Structure of oppositions, formal concept analysis and back to possibility theory

Henri Prade¹

1. IRIT, Université Paul Sabatier, Toulouse, France

9 aprile 2014

Prade (DISCo & IRIT)

Structures FCA / RST

9 aprile 2014 1 / 31

Structures of opposition as a unifying framework

Structures of opposition

- Square
- Hexagon
- Cube

Formal Concept Analysis

Rough Set Theory

Prade (DISCo & IRIT)

Structures FCA / RST

9 aprile 2014 2 / 31

The square of oppositions

Aristotle

AffIrmo / NegO

Another instance:

A:
$$\Box p$$
 E: $\Box \neg p$ **I**: $\Diamond p$ **O**: $\Diamond \neg p$
where $\Diamond p =_{def} \neg \Box \neg p$
(with $p \neq \bot, \top$)

Prade (DISCo & IRIT)

Structures FCA / RST

9 aprile 2014 3 / 31

Figura: Hexagon induced by a complete preorder (Robert Blanché, 1953)

 $U = A \lor E \quad Y = I \land O$

Three squares

(A. Sesmat, 1951)

Renewal of interest with the work of Jean-Yves Béziau

Prade (DISCo & IRIT)

Structures FCA / RST

9 aprile 2014 4 / 31

Another hexagon

Prade (DISCo & IRIT)

Structures FCA / RST

9 aprile 2014 5 / 31

< 6 b

Why hexagons ?

Figura: Hexagon induced by a **tri-partition** (A, B, C)

< ロ > < 同 > < 回 > < 回 >

From square to cube

Prade (DISCo & IRIT)

Structures FCA / RST

9 aprile 2014 7 / 31

• • • • • • • • • • • • •

Cube of opposition

Piaget's group

Klein's group of logical transformations with 4 elements

logical formula $\phi = f(p, q, r, ...)$

- identity $I(\phi) = \phi$
- negation $N(\phi) = \neg \phi$
- reciprocation $R(\phi) = f(\neg p, \neg q, \neg r, ...)$
- correlation $C(\phi) = \neg f(\neg p, \neg q, \neg r, ...)$
- N = RC, R = NC, C = NR, et I = NRC

at work in the two diagonal rectangles AaOo and Eeli

イロト イポト イヨト イヨト

A Relation R and a Subset S binary relation $R \neq \emptyset$ on $X \times Y$ (one may have Y = X) $xR = \{y \in Y | (x, y) \in R\}$ normalization assumption $\forall x \ xR \neq \emptyset$ we write xRy for $(x, y) \in R$, and $\neg(xRy)$ for $(x, y) \notin R$ subset $S \subseteq Y$ It gives birth to the two subsets

$$\begin{array}{l} \pmb{R}(\pmb{S}) = \{ x \in X | \exists \pmb{s} \in \pmb{S}, x \pmb{R} \pmb{s} \} = \{ x \in X \mid \pmb{S} \cap x \pmb{R} \neq \emptyset \} \\ \pmb{R}(\overline{\pmb{S}}) = \{ x \in X \mid \exists \pmb{s} \in \overline{\pmb{S}}, x \pmb{R} \pmb{s} \} \end{array}$$

and their complements

$$\overline{R(S)} = \{x \in X \mid \forall s \in S, \neg(xRs)\}$$
$$\overline{R(\overline{S})} = \{x \in X \mid \forall s \in \overline{S}, \neg(xRs)\} = \{x \in X \mid xR \subseteq S\}$$

Conclusion and perspectives

A square of opposition, as the square of modalities

- $R(\overline{S})$ and $R(\overline{S})$ are complements, as $\overline{R(S)}$ and R(S)assuming the X-normalization condition $\forall x, xR \neq \emptyset$:

- $\underline{R(\overline{S})} \subseteq R(S)$, and $\overline{R(S)} \subseteq R(\overline{S})$
- $R(\overline{S}) \cap \overline{R(S)} = \emptyset$; one may have $R(\overline{S}) \cup \overline{R(S)} \neq Y$ - $R(S) \cup R(\overline{S}) = X$; one may have $R(S) \cap R(\overline{S}) \neq \emptyset$

・ロト ・ 四ト ・ ヨト ・ ヨト

The complementary relation \overline{R}

 $x\overline{R}y$ iff $\neg(xRy)$ $\overline{R} \neq \emptyset$ (i.e., $R \neq X \times Y$) assume the X-normalization of \overline{R} , i.e. $\forall x, \exists y \neg (xRy)$

