Possibilistic logic
1. Basics

2. Applications
3. Extensions

4 P O o 101

Henr1 Prade

Institut de Recherche en Informatique de
Toulouse



" S
1. Basics

m What’s about
m Background on possibility theory
m Degree of uncertainty vs. degree of truth

m Standard possibilistic logic (syntax and
semantics)

m Inconsistency handling
m Guaranteed possibility-based logic
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What’s about?
(p, a)

0
m p : classical logic formula

m a:levelnascale (0,1]

m N(p)>a N :necessity measure

m N(p)>a,N(—p v g) >b |- N(¢) > min(a, b) (Prade, 1982)
m Theophrastus

m Nicholas Rescher (Plausible Reasoning,1976)
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Developed with many co-authors

Including

m Didier Dubois

m Jerome Lang
Salem Benferhat
Souhila Kaci

0
0
m Steven Schockaert
0
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can be used for modeling

B uncertainty
(p, a) p 1s true with certainty a

m preferences
(p, a) making p true 1s a goal with priority a
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BOOLEAN POSSIBILITY THEORY

Set-functions acting as measures of uncertainty
If all we know is that x € E then

- Event A 1s possible if AN E# 0O
(logical consistency)

II(A) =1, and 0 otherwise

- Event A is sure if E € A (logical deduction)

N(A) =1, and 0 otherwise
- Axiom : II(A U B) = max(I1(A), II(B));
- Axiom : N(A N B) =min(N(A), N(B)).
- Close to a simple modal logic (KD45)




°  Possibility theory - 1

B 7T a possibility distribution

possibility
level
1 “ not too close
nd not far ”
fully fully .
3 jected acceptable fullyrejegted
distance

m 71(u) = 0 means X = u 1s totally excluded

m 7(u) = 1 means X = u 1s completely possible

m Possibility measure

m [I(A) =sup{n(u) : u € A} to what extent event
A 1s consistent with the information X 1s F

- [1(A U B) = max(T1(A), T1(B))
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Possibility theory - 2

m . A. Zadeh, 1978
m G. L. S. Shackle, 1949-1962 degree of surprise

m also
L. J. Cohen, D. Lewis, Grove, Maslov, Shilkret, ...

For Zadeh: linguistic terms => possibility distribution
Peter 1s young

Here possibility distribution defined on a sef of
interpretations induced by a logical language
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Possibility theory - 3

B N(A)=1-TI1(A%Y
=1 —sup{n(u) :u ¢ A}
to what extent event A 1s implied by the information
m NA)=1.
A 1s certain (true 1n all non-impossible situations)

® N(A) > 0: Given that X 1s F, A 1s normally true
(true 1n all the most plausible situations)

- N(A N B) = min(N(A), N(B))
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Degree of uncertainty vs.
degree of truth

m [I(AUB)=max(I

m [I(AN B) <min (I

(A), T

1(B))

(A), I

I(B)) !

= N(A N B) = min(N(A), N(B))
= N(A U B) > max(N(A), N(B)) !

m II, N are increasing wrt set inclusion

fuzzy measure, capacity
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m Degree of uncertainty cannot be decomposable
wrt to all logical connectives

degrees of uncertainty pertain to classical formulas

Boolean lattice

m Degree of truth may be decomposable wrt to all
logical connectives

degrees of truth pertain to non classical formulas

distributive lattice
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Possibility theory - 4

m Modeling 1ignorance

I1(A U AS) = max(T1(A), TI(A®))
N(A N A®) = min(N(A), N(A%))

m Qualitative possibility theory
vs. Quantitative possibility theory
[I(ANB) =II(A | B) * II(B)
with * =min or % =X

m  Bayesian possibilistic network
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Possibility theory - 5

II(A)=1and N(A)=1
II(A)=1and N(A)>0
II(A)=1and N(A)=0
II(A) <1 and N(A)=0
II(A)=0and N(A)=0

A certainly true

A true somewhat certain
total 1ignorance about A
A false somewhat certain
A certainly false
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Possibility theory - 6

m Guaranteed (strong) possibility measure
O A(A)=inf{ m(u) : u € A}
m to what extent all situations where A 1s true
are possible for sure
A(AU B) =min(A(A), A(B))
decreasing w. r. t. set inclusion
V(A) =1-A(A% (weak necessity)
V(AN B) =max(V(A), V(B))



