Possibilistic logic 1. Basics 2. Applications 3. Extensions 4. Possibility theory / FCA

Henri Prade

Institut de Recherche en Informatique de Toulouse

1. Basics

- What's about
- Background on possibility theory
- Degree of uncertainty vs. degree of truth
- Standard possibilistic logic (syntax and semantics)
- Inconsistency handling
- Guaranteed possibility-based logic

What's about?

- (*p*, **a**)
- *p* : classical logic formula
- **a** : level in a scale (0,1]
- $N(p) \ge a$ N : necessity measure
- N(p) \ge a, N($\neg p \lor q$) \ge b |- N(q) \ge min(a, b) (Prade, 1982)
- Theophrastus
- Nicholas Rescher (Plausible Reasoning, 1976)

Developed with many co-authors

Including

. . .

- Didier Dubois
- Jérôme Lang
- Salem Benferhat
- Souhila Kaci
- Steven Schockaert

can be used for modeling

- uncertainty
- $(p, \mathbf{a}) p$ is true with certainty \mathbf{a}

preferences

 (p, \mathbf{a}) making p true is a goal with priority \mathbf{a}

BOOLEAN POSSIBILITY THEORY

Set-functions acting as measures of uncertainty

If all we know is that $x \in E$ then

- Event A is possible if $A \cap E \neq \emptyset$ (logical consistency)

 $\Pi(A) = 1$, and 0 otherwise

- Event A is sure if $E \subseteq A$ (logical deduction) N(A) = 1, and 0 otherwise
- **Axiom** : $\Pi(A \cup B) = \max(\Pi(A), \Pi(B));$
- Axiom : $N(A \cap B) = min(N(A), N(B))$.
- Close to a simple modal logic (KD45)

- $\pi(u) = 1$ means X = u is completely possible
- Possibility measure
- $\Pi(\mathbf{A}) = \sup\{\pi(\mathbf{u}) : \mathbf{u} \in \mathbf{A}\}$ to what extent event A is *consistent* with the information X is F
 - $\Pi(\mathbf{A} \cup \mathbf{B}) = \max(\Pi(\mathbf{A}), \Pi(\mathbf{B}))$

- L. A. Zadeh, 1978
- G. L. S. Shackle, 1949-1962 *degree of surprise*
- also
 - L. J. Cohen, D. Lewis, Grove, Maslov, Shilkret, ...

For Zadeh: linguistic terms → possibility distribution Peter is *young Here* possibility distribution defined on *a set of interpretations* induced by a logical language

 $\blacksquare N(\mathbf{A}) = \mathbf{1} - \Pi(\mathbf{A}^{\mathbf{c}})$

 $= 1 - \sup\{\pi(u) : u \notin A\}$

to what extent event A is *implied* by the information

■ N(A) = 1:

A is certain (true in all non-impossible situations)

- N(A) > 0: Given that X is F, A is normally true (true in all the most plausible situations)
- $N(A \cap B) = \min(N(A), N(B))$

Degree of uncertainty vs. degree of truth

- $\Pi(A \cup B) = max(\Pi(A), \Pi(B))$
- $\Pi(A \cap B) \leq \min(\Pi(A), \Pi(B))$!
- $N(A \cap B) = min(N(A), N(B))$
- $N(A \cup B) \ge max(N(A), N(B))!$
- Π, N are *increasing* wrt *set inclusion* fuzzy measure, capacity

 Degree of uncertainty *cannot* be decomposable wrt to all logical connectives

degrees of uncertainty pertain to classical formulas *Boolean* lattice

Degree of truth may be decomposable wrt to all logical connectives

degrees of truth pertain to non classical formulas *distributive* lattice

• Modeling ignorance $\Pi(A \cup A^{c}) = \max(\Pi(A), \Pi(A^{c}))$ $N(A \cap A^{c}) = \min(N(A), N(A^{c}))$

• Qualitative possibility theory vs. Quantitative possibility theory $\Pi(A \cap B) = \Pi(A \mid B) * \Pi(B)$ with $* = \min$ or $* = \times$

Bayesian possibilistic network

- $\Pi(A) = 1$ and N(A) = 1 A certainly true
- $\blacksquare \Pi(\mathbf{A}) = 1 \text{ and } N(\mathbf{A}) > 0 \quad A t$
- $\Pi(A) = 1$ and N(A) = 0
- $\Pi(A) < 1$ and N(A) = 0
- A true somewhat certain
- = 0 total ignorance about A
 - = 0 A false somewhat certain
- $\Pi(A) = 0$ and N(A) = 0 A certainly false