We get 4 other subsets of X from \overline{R}

$$\overline{R}(\overline{S}) = \{ x \in X | \exists s \in \overline{S}, \neg (xRs) \} = \{ x \in X | S \cup xR \neq X \} \\ \overline{R}(S) = \{ x \in X | \exists s \in S, \neg (xRs) \}$$

and their complements

$$\overline{R(S)} = \{x \in X \mid \forall s \notin S, xRs\}$$
$$\overline{R(S)} = \{x \in X \mid \forall s \in S, xRs\} = \{x \in X \mid S \subseteq xR\}$$

The 8 subsets can be organized into a cube of oppositions

Figura: Cube of oppositions induced by a relation *R* and a subset *S*

	Prade (DISCo & IRIT)	
--	---------	---------------	--

Structures FCA / RST

9 aprile 2014 13 / 31

Figura: Top and bottom facets of the cube of oppositions

Prade (DISCo & IRIT)

Structures FCA / RST

9 aprile 2014 14 / 31

< 6 b

Figura: Hexagon associated with the front facet of the cube

Prade (DISCo & IRIT)

Structures FCA / RST

9 aprile 2014 15 / 31

Figura: Hexagon induced by the left-hand side square

Prade (DISCo & IRIT)

Structures FCA / RST

9 aprile 2014 16 / 31

(Generalized) formal concept analysis

- relation $R \subseteq X \times Y = Obj \times Prop$ formal context R(x) the set of properties possessed by an object x, et $R^{-1}(y)$ the set of objects having property y.
- *R*[⊓](*S*) = {*x* ∈ *Obj*|*xR* ∩ *S* ≠ ∅} = ∪_{*y*∈*S*}*Ry* set of objects having at least a property in *S*
- *R^N(S)* = {x ∈ Obj|x*R* ⊆ *S*} = ∩_{y∉S}*Ry* set of objects having none property outside *S*
- *R*[△](*S*) = {*x* ∈ *Obj*|*xR* ⊇ *S*} = ∩_{*y*∈*S*}*Ry* set of objects having all the properties in *S*
- *R*[∇](*S*) = {*x* ∈ *Obj*|*xR* ∪ *S* ≠ *Prop*} = ∪_{*y*∉*S*}*Ry* set of objects to which at least a property outside *S* is missing

3

Example : $R^{\Pi}(\{5,6\}) = \{a, b, c, d, f\}$

Objects satisfying at least 5 or 6

Prade (DISCo & IRIT)

< E

< 17 ▶

Example : $R^{N}(\{5,6\}) = \{b\}$

Objects satisfying 5 and 6 and no other property

			pro	per	lies			
	1	2	3	4	5	6	7	8
а					×	×	×	×
b					\otimes	\otimes		
С						\times	\times	\times
d					\times	\times	\times	\times
е							\times	
f					\times	\times		\times
g	×	\times	\times	\times				
h		\times	\times	\times				
i				\times				

. .

Prade (DISCo & IRIT)

< ロ > < 同 > < 回 > < 回 >

Example : $R^{\Delta}(\{5,6\}) = \{a, b, d, f\}$

Objects satisfying at least both 5 and 6

Prade (DISCo & IRIT)

< E

< 17 ▶

Example : $R^{\nabla}(\{5,6\}) = \{a, b, c, d, e, f, g, h, i\}$

Objects missing at least one property other than 5 and 6

			Pre	· • • •				
	1	2	3	4	5	6	7	8
а					Х	×	\otimes	\otimes
b					\times	\times		
С						\times	\otimes	\otimes
d					\times	\times	\otimes	\otimes
е							\otimes	
f					\times	\times		\otimes
g	\otimes	\otimes	\otimes	\otimes				
h		\otimes	\otimes	\otimes				
i				\otimes				

nronerties

Prade (DISCo & IRIT)

э

< ロ > < 同 > < 回 > < 回 >

э

< 6 k

A well-known Galois Connection: formal concepts

Def. : A *formal concept* is a pair (T, S) of extent and intent

- such that $R^{\Delta}(T) = S$ and $R^{-1\Delta}(S) = T$
- (Ganter and Wille and Barbut and Montjardet)
 - This is equivalent to finding a pair of largest sets (T, S) such that $T \times S \subseteq R$.
 - All objects in *T* have all properties in *S*, all properties in *S* are satisfied by all objects in *T*.
 - $R^{\nabla}(T) = S$ and $R^{-1\nabla}(S) = T$ if and only if $(\overline{T}, \overline{S})$ is a formal concept.

Example

Formal concepts: ({g, h}, {2, 3, 4});({a, b, d, f}, {5, 6});({a, c, d}, {6, 7, 8}).