" S
Possibility theory - 7

= A(AU B) = min(A(A), A(B))
= A(A N B) > max(A(A), A(B))

®E V(ANB)=max(V(A), V(B))
E V(AUB)<min(V(A), V(B))

m A, V are decreasing set functions
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Possibility theory - 8

m [I(A) max over A
m N(A) 1 - max over A€
B A(A) min over A

m V(A) 1 - min over A€
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Certainty-qualification

1-a

I I
0 . : >
A

m Attaching a degree of certainty o to event A

® It means N(A) = a <> TI(A®) =sup ;¢ ,7(s) = 1 — «

m The least informative © sanctioning N(A) > a 1s :
Om(s)= 1ifscA and 1-caifsEA

m In other words: n(s) = max(u,, | —a)
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Standard propositional
possibilistic logic
m syntax and semantics
® inconsistency handling

m guaranteed possibility-based logic
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Possibilistic logic: syntax

m A possibilistic formula 1s a certainty qualified
proposition (p, o), where p is a classical
proposition and o &(0, 1] is the minimal
certainty of p.

m (p, o) means « p 1s a-certain » : N([p]) =

m A possibilistic knowledge base is a totally pre-
ordered logical base =B, UB,... U B,
0 B;={(p; %)) =1, ..}Is the o -layer,

O priorities o4 > 0y, > ...0,, lie in some
ordinal scale.
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Possibilistic logic: inference

m [nference in poslog is a straightforward extension of
classical inference : B |- (p, ) iff B, classically implies
p:B, -p

m A set of formulas (p;, o) for any given a 1s deductively
close (wrong for probabilities except if a=1)

m Basic principles

O The weight of a chain of inference is the weight of the
weakest link

(0The weight of the conclusion 1s the weight of the strongest
chain of inference that produces it
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Possibilistic logic: proof method

m Valid inference patterns

Modus ponens: {(p, &), ("p Vv q, B)} |- (q, min(a, ))
Resolution: {(pv q, o), Cp v, P)}- (qv r, min(a, B))
Fusion. {(pa OL)» (p ’ B)H_ (pa max((x, B))

- 1f p |- qclassically, (p, o) |- (q, o)

» 1fa = then (p, a) [~ (p, P)
m Certainty of a conclusion p: max{a, B|—(p, a)}

m Degree of contradiction :
Inc(B)=sup{a:B|—(L, ) }
B Refutation:

Bl—(p. @)iff BU(p, D I—L a
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Possibilistic logic: semantics

A set of sentences Bwith priorities models certainty-
qualified assertions;

m (p, o) means « X 1s A 1s a-certain » : N(A) > a
m Models of (p, o) form a fuzzy set:
m 7T, ,(8)= lifssatistiesp,

1 —a 1f s does not satisfy p

m Bis interpreted by the least specific possibility
distribution on the set of 1nterpretat10ns obeylng
the constraints {N(A;) = o, 1= 1, n} where A;; is
the set of models of plJ

g = min; max(fy;, 1 — o)

1]
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SOUNDNESS AND COMPLETENESS

m Semantic inference: B |= (p, o) means g < Tp, )

m {(p, 0), (g, o)} 1s semantically equivalent to {(pAq,
o)} : one may put any base 1n a conjunctive normal
form as a set of weighted clauses.

m Main theorem : Possibilistic logic 1s sound and
complete w.r.t. this semantics :

B = (p, o) iff B |— (p, o),

® An inconsistent B may yield non-trivial conclusions
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Inconsistency-Tolerant inference

m Degree of inconsistency of a possibilistic belief base:
Inc(B) = max{a, B|— (L, o)} (=1 - max , ng(w))
O For all p, B |— (p, Inc(B)) (trivial part),
m /nconsistency-Tolerant inference:
Bl—p.cp if B|— (p, o) with a > Inc(B).

m The set of non-trivial consequences of B are those of
the largest set {p, € B, U B, ... B, } that is not
Inconsistent (Inc(JB) = QL)

1

m This inference 1s non-monotonic : one may have
B |—Prefp and B U (qa 1) |—Pref P .
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Example

m K= {(—Stu(x) v You(x), al) (—You(x) v Ba(x), a2) (—Stu(x) v
— Par(x) v "Ba(x), a3) (Stu(L¢a), 1)}

with a3 >al
m Inc(K)=0:K |- (Ba(Léa), min(al,a2))