- Guaranteed (strong) possibility measure
- $\Delta(\mathbf{A}) = \inf\{ \pi(\mathbf{u}) : \mathbf{u} \in \mathbf{A} \}$
- to what extent all situations where A is true are possible for sure
- $\Delta(\mathbf{A} \cup \mathbf{B}) = \min(\Delta(\mathbf{A}), \Delta(\mathbf{B}))$
- decreasing w. r. t. set inclusion
- $\nabla(\mathbf{A}) = 1 \Delta(\mathbf{A}^{\mathbf{c}}) \quad \text{(weak necessity)}$
 - $\nabla(A \cap B) = max(\nabla(A), \nabla(B))$

- $\Delta(\mathbf{A} \cup \mathbf{B}) = \min(\Delta(\mathbf{A}), \Delta(\mathbf{B}))$
- $\Delta(\mathbf{A} \cap \mathbf{B}) \geq \max(\Delta(\mathbf{A}), \Delta(\mathbf{B}))$
- $\nabla(\mathbf{A} \cap \mathbf{B}) = \max(\nabla(\mathbf{A}), \nabla(\mathbf{B}))$
- $\nabla (A \cup B) \le \min(\nabla (A), \nabla (B))$
- Δ , ∇ are **decreasing** set functions

- $\blacksquare \Pi(\mathbf{A}) \qquad max \text{ over } \mathbf{A}$
- $\blacksquare N(\mathbf{A}) \qquad 1 max \text{ over } \mathbf{A}^{\mathbf{c}}$
- $\bullet \ \Delta(\mathbf{A}) \qquad min \text{ over } \mathbf{A}$
- $\nabla(\mathbf{A})$ 1 min over $\mathbf{A}^{\mathbf{c}}$

- Attaching a degree of certainty α to event A
- It means $N(A) = \alpha \Leftrightarrow \Pi(A^c) = \sup_{s \notin A} \pi(s) = 1 \alpha$
- The least informative π sanctioning N(A) $\geq \alpha$ is : $\Box \pi(s) = 1$ if $s \in A$ and $1 - \alpha$ if $s \notin A$
- In other words: $\pi(s) = \max(\mu_A, 1 \alpha)$

Standard propositional possibilistic logic

- syntax and semantics
- inconsistency handling
- guaranteed possibility-based logic

Possibilistic logic: syntax

- A possibilistic formula is a certainty qualified proposition (p, α), where p is a classical proposition and $\alpha \in (0, 1]$ is the minimal certainty of p.
- (p, α) means « p is α -certain » : N([p]) $\geq \alpha$
- A possibilistic knowledge base is a totally preordered logical base = $\mathcal{B}_1 \cup \mathcal{B}_2 \dots \cup \mathcal{B}_2$
 - $\square \quad \mathcal{B}_i = \{(\mathbf{p}_{ij} \ \alpha_i), j = 1, ...\} \text{ is the } \alpha_i \text{-layer,}$
 - □ priorities $\alpha_1 > \alpha_2 > ... \alpha_m$ lie in some ordinal scale.

Possibilistic logic: inference

- Inference in poslog is a straightforward extension of classical inference : $\mathcal{B} \mid -(p, \alpha)$ iff \mathcal{B}_{α} classically implies $p : \mathcal{B}_{\alpha} \mid -p$
- A set of formulas (p_i, α) for any given α is deductively close (wrong for probabilities except if $\alpha=1$)
- Basic principles
 - □ The weight of a chain of inference is the weight of the weakest link
 - □ The weight of the conclusion is the *weight of the strongest chain of inference that produces it*

Possibilistic logic: proof method

Valid inference patterns

Modus ponens: {(p, α), (¬p v q, β)} |– (q, min(α , β)) *Resolution*: {(pv q, α), (¬p v r, β)}|– (qv r, min(α , β)) *Fusion*: {(p, α), (p, β)}|– (p, max(α , β))

- if p |- q classically, (p, α) |- (q, α)
- if $\alpha \ge \beta$ then $(p, \alpha) \models (p, \beta)$
- Certainty of a conclusion $p: max\{\alpha, \mathcal{B} | -(p, \alpha)\}$

Degree of contradiction :

 $Inc(\mathcal{B}) = \sup\{\alpha: \mathcal{B} \mid -(\bot, \alpha)\}$

Refutation:

 $\mathcal{B} \mid -(p, \alpha) iff \mathcal{B} \cup (\neg p, 1) / -(\bot, \alpha)$

