \vee q, \alpha),(\neg p \vee r, \beta)\} \mid-(q \vee r, \min (\alpha, \beta))$
Δ-Resolution:

$$
[\mathrm{p} \wedge \mathrm{q}, \alpha],[\neg \mathrm{p} \wedge \mathrm{r}, \beta] \mid-[\mathrm{q} \wedge \mathrm{r}, \min (\alpha, \beta)]
$$

Deductive bipolar reasoning

rules : if X is A_{i} then Y is B_{i}
express that

- Situations where X is A_{i} and Y is not- B_{i} are impossible

$$
\text { not } A_{i} \text { or } B_{i}
$$

conjunctive combination of rules :

$$
B^{\prime}=A^{\prime} \circ \bigcap_{i}\left(A_{i} \rightarrow B_{i}\right) \quad B^{\prime}=B_{i} \quad \text { if } A^{\prime}=A_{i}
$$

- Situations where X is A_{i} and Y is B_{i} are guaranted possible \boldsymbol{A}_{i} and \boldsymbol{B}_{i}
disjunctive combination of rules: $\quad \bigcup_{i}\left(A_{i} \times B_{i}\right)$

$$
\begin{array}{r}
\mathrm{B}^{\prime}=\left\{\mathrm{y} \text { s.t. } \forall \mathbf{x} \in \mathrm{A}^{\prime} \text { and }(\mathrm{x}, \mathrm{y}) \in \bigcup_{\mathrm{i}}\left(\mathrm{~A}_{\mathrm{i}} \times \mathrm{B}_{\mathrm{i}}\right)\right\} \\
\mathrm{B}^{\prime}=\mathrm{B}_{\mathrm{i}} \text { if } \mathrm{A}^{\prime}=\mathrm{A}_{\mathrm{i}}
\end{array}
$$

- Example:
- R1: if an employee is in category 1 then his salary is necessarily in [1000, 2000] typically in [1500, 1800]
- R2: : if an employee is in category 2 then his salary is necessarily in [1500, 2500]
typically in [1700, 2000].

$$
\begin{aligned}
* \mathrm{~B}^{\prime}= & \mathrm{A}^{\prime} \circ \bigcap_{\mathrm{i}}\left(\mathrm{~A}_{\mathrm{i}} \rightarrow \mathrm{~B}_{\mathrm{i}}\right) \quad \mathbf{A}^{\prime}=\{\text { cat.1, cat. } 2\} \\
& \mathrm{A}_{1}=\{\text { cat. } 1\}, \mathrm{B}_{1}=[1000,2000] \\
& \mathrm{A}_{2}=\{\text { cat. } 2\}, \mathrm{B}_{2}=[1500,2500] \\
& \Rightarrow \quad \mathbf{B}^{\prime}=\mathbf{B}_{\mathbf{1}} \cup \mathbf{B}_{\mathbf{2}}=[1000,2500]
\end{aligned}
$$

$$
* \mathrm{~B}^{\prime}=\left\{\mathrm{y} \text { s.t. } \forall \mathrm{x} \in \mathrm{~A}^{\prime} \text { and }(\mathrm{x}, \mathrm{y}) \in \cup_{\mathrm{i}}\left(\mathrm{~A}_{\mathrm{i}} \times \mathrm{B}_{\mathrm{i}}\right)\right\}
$$

$$
\mathrm{B}_{1}=[1500,1800], \mathrm{B}_{2}=[1700,2000],
$$

$$
\Rightarrow \mathbf{B}^{\prime}=\mathbf{B}_{\mathbf{1}} \cap \mathbf{B}_{\mathbf{2}}=[1700,1800] \text { guaranted possible }
$$

Reasoning with possibilistic lower bounds in possibilistic logic

formula <p, a>
encoding the contrainte $\Pi(\mathrm{p}) \geq \mathrm{a}$

Mixed resolution rule:

$$
(\neg \mathrm{p} \vee \mathrm{q}, \mathrm{a}) ;<\mathrm{p} \vee \mathrm{r}, \mathrm{~b}>\mid--<\mathrm{q} \vee \mathrm{r}, \mathrm{~b}>\text { if } \mathrm{b}>1-\mathrm{a}
$$

Reasoning about ignorance

Multiple-agent extension of possibilistic logic

- Multiple-agent extension of possibilistic logic
- Modeling epistemic states in generalized possibilistic logic

Generalized possibilistic logic and ASP

■ Generalized possibilistic logic can capture logic programing

- with negation as a failure,
\square " q is certain provided that p is certain and that one has no proof of r "
- i.e. if $N(p) \geq a$ and $\Pi(\neg r) \geq b$ then $N(q) \geq a$
- Which corresponds to formula

$$
\neg(\mathbf{p}, \mathbf{a}) \vee \neg<\neg \mathbf{r}, \mathbf{b}>\vee(\mathbf{q}, \mathbf{a})
$$

Nested formula

(\mathbf{p}, α) is true ou false!
possibilistic knowledge base \mathbf{K}

- either $\mathrm{N}_{\mathrm{K}}(\mathrm{p}) \geq \alpha$
(p, α) holds as (certainly) true
- either $\mathrm{N}_{\mathrm{K}}(\mathrm{p})<\alpha$ and (p, α) is false

$$
((p, \alpha), \beta) ?
$$

possibility distribution over possibility distributions (Zadeh 1978)

- possible at level 1 that the correct representation of information is

$$
\pi=\pi_{\{(p, \alpha)\}}=\max \left(\mu_{[p]}, 1-\alpha\right)
$$

- possible at level 1 - $\quad \beta$ that correct representation of information is $\pi=1$ everywhere (complete ignorance)
$\pi=\max \left(\min \left(\pi_{\{(p, \alpha)\}}, 1\right), \min (1,1-\beta)\right)=\max \left(\mu_{[\mathrm{p}]}, 1-\min (\alpha, \beta)\right)$
$((\mathbf{p}, \boldsymbol{\alpha}), \boldsymbol{\beta})$ equivalent to $(\mathbf{p}, \boldsymbol{\operatorname { m i n }}(\boldsymbol{\alpha}, \boldsymbol{\beta})) \quad$ (discounting)
counterpart of identity $\square \square \mathrm{p} \equiv \square \mathrm{p}$ S5

Other applications

- Information fusion, preferences fusion
- Reasoning under inconsistency
- Expressing qualitative independence
- Qualitative decision under uncertainty
$>$ pessimistic criterion, optimistic criterion
- Logical reprentation of a Sugeno integral
- Formal concept analysis

Conclusion

- The setting of possibilistic logic is suitable for handling a large number of issues in knowledge representation in AI
- close to classical logic, rich modal language
- Besides, in quantitative possibility theory
$>$ a possibility distribution represents a family of probability distributions
$>$ imprecise regression
$>$ possibility theory complementary to probability theory