K |-p.¢ (Ba(Léa) (cannot infer ~Ba(L¢a))
m But K U (Par(Léa), 1) 1s partially inconsistent:

Inc (K U (Par(Léa), 1)) = min(al, a2, a3) = min(al,a2)
B KU {(Par(Léa), 1)} |- . "Ba(Léa) since
K U {(Par(L¢a), 1)} |- (—Ba(Léa), a3) : nonmon!!!!

and a3 > min(al,a2).
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The Syntactic approach:
Conditional assertions

m A |~ B denotes a conditional assertion « generally if A then B »
where A and B are propositional sentences.

m Postulates of System P (Kraus et al, 1989)
OA |~ A (reflexivity)

L]
L]
L]

If B=C then C |~ A iff B |~ A (Left logical equivalence)
If B |=C then A |~ B implies A |~ C (Right Weakening)

IfB |~ A and C |~ A then BUC|~A (OR)

OA |~ Band A |~ C then A NC |~ B (Cautious Monotony)
OA |~Band A NC |~ B then A |~ C (Cut)
OIf A |~Band A |~ C then A |~ BNC (AND)
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Belief construction in System P

m Beliefs of an agent about a situation are inferred from generic
knowledge AND observed singular evidence about the case at hand.

m Commonsense inference : a two-tiered scheme
[0Generic knowledge = set of conditional assertions A
O0Singular observed facts = proposition A (all you know)
O Inferred belief = proposition B

[O0Method : first infer a rule A |~ B (adapted to your
singular information A) from A, then believe B

O Inference of rules in system P is monotonic,
O Inference of beliefs is not :
may have A |- (ANC|~ — B)
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Possibilistic logic encoding

m A set of defaults A= {Ai|~Bi} 1=1n

m cach A |~ B 1s associated with the constraint
IIANB)>II(AN—-B) iff N(B|A)>0

with N(B|A)=1-II(—B | A)

m Two entailments:

- preferential entallment

For all IT s.t. II(A1 N B1) > II(Ai N —Bi)1=1,n

we have II(A N B) > II(A M —B)
equivalentto A |- A|~B

- rational closure
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Rational closure

m Compute the largest possibility distribution
(1t 1s the least informative)

corresponding to
constraints II(A1 M B1) > II(A1 M —B1)1=1,n

m RC(A)={A - B, II(A N B)>I1I(A N —B)}
m This 1s rational closure 1n possibilistic logic
we use pairs ("A U B, N (A U B))
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Example

m Penguin —Bird, Bird —=Flies, Penguin —— Flies
1. II(PAB) > II(PA—B) (examples > counterexamples);
2. TI(BAF) > II(BA—F) ;
3. II(PA—F) > II(PAF).

m Step 1 : Finding Normal cases
Exceptional cases are (PA—B) v (BA—F) v (PAF)
Normal cases are thus the other models :
(“PvB)A(BVF)A (=P v —F))=—PA(—B v F)

(Non-penguins that, if they are birds, fly).

m Since (BAF) A“PA(—B v F) = BAFA—P # @, we can give
up rule 2.
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Example

m Step 2 : Less normal cases are in Pv (B v F) and are not
exceptions to rules 1 and 3 (1.e., not ( PA—F)v(PAB)):

“((PA—F)v(PAB)) A(Pv(BVv F)= BA—F
(birds that do not fly)
m Stop : B A —F 1s consistent with examples PAB et PA—F.
m Totally abnormal cases:
“[(BA—F)v(—PA(—B v F)]=PA(—BvVF)
(Penguins that fly, or are not birds)
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Back to possibilistic logic

m The well-ordered partition 1s a possibility
distribution:

I[I(—PA(—B v F)) > I1I(B A =F) > I1I(PA( —B v F))

m For each rule A — B define a possibilistic formula
(TAVB,N(TA v B)): By

B NBVF)<N(PvB)=N("TP v F)

m A —Bisin RC(A)iff (A, 1)U B,|-B
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Reasoning with rational closure

m Any well-ordered partition can be modeled by a set of
default under rational closure.

m Non-intuitive conclusions can be repaired by adding the
proper default information:

m If RC(A) contains a counterintuitive conclusion A — B,
then it is possible to add rules r to A so that RC(A U{r}),
if not inconsistent, contains A — —B. (Benferhat D&P,
Applied Intelligence 1998)
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Perceived Causality. An Example
m We were at “...”", | was surprised by the person
who braked 1n front of me, not having the option

of changing lane and the road being wet, I could

not stop completely 1n time.