Possibilistic logic: semantics

- A set of sentences \mathcal{B} with priorities models certaintyqualified assertions;
- (p, α) means « x is A is α -certain » : N(A) $\geq \alpha$
- Models of (p, α) form a fuzzy set:

•
$$\pi_{(p, \alpha)}(s) = 1$$
 if s satisfies p,

 $1 - \alpha$ if s does not satisfy p

■ *B* is interpreted by the least specific possibility distribution on the set of interpretations obeying the constraints $\{N(A_{ij}) \ge \alpha_i, i = 1, n\}$ where A_{ij} is the set of models of p_{ij} :

$$\pi_{\mathcal{B}} = \min_{ij} \max(\mu_{Aij}, 1 - \alpha_i)$$

SOUNDNESS AND COMPLETENESS

- Semantic inference: $\mathcal{B} \models (p, \alpha)$ means $\pi_{\mathcal{B}} \le \pi_{(p, \alpha)}$
- {(p, α), (q, α)} is semantically equivalent to {(p∧q, α)} : one may put any base in a conjunctive normal form as a set of weighted clauses.
- Main theorem : Possibilistic logic is sound and complete w.r.t. this semantics :

 $\mathcal{B} \models (p, \alpha) \text{ iff } \mathcal{B} \mid -(p, \alpha),$

• An inconsistent \mathcal{B} may yield non-trivial conclusions

Inconsistency-Tolerant inference

- Degree of inconsistency of a possibilistic belief base: $Inc(\mathcal{B}) = max\{\alpha, \mathcal{B} | - (\bot, \alpha)\} (= 1 - max_{\omega} \pi_{\mathcal{B}}(\omega))$ □ For all p, $\mathcal{B} | - (p, Inc(\mathcal{B}))$ (trivial part),
- Inconsistency-Tolerant inference:

 $\mathcal{B} \mid_{\operatorname{Pref}} p \text{ if } \mathcal{B} \mid_{\operatorname{Pref}} (p, \alpha) \text{ with } \alpha > \operatorname{Inc}(\mathcal{B}).$

- The set of non-trivial consequences of B are those of the largest set {p_{ij} ∈ B₁ ∪ B₂ ... B_i} that is not inconsistent (Inc(B) = α_{i+1}).
- This inference is **non-monotonic** : one may have $\mathcal{B} \models_{\text{Pref}} p$ and $\mathcal{B} \cup (q, 1) \models_{\text{Pref}} \neg p$.

Example

• $K = \{ (\neg Stu(x) \lor You(x), a1) (\neg You(x) \lor Ba(x), a2) (\neg Stu(x) \lor \neg Par(x) \lor \neg Ba(x), a3) (Stu(Léa), 1) \}$

with a3 > a1

• Inc(K) = 0 : K | - (Ba(Léa), min(a1,a2))

 $K \models_{Pref} (Ba(Léa))$ (cannot infer $\neg Ba(Léa))$

- But K ∪ (Par(Léa), 1) is partially inconsistent: Inc (K ∪ (Par(Léa), 1)) = min(a1, a2, a3) = min(a1,a2)
- $K \cup \{(Par(Léa), 1)\} \models_{Pref} \neg Ba(Léa) \text{ since}$ $K \cup \{(Par(Léa), 1)\} \models (\neg Ba(Léa), a3) : nonmon!!!!$ and a3 > min(a1,a2).

The Syntactic approach: Conditional assertions

- A ~ B denotes a conditional assertion « generally if A then B » where A and B are propositional sentences.
- Postulates of System P (Kraus et al, 1989)

 $\Box A \mid \sim A$ (reflexivity)

 $\Box If B = C then C \mid \sim A iff B \mid \sim A (Left logical equivalence)$

 $\Box \text{ If } B \models C \text{ then } A \models B \text{ implies } A \models C \text{ (Right Weakening)}$ $\Box \text{ If } B \models A \text{ and } C \models A \text{ then } B \models C \models A \text{ (OR)}$

 \Box If B |~ A and C |~ A then BUC|~A (OR)

 $\Box A \models B \text{ and } A \models C \text{ then } A \cap C \models B \text{ (Cautious Monotony)}$

- $\Box A \mid \sim B \text{ and } A \cap C \mid \sim B \text{ then } A \mid \sim C (Cut)$
- \Box If A |~ B and A |~ C then A |~ B \cap C (AND)

Belief construction in System P

- Beliefs of an agent about a situation are inferred from generic knowledge AND observed singular evidence about the case at hand.
- Commonsense inference : a two-tiered scheme
 - □ Generic knowledge = set of conditional assertions ∆
 □ Singular observed facts = proposition A (all you know)
 □ Inferred belief = proposition B
 - □ **Method** : first infer a rule A $|\sim$ B (adapted to your singular information A) from Δ , then believe B
 - □ Inference of rules in system P is monotonic,

□*Inference of beliefs is not :*

may have $\Delta \mid -(A \cap C \mid \sim \neg B)$

Possibilistic logic encoding

- A set of defaults $\Delta = \{Ai \mid \sim Bi\}$ i = 1, n
- each A $|\sim$ B is associated with the constraint $\Pi(A \cap B) > \Pi(A \cap \neg B)$ iff N(B | A) > 0with $N(B | A) = 1 - \Pi(\neg B | A)$
- Two entailments:
- preferential entailment
- For all Π s.t. $\Pi(Ai \cap Bi) > \Pi(Ai \cap \neg Bi)$ i = 1, nwe have $\Pi(A \cap B) > \Pi(A \cap \neg B)$

equivalent to $\Delta \mid -A \mid \sim B$

- rational closure

Rational closure

- Compute the largest possibility distribution (it is the least informative) corresponding to constraints $\Pi(Ai \cap Bi) > \Pi(Ai \cap \neg Bi) i = 1,n$
- RC(Δ) = {A → B, Π(A ∩ B) > Π(A ∩ ¬B)}
 This is rational closure in possibilistic logic we use pairs (¬A ∪ B, N (¬A ∪ B))

Example

Penguin \rightarrow Bird, Bird \rightarrow Flies, Penguin $\rightarrow \neg$ Flies 1. $\Pi(P \land B) > \Pi(P \land \neg B)$ (examples > counterexamples); 2. $\Pi(B \land F) > \Pi(B \land \neg F)$; 3. $\Pi(P \land \neg F) > \Pi(P \land F)$.

Step 1 : Finding Normal cases

Exceptional cases are $(P \land \neg B) \lor (B \land \neg F) \lor (P \land F)$

Normal cases are thus the other models :

 $(\neg P \lor B) \land (\neg B \lor F) \land (\neg P \lor \neg F)) = \neg P \land (\neg B \lor F)$

(Non-penguins that, if they are birds, fly).

Since $(B \land F) \land \neg P \land (\neg B \lor F) = B \land F \land \neg P \neq \emptyset$, we can give up rule 2.

Example

- Step 2 : Less normal cases are in Pv (B v F) and are not exceptions to rules 1 and 3 (i.e., not (P∧¬F)v(P∧B)):
 ¬((P∧¬F)v(P∧B)) ∧ (Pv (B v F)) = B ∧ ¬F (birds that do not fly)
- Stop : $B \land \neg F$ is consistent with examples $P \land B$ et $P \land \neg F$.

Totally abnormal cases:

 $\neg [(B \land \neg F) \lor (\neg P \land (\neg B \lor F)] = P \land (\neg B \lor F)$ (Penguins that fly, or are not birds)

Back to possibilistic logic

The well-ordered partition is a possibility distribution:

 $\Pi(\neg P \land (\neg B \lor F)) > \Pi(B \land \neg F) > \Pi(P \land (\neg B \lor F))$

- For each rule A → B define a possibilistic formula $(\neg A \lor B, N (\neg A \lor B)) : \mathcal{B}_{\Pi}$
- $\blacksquare N(\neg B \lor F) < N(\neg P \lor B) = N(\neg P \lor \neg F)$
- A \rightarrow B is in RC(Δ) iff (A, 1) $\cup \mathcal{B}_{\Pi} \models$ B

Reasoning with rational closure

- Any well-ordered partition can be modeled by a set of default under rational closure.
- Non-intuitive conclusions can be repaired by adding the proper default information:
- If RC(Δ) contains a counterintuitive conclusion A → B, then it is possible to add rules r to Δ so that RC(Δ ∪ {r}), if not inconsistent, contains A → ¬B. (Benferhat D&P, Applied Intelligence 1998)

Perceived Causality. An Example

• We were at "…", I was surprised by the person who braked in front of me, not having the option of changing lane and the road being wet, I could not stop completely in time.