m Driver A follows Driver B
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m Abnormal facts are privileged

when providing causal explanations

m Material implication is insufficient

for representing causation

m => Nonmonotonic logic-based approaches for
causal ascriptions



Nonmonotonic Consequence Approach

m An agent learns of the sequence =B, , A, B,
m K, (context):

conjunction of all other facts known by the agent
® |~ a nonmonotonic consequence relation

(in the sense of System P of Kraus et al., 1990).
Given the sequence "B, A, B

m if the agent believes K |~ —B and K A A |~ B, the agent
perceives A to cause B 1n context K denoted A =c¢ B

m If the agent believes that K [~ —B and K A A |/~ —B
(rather than K A A |~ B), then A is perceived as
facilitating B denoted A =1{B
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m Variables
m Acc (occurrence of an accident)
m Wet (road being wet) ; Sur (A 1s surprised)
m Brak (driver B brakes in front of driver A)
m ReacL: driver A brakes after B brakes, with a delay

m common core of knowledge 1s : |~ —Acc; |~ ~Sur;
ReacL A Wet |~ Acc.

m we derive Reac. A Wet =c Acc.

m cause of the accident s the conjunction of braking late
and the road being wet.

m ReacL |~ —Acc long-delay reacting alone facilitated
the accident



m In the definitions of =c¢ and =1, |~ 1s a preferential
entallment, and a rational closure entailment,

m respectively Causes and facilitations are abnormal 1n
context:

m [f A=1Bor A=cB then K|~ —A.

m Causality 1s transitive only 1n particular cases:

If A 1s the normal way of getting B 1n context K, 1.e.,
K A B|~A, andif A =c¢ B and B =c¢ C, then A =c¢ C.

m The distinction between causation and facilitation, as
well as the restricted transitivity property, have been
validated by behavioral experiments.
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Representions of preferences

- different formats

- bipolarity
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Possibilistic logic base
mB= {(Bja ﬁj)aj - 19 m}

N(B)) > B,

B={(P1> 1), (P2, 0) , (P3, 03)

min(uFedhax(u,, (d)] - o ),max(u, (d)] - a)).
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Example

‘near the sea’ and ‘affordable price’

‘near’ (the sea)
m(u,)=1ifu,<85;
=71f5<u, =<10;
21110 <u,=<15;
Oifu,>135
‘“affordable’ (price)
m,(u,) =1 1f u, <200 ;
=.511200 <u,<400;
=0 1f u,> 400
- associated to

B={(d=<15,1),(d=<10, 8),(d =<5, .3).
(p =400, 1), (p < 200, .5)}



L Example (2)

‘near the sea’ or ‘affordable price’

TT = max(TT,, TT,)

B ={(d<15vp<400,1),(d<10v p<400,.8),
(d<10v p<200,.5).(d<5vp<200,.3))

m B =@ UBU {(piVqj, ct(ai,pj) | (pi, ai) E B!
and (qj, Bj) € B*},
m B'={(piV qj, n(ai,Bj)) | (pi, 0i) € B and (qj, Bj) € B*}
ct(a, B)=1—tn(1l —a, 1 —B)
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2nd logical reading

m Situations having a guaranteed satisfaction level

Guaranteed possibility

A(C) =min{w(u) lu e C}
ACH-1) = o
7 also equivalent to a set {[C'-1, a!],i =2, n}
set of situations C!-1 with guaranteed satisfaction o!

VueU,mei-1 j(u)=a'ifueC-!
Tci-1 4ij(w) =0 otherwise

values in C'-are possible at least to a degree o
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Distribution obtained as a

- disjunctive combination

Tr(u) = max{Tci-1_,i(u) ‘ i=2,n}

D = {[D}.,3,] ‘k: Lr}

Yu € U, T 5(u) = max{d; | [Dy,0,] E D and u € D}
ifu€ D,U...UD,

T 5(u) = 0 otherwise
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Example (continued)

‘near the sea’ and ‘affordable price’
7= min(x,, 7,)

DO={[d=5Ap=<200,1],[5<d=10 A p=<200,.7],
[d <10 A 200 < p <400, .5],[10<d <15 A p <400, 2]}

‘near the sea’ or ‘affordable price’
7 = max(w,, 7,)

O ={[d=<5,1],[d=<10,.7],[d=< 15, 2], [p =400, .5],
[p <200, 1]}
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Conditional preferences

“I prefer to take a tea (t).