Driver A follows Driver B

Abnormal facts are privileged when providing causal explanations

 Material implication is insufficient for representing causation

Nonmonotonic logic-based approaches for causal ascriptions

Nonmonotonic Consequence Approach

- An agent learns of the sequence $\neg B_t$, A_t , B_{t+k}
- K_t (context):
- conjunction of all other facts known by the agent
- a nonmonotonic consequence relation
- (in the sense of System P of Kraus et al., 1990).
- Given the sequence $\neg B$, A , B
- If the agent believes K |~ ¬B and K ∧ A |~ B, the agent perceives A to cause B in context K denoted A ⇒c B
- If the agent believes that K |~ ¬B and K ∧ A |/~ ¬B (rather than K ∧ A |~ B), then A is perceived as facilitating B denoted A ⇒f B

Variables

- Acc (occurrence of an accident)
- Wet (road being wet); Sur (A is surprised)
- Brak (driver B brakes in front of driver A)
- ReacL: driver A brakes after B brakes, with a delay
- common core of knowledge is : |~ ¬Acc; |~ ¬Sur; ReacL ∧ Wet |~ Acc.
- we derive ReacL \land Wet \Rightarrow c Acc.
- cause of the accident s the conjunction of braking late and the road being wet.
- ReacL /~ ¬Acc long-delay reacting alone facilitated the accident

- In the definitions of ⇒c and ⇒f, |~ is a preferential entailment, and a rational closure entailment,
- respectively Causes and facilitations are abnormal in context:
- If $A \Rightarrow f B$ or $A \Rightarrow c B$ then $K | \sim \neg A$.
- Causality is transitive only in particular cases:
 If A is the normal way of getting B in context K, i.e.,

 $K \land B \mid \sim A$, and if $A \Rightarrow c B$ and $B \Rightarrow c C$, then $A \Rightarrow c C$.

The distinction between causation and facilitation, as well as the restricted transitivity property, have been validated by behavioral experiments.

Representions of preferences

- different formats
- bipolarity

Possibilistic logic base

•
$$\mathcal{B} = \{ (\mathbf{B}_j, \beta_j), j = 1, m \}$$

 $\mathbf{N}(\mathbf{B}_j) \ge \beta_j$

$$\mathcal{B} = \left\{ (p_1, 1), (p_2, \alpha_2), (p_3, \alpha_3) \right\}$$

 $\min(\mu_{P_1}^{\pi}(d)) = \max(\mu_{P_2}(d), 1 - \alpha_2), \max(\mu_{P_3}(d), 1 - \alpha_3)).$

Example

'near the sea' and 'affordable price'

```
'near' (the sea)
\pi_1(u_1) = 1 if u_1 \leq 5;
  = .7 if 5 < u_1 \le 10;
   = .2 if 10 < u_1 \le 15;
   = 0 if u_1 > 15
  'affordable' (price)
\pi_2(u_2) = 1 if u_2 \leq 200;
   = .5 if 200 < u_2 \le 400;
   = 0 if u_2 > 400
                              associated to
\mathcal{B} = \{ (d \le 15, 1), (d \le 10, .8), (d \le 5, .3), d \le 5, .3) \}
                           (p \le 400, 1), (p \le 200, .5)
```


'near the sea' or 'affordable price'

 $\boldsymbol{\pi} = \max(\boldsymbol{\pi}_1, \boldsymbol{\pi}_2)$

$$\mathcal{B}' = \{ (d \le 15 \text{ v } p \le 400, 1), (d \le 10 \text{ v } p \le 400, .8), \\ (d \le 10 \text{ v } p \le 200, .5), (d \le 5 \text{ v } p \le 200, .3) \}$$

■ $\mathcal{B}^{tn} = \mathcal{B}^1 \cup \mathcal{B}^2 \cup \{(pi \lor qj, ct(\alpha i, \beta j)) \mid (pi, \alpha i) \in \mathcal{B}^1 and (qj, \beta j) \in \mathcal{B}^2\},\$ and $(qj, \beta j) \in \mathcal{B}^2\},\$ $\mathcal{B}^{ct} = \{(pi \lor qj, tn(\alpha i, \beta j)) \mid (pi, \alpha i) \in \mathcal{B}^1 and (qj, \beta j) \in \mathcal{B}^2\},\$ $ct(\alpha, \beta) = 1 - tn(1 - \alpha, 1 - \beta)$

2nd logical reading

Situations having a guaranteed satisfaction level

Guaranteed possibility $\Delta(C) = \min\{\pi(u) \mid u \in C\}$ $\Delta(C^{i-1}) \ge \alpha^{i}$

 π also equivalent to a set {[Cⁱ⁻¹, α^i], i = 2, n} set of situations Cⁱ⁻¹ with guaranteed satisfaction α^i

$$\forall u \in U, \pi_{[C}i \cdot \mathbf{1}_{,\alpha}i_{]}(u) = \alpha^{i} \text{ if } u \in C^{i-1}$$

$$\pi_{[C}i \cdot \mathbf{1}_{,\alpha}i_{]}(u) = 0 \text{ otherwise}$$

values in C^{i-1} are possible *at least to* a degree α^i

Distribution obtained as a

$$\rightarrow disjunctive combination$$
$$\pi(u) = \max\{\pi_{[C} i - 1, \alpha^{i}](u) \mid i = 2, n\}$$

$$\boldsymbol{\mathcal{D}} = \{ [\mathbf{D}_k, \boldsymbol{\delta}_k] \mid k = 1, r \}$$

 $\forall \mathbf{u} \in \mathbf{U}, \, \boldsymbol{\pi}_{\mathcal{D}}(\mathbf{u}) = max\{\boldsymbol{\delta}_{\mathbf{k}} \mid [\mathbf{D}_{\mathbf{k}}, \boldsymbol{\delta}_{\mathbf{k}}] \in \boldsymbol{\mathcal{D}} \text{ and } \mathbf{u} \in \mathbf{D}_{\mathbf{k}}\}$ if $\mathbf{u} \in \mathbf{D}_{1} \cup \ldots \cup \mathbf{D}_{r}$

 $\boldsymbol{\pi}_{\mathcal{D}}(\mathbf{u}) = 0$ otherwise

Example (continued)

'near the sea' and 'affordable price' $\pi = \min(\pi_1, \pi_2)$

$$\begin{split} \mathcal{D} &= \big\{ [d \le 5 \land p \le 200 \ , 1], [5 < d \le 10 \land p \le 200, .7], \\ [d \le 10 \land 200 < p \le 400, .5], [10 < d \le 15 \land p \le 400, .2] \big\} \end{split}$$

'near the sea' or 'affordable price'

 $\pi = \max(\pi_1, \pi_2)$

 $\mathcal{D}^{\textbf{9}} = \big\{ [d \le 5, 1], [d \le 10, .7], [d \le 15, .2], [p \le 400, .5], \\ [p \le 200, 1] \big\}$

Conditional preferences

"I prefer to take a tea (t).

If there is no tea then I will take a coffee (c)"

 $\prod(t) > \prod(\neg t)$

 $\Pi(\neg t \land c) > \Pi(\neg t \land \neg c)$

There exists a *unique possibility distribution* which is *minimally specific* and satisfies a given set of consistent constraints (such as the above ones)

$$\pi(ct) = 1$$
; $\pi(\neg ct) = 1$; $\pi(c\neg t) = \alpha$;

 $\pi(\neg c \neg t) = \beta$ with $\alpha > \beta$

associated to N- anf Δ -type possibilistic bases : $\rightarrow \mathcal{B} = \{(c \lor t, 1 - \beta), (t, 1 - \alpha)\}$ $\rightarrow \mathcal{D} = \{[t, 1], [c \land \neg t, \alpha], [\neg c \land \neg t, \beta]\}$

one can go from a representation format to another

Graphical representation

Graphical encoding by a *possibilistic Bayesian network*

•
$$\pi(t) = 1$$
 $\pi(\neg t) = 1$

•
$$\pi(c \mid \neg t) = \lambda$$
 $\pi(\neg c \mid \neg t) = 0$
 $\pi(c \mid t) = 1$ $\pi(\neg c \mid t) = 1$

$$\pi(\mathbf{x},\mathbf{y}) = \min(\pi(\mathbf{y} \mid \mathbf{x}), \pi(\mathbf{x}))$$

conditional non-interactivity

translation procedures without loss of information

CP-nets Motivating Example

(P1): he prefers black vest to white vest $\{V_b, V_w\}$ (P2): he prefers black pants to white pants $\{P_b, P_w\}$ (P3): when vest and pants have the *same* color, he prefers red shirt to white shirt otherwise he prefers white shirt $\{S_r, S_w\}$ (P4): when the shirt is red then he prefers red shoes otherwise he prefers white shoes $\{C_r, C_w\}$