If there 1s no tea then I will take a coffee (¢)”
I1(t) > I1(—t)
II(=t A ¢) > II(=t A=C)
There exists a unique possibility distribution which 1s

minimally specific and satisfies a given set of consistent
constraints (such as the above ones)

(ct) =1; m(—-ct) =1; m(c-t) = ;
m(—~c-t)=p witha > f3
assoclated to N— anf A—type possibilistic bases :
bD@a={(cvt,1-8),(t 1-a)}
B o={[t, 1],[cA-t,a],[-car-t, B]}
one can go from a representation format to another
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Graphical representation

Graphical encoding by a possibilistic Bayesian network

mi(t) = 1 m(—t)=1

e~ =N m(-c|-t)=0
me|ty=1  mw-c| =1

(X, y) = min((y | x), 7(x))

conditional non-interactivity

translation procedures without loss of information
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CP-nets Motivating Example
(P1): he prefers black vest to white vest {V,,V_}
(P2): he prefers black pants to white pants {P,, P}
(P3): when vest and pants have the same color,
he prefers red shirt to white shirt
otherwise he prefers white shirt {S_, S, }
(P4): when the shirt i1s red then he prefers red shoes
otherwise he prefers white shoes {C_, C_ }

Q=
{V,P.SC., V,P,S,C,, V,P.S.C., V,P.S.C

r=r’ W T wW=TrTr? W W T?

V.P,SC.,V.PS.C.,V.PSC.,V.PS,C

r-r’ W2 T W wWertr? T we W w Tr?

V,P.S.C,,V,P,S.C,,V.P.SC,,V,P.S,C

r—w? W W wTw? w~w WO

v,PSC,,V.PS.C,,V,P.SC,,V.PS.C.

r—w? Ww? T we W T W
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Pl:  {(Vb,1—a)}
P2: {(Pb,1-0)}
P3: {(=-VbV -Pb V Sr, 1 - V),
(-Vw V =-Pw V Sr,1-1),
(=Vw V =PbV Sw, 1 -19),
(=Vb V -Pw V Sw, 1 —¢)}
P4. {(=Sr V Cr,1-0),(-Sw V Cw,1-0)}

e assumed to belong to a linearly ordered scale 1> 1-o. a>0
el-a,l1-p,1-v,1=-m,1-0,1-¢,1-0,1-pare
unknown

* no particular ordering is assumed between them
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(2) | (92) | (w2) | (2v) | (v) | (we) | (vez) | (veme) || satisfaction levels
Vi B, S C; 1|1 1 1 | 1 1 1 (1,1,1,1,1,1,1,1)
Vi Py SuCr 1|1 ¥ 1 1 1 1 P (1,1,+,1,1,1,1, p)
Vi P 5, Cr 1] 3 1 1 | £ 1 | (1,4,1,1,1,£,1,1)
ViP,5,.C, 1| A 1 1 1 1 1 P (1,4,1,1,1,1,1, p]
V. BL5.CL a | 1 1 1 i} 1 1 1 (e,1,1,1,6,1,1,1)
V5. Cr a | 1 1 1 | 1 1 P (e,1,1,1,1,1,1, p)
Vi PuS:Cr a | f 1 1 | 1 1 1 (e, 3,1,1,1,1,1, 1)
VePuSuCr || a | f 1 M 1 1 1 p (v, 3,1,m,1,1,1, p)
Vi B S,.C, 1|1 1 1 1 1 g 1 (1,1,1,1,1,1,8,1)
ViP5, C, 1|1 ¥ 1 1 1 1 1 (1,1,+,1,1,1,1,1)
Vi Po5.C 1| A 1 1 1 £ g 1 (1,4,1,1,1,=.68,1)
Vi PuSuCu 1| g 1 1 | 1 1 1 (1,4,1,1,1,1,1,1)
VuFPoS5:Cly a | 1 1 1 i} 1 g 1 (e,1,1,1,6,1,8,1)
VeF5,C, || | 1 1 1 1 1 1 1 (e,1,1,1,1,1,1,1)
VuPo5:Cy || @ | 1 1 1 1 g 1 (e, 3,1,1,1,1,8, 1)
VePuSuCuw || a | f 1 1 1 1 1 1 (e, 3,1,m,1,1,1,1)
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VESC
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Bipolar preferences