 $\Omega =$

 $\{V_bP_bS_rC_r, V_bP_bS_wC_r, V_bP_wS_rC_r, V_bP_wS_wC_r, V_wP_bS_rC_r, V_wP_bS_wC_r, V_wP_bS_rC_r, V_wP_bS_wC_r, V_bP_bS_rC_w, V_bP_bS_wC_w, V_bP_wS_rC_w, V_bP_wS_wC_w, V_bP_bS_rC_w, V_bP_bS_wC_w, V_wP_wS_rC_w, V_wP_wS_wC_w\}$

P1: {
$$(Vb, 1 - \alpha)$$
}
P2: { $(Pb, 1 - \beta)$ }
P3: { $(\neg Vb \lor \neg Pb \lor Sr, 1 - \gamma)$,
 $(\neg Vw \lor \lor Pw \lor Sr, 1 - \eta)$,
 $(\neg Vw \lor \lor Pb \lor Sw, 1 - \delta)$,
 $(\neg Vb \lor \lor Pw \lor Sw, 1 - \delta)$ }
P4: { $(\neg Sr \lor Cr, 1 - \theta)$, $(\neg Sw \lor Cw, 1 - \varrho)$ }

- assumed to belong to a *linearly ordered scale* 1> $1-\alpha \alpha > 0$
- 1α , 1β , 1γ , 1η , 1δ , 1ϵ , 1θ , 1ϱ are **unknown**
- no particular ordering is assumed between them

	(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)	satisfaction levels
$V_b P_b S_r C_r$	1	1	1	1	1	1	1	1	(1, 1, 1, 1, 1, 1, 1, 1, 1)
$V_b P_b S_w C_r$	1	1	γ	1	1	1	1	ρ	$(1, 1, \gamma, 1, 1, 1, 1, \rho)$
$V_b P_w S_r C_r$	1	β	1	1	1	ε	1	1	(1,eta,1,1,1,arepsilon,1,1)
$V_b P_w S_w C_r$	1	β	1	1	1	1	1	ρ	$(1, \beta, 1, 1, 1, 1, 1, \rho)$
$V_w P_b S_r C_r$	α	1	1	1	δ	1	1	1	$(lpha,1,1,1,\delta,1,1,1)$
$V_w P_b S_w C_r$	α	1	1	1	1	1	1	ρ	$(\alpha, 1, 1, 1, 1, 1, 1, \rho)$
$V_w P_w S_r C_r$	α	β	1	1	1	1	1	1	$(\alpha, \beta, 1, 1, 1, 1, 1, 1)$
$V_w P_w S_w C_r$	α	β	1	η	1	1	1	ρ	$(\alpha, \beta, 1, \eta, 1, 1, 1, \rho)$
$V_b P_b S_r C_w$	1	1	1	1	1	1	θ	1	$(1, 1, 1, 1, 1, 1, \theta, 1)$
$V_b P_b S_w C_w$	1	1	γ	1	1	1	1	1	$(1,1,\gamma,1,1,1,1,1)$
$V_b P_w S_r C_w$	1	β	1	1	1	ε	θ	1	$(1, \beta, 1, 1, 1, \varepsilon, \theta, 1)$
$V_b P_w S_w C_w$	1	β	1	1	1	1	1	1	$(1, \beta, 1, 1, 1, 1, 1, 1)$
$V_w P_b S_r C_w$	α	1	1	1	δ	1	θ	1	$(lpha,1,1,1,\delta,1, heta,1)$
$V_w P_b S_w C_w$	α	1	1	1	1	1	1	1	(lpha, 1, 1, 1, 1, 1, 1, 1)
$V_w P_w S_r C_w$	α	β	1	1	1	1	θ	1	(lpha,eta,1,1,1,1,eta,1)
$V_w P_w S_w C_w$	α	β	1	η	1	1	1	1	$(\alpha,\beta,1,\eta,1,1,1,1)$

М

Bipolar preferences

Positive information refers to what is *desired*

Negative information refers to what is *rejected*

Pair of possibility distributions (π_*, π^*)

 π_* fuzzy set of values *guaranteed to be satisfactory*

 π^* evaluates what is *non-impossible* 1 – $\pi^*(\mathbf{u})$ evaluates the extent to which **u** is **impossible**

coherence condition

for the pair (π_*, π^*) :

$$\forall \mathbf{u}, \pi_*(\mathbf{u}) \leq \pi^*(\mathbf{u})$$

$$\mathcal{B}^* = \{(\mathbf{p}_i, \boldsymbol{\alpha}_i), i = 1, n\}$$

and

$$\mathcal{D}_* = \{[\mathbf{q}_j, \gamma_j], j = 1, m\}$$

Application to flexible queries

distinction is made between

constraints, whose violation has a negative effect,

and

wishes to satisfy if possible, whose satisfaction has a *positive* effect (non satisfaction has no impact on the evaluation) *symbolic optimization* problem

Reasoning with bipolar knowledge

N - Resolution:

{(pv q, α), (¬p v r, β)}|– (qv r, min(α , β))

△ - *Resolution*:

 $[p \land q, \alpha], [\neg p \land r, \beta] \vdash [q \land r, \min(\alpha, \beta)]$

Deductive bipolar reasoning

rules : if X is A_i then Y is B_i express that • Situations where X is A_i and Y is not- B_i are *impossible* not A_i or B_i *conjunctive* combination of rules : $B' = A' \circ \bigcap_i (A_i \rightarrow B_i)$ $B' = B_i \quad \text{if } A' = A_i$ • Situations where X is A_i and Y is B_i are guaranted possible A_i and B_i *disjunctive* combination of rules : $\bigcup_{i} (A_i \times B_i)$ B' = {y s.t. $\forall x \in A'$ and $(x,y) \in \bigcup_i (A_i \times B_i)$ } $B' = B_i$ if $A' = A_i$

Example:

- R1: if an employee is in category 1 then his salary is necessarily in [1000, 2000] typically in [1500, 1800]
- R2: : if an employee is in category 2 then his salary is necessarily in [1500, 2500] typically in [1700, 2000].

* B' = A' ∘
$$\bigcap_i (A_i \to B_i)$$
 A' = {cat.1, cat.2}
 $A_1 = \{cat.1\}, B_1 = [1000, 2000]$
 $A_2 = \{cat.2\}, B_2 = [1500, 2500]$
 \Rightarrow B' = B₁ ∪ B₂ = [1000, 2500]
* B' = {y s.t. ∀ x ∈ A' and (x,y) ∈ U_i(A_i × B_i)},
 $B_1 = [1500, 1800], B_2 = [1700, 2000],$
 \Rightarrow B' = B₁ ∩ B₂ = [1700, 1800] guaranted possible

Reasoning with possibilistic lower bounds in possibilistic logic

formula <p, a>

encoding the contrainte $\Pi(p) \ge a$

Mixed resolution rule:

 $(\neg p \lor q, a); |-- < q \lor r, b > if b > 1 - a$

Reasoning about ignorance

Multiple-agent extension of possibilistic logic

Multiple-agent extension of possibilistic logic

Modeling epistemic states
 in generalized possibilistic logic

Generalized possibilistic logic and ASP

- Generalized possibilistic logic can capture logic programing
- with **negation as a failure**,
- "q is certain provided that p is certain and that one has no proof of r"
- i.e. if $N(p) \ge a$ and $\Pi(\neg r) \ge b$ then $N(q) \ge a$

Which corresponds to formula

 $\neg(p, a) \lor \neg \langle \neg r, b \rangle \lor (q, a)$

Nested formula

 $(\mathbf{p}, \boldsymbol{\alpha})$ is true ou false!

possibilistic knowledge base ${\bf K}$

• either $N_K(p) \ge \alpha$

 (p, α) holds as (certainly) true

• either $N_K(p) < \alpha$ and (p, α) is false

$((\mathbf{p}, \alpha), \beta)$?

possibility distribution over possibility distributions (Zadeh 1978)

- possible at level 1 that the correct representation of information is

$$\pi = \pi_{\{(p, \alpha)\}} = \max(\mu_{[p]}, 1 - \alpha)$$

- possible at level $1 - \beta$ that correct representation of information is $\pi = 1$ everywhere (complete *ignorance*)

 $\pi = \max(\min(\pi_{\{(p,\alpha)\}}, 1), \min(1, 1-\beta)) = \max(\mu_{[p]}, 1-\min(\alpha, \beta))$

((p, α), β) equivalent to (p, min(α , β)) (discounting) counterpart of identity $\Box \Box p \equiv \Box p$ S5

Other applications

- Information fusion, preferences fusion
- Reasoning under inconsistency
- Expressing qualitative independence
- Qualitative decision under uncertainty
 - \succ pessimistic criterion, optimistic criterion
- Logical reprentation of a Sugeno integral
- Formal concept analysis

Conclusion

- The setting of *possibilistic logic* is suitable for handling a large number of issues in knowledge representation in AI
- close to *classical logic*, rich *modal* language
- Besides, in *quantitative* possibility theory

> a possibility distribution represents a *family* of probability distributions

- \succ imprecise regression
- possibility theory complementary to probability theory