Positive information refers to what 1s desired

Negative information refers to what 1s rejected
Pair of possibility distributions (., 7T*)
. fuzzy set of values guaranteed to be satisfactory

n* evaluates what is non-impossible
1 — 7v*(u) evaluates the extent to which u 1s impossible



coherence condition

for the pair (TTs, TTF) :

Vu, m.(u) < 7t*(u)

B* = {(p19 ai)a i =19 Il}

and
D = {[qja Yj]aj =1, m}
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Application to flexible queries

distinction 1s made between

constraints, whose violation has a negative effect,

and

wishes to satisfy if possible,
whose satisfaction has a positive effect
(non satisfaction has no impact on the evaluation)

symbolic optimization problem
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Reasoning with bipolar knowledge

N - Resolution:

1(pv q, @), (=p v 1, B) ;- (qv 1, min(a, )

A - Resolution:

[pAq, o], [-pAr,B]- [qAr, min(a, B)]



Deductive bipolar reasoning

rules : if Xis A then Y is B,
express that
m Situations where X'is A, and Y is not-B, are impossible

not A; or B,
conjunctive combination of rules :
B'=A" o) (A —=B) B' =B, ifA’ =A,
m Situations where X'is 4, and Y is B, are guaranted possible
A; and B;
disjunctive combination of rules : U, (A. x B)

B ={yst.Vx€EA’and (x,y) € Ui(Ai x Bj)}




m Example:

- R1: if an employee is in category 1 then his salary is
necessarily in [1000, 2000]

typically in [1500, 1800]

- R2: :if an employee is in category 2 then his salary is
necessarily in [1500, 2500]
typically in [1700, 2000].

*B =A" o). (A, —B) A’ ={cat.1, cat.2}
A, = {cat.1}, B, = [1000, 2000]
A, = {cat2}, B,=[1500, 2500]
— B’ =B,UB,=[1000, 2500]

* B' ={y st. VxE A’ and (x,y) € U,(A, x B)},

B, =[1500, 1800], B, =[1700, 2000],
= B’ =B, N B,=[1700, 1800] guaranted possible
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Reasoning with possibilistic lower bounds
in possibilistic logic

formula <p, a>
encoding the contrainte I1(p) = a
Mixed resolution rule:
(-pvq,a);<pvrb> |- <qvr,b> ifb>1-a

Reasoning about 1ignorance



Multiple-agent extension
of possibilistic logic

m Multiple-agent extension
of possibilistic logic

m Modeling epistemic states
in generalized possibilistic logic
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Generalized possi

bilistic logic and ASP

m Generalized possibi

logic programing

1stic logic can capture

m with negation as a failure,

m “q is certain provided that p is certain

and that one has no proof of r”

mie. 1IfN(p)>aandII(-r)>bthenN(q)>a

m Which corresponds to formula

_'(pa a) v

-<-r,b>v (q, a)



“Nestec

ested formula

(p, @) 1s true ou false!
possibilistic knowledge base K
m cither N (p) > @
(p, @) holds as (certainly) true
m cither N (p) < a and (p, a) 1s false

((p, ), B) ?
possibility distribution over possibility distributions (Zadeh 1978)
- possible at level 1 that the correct representation of information is
=T,y ~ MaX(Pppp, 1~ @)
- possible at level 1 — [ that correct representation of information is T = 1

everywhere (complete ignorance)
T = max(min(m, 1), min(1, 1-f)) = max(y,;,1- min(c,3))

((p, @), B) equivalent to (p, min(a, B)) (discounting)
counterpart of 1identity p=Llp S5




Other applications

Information fusion, preferences fusion
Reasoning under inconsistency
Expressing qualitative independence
Qualitative decision under uncertainty

> pessimistic criterion, optimistic criterion

Logical reprentation of a Sugeno integral

Formal concept analysis
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Conclusion

m The setting of possibilistic logic 1s suitable for
handling a large number of 1ssues 1n knowledge
representation in Al

m close to classical logic, rich modal language

m Besides, in guantitative possibility theory

> a possibility distribution represents a family of
probability distributions

> 1mprecise regression

> possibility theory complementary to
probability theory