Prade (DISCo & IRIT)

ট ▶ ৰ ≣ ▶ ≣ ৩৭৫ 9 aprile 2014 24/31

< 17 ▶

Another correspondence: conjugated pairs

•
$$R^{\Pi}(T) = S$$
 and $R^{-1\Pi}(S) = T$;

• Conjugated pairs are independent subcontexts

•
$$R \subseteq (T \times S) \cup (\overline{T} \times \overline{S}).$$

< ロ > < 同 > < 回 > < 回 >

Example

Formal subcontexts : ({g, h, i}, {1,2, 3, 4});({a, b, c, d,e, f}, {5, 6, 7, 8})

properties								
	1	2	3	4	5	6	7	8
а					\odot	\odot	\odot	\odot
b					\odot	\odot		
С						\odot	\odot	\odot
d					\odot	\odot	\odot	\odot
е							\odot	
f					\odot	\odot		\odot
g	×	\times	\times	×				
h		\times	\times	\times				
i				×				

Prade (DISCo & IRIT)

Structures FCA / RST

9 aprile 2014 26 / 31

Possibility theory

- i)(weak) possibility measure $\Pi(A) = \max_{u \in A} \pi(u)$ $\Pi(A \cup B) = \max(\Pi(A), \Pi(B))$
- ii) dual (strong) necessity measure $N(A) = \min_{u \notin A} 1 - \pi(u) = 1 - \Pi(\overline{A})$ $N(A \cap B) = \min(N(A), N(B))$
- iii) (strong) possibility measure $\Delta(A) = \min_{u \in A} \pi(u)$ $\Delta(A \cup B) = \min(\Delta(A), \Delta(B))$
- iv) dual (weak) necessity measure $\nabla(A) = \max_{u \notin A} 1 - \pi(u) = 1 - \Delta(\overline{A})$ $\nabla(A \cap B) = \max(\nabla(A), \nabla(B))$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Boolean Posssibility theory

Let $E \subset X$ be a *non-empty* proper subset of possible situations in a larger set of states *X*.

Another subset (event) A is

- **potentially possible** if $A \cap E \neq \emptyset$: $\Pi(A) = 1$ (0 otherwise). if $x \in E$ then it is possibly in A.
- actually possible if A ⊆ E : Δ(A) = 1(0 otherwise).
 it is enough that x ∈ A to be sure x is possible.
- actually necessary if $E \subseteq A : N(A) = 1(0 \text{ otherwise})$. if $x \in E$ then it is surely in *A*.
- potentially necessary if $A \cup E \neq S$: $\nabla(A) = 1$ (0 otherwise).
 - if $x \notin E$ then it is possibly not in A

One has $\max(N(A), \Delta(A)) \le \min(\Pi(A), \nabla(A))$: only 7 Boolean 4-tuples $(N(A), \Delta(A), \Pi(A), \nabla(A))$ out of 16.

Encoding the relative position of sets

• There are 7 possible relative positions of $E \neq \emptyset$, S and A :

Position	П	Δ	Ν	∇
$A = \overline{E}$	0	0	0	0
$A \subset \overline{E}$	0	0	0	1
$\overline{E} \subset A$	1	0	0	0
Pure overlap	1	0	0	1
$E \subset A$	1	0	1	1
$A \subset E$	1	1	0	1
A = E	1	1	1	1

Tabella: Relative position of sets

Prade (DISCo & IRIT)

Structures FCA / RST

9 aprile 2014 29 / 31

Possibilistic hexagon

$R^N(Y) \cup R^{\Delta}(Y) \subseteq R^{\Pi}(Y) \cap R^{\nabla}(Y)$

all lines express implications

Prade (DISCo & IRIT)

Cube of possibility theory

Prade	(DISCo & IRIT
-------	---------------

Structures FCA / RST

9 aprile 2014 31/31

æ

イロト イヨト イヨト イヨト

- It can be shown that both RST (rough set theory) and FCA have the same type of underlying structure: the cube of oppositions
- We have pointed out how having in mind this structure may lead to substantially enlarge the theoretical settings of both RST and FCA
- This helped us to provide an organized view of the related literature and to suggest new directions worth investigating
- Such a structured view, which also includes possibility theory (and modal logic), may contribute to the foundations of a basic framework for information processing

Prade (DISCo & IRIT)

Structures FCA / RST

9 aprile 2014 32 / 31

- It can be shown that both RST (rough set theory) and FCA have the same type of underlying structure: the cube of oppositions
- We have pointed out how having in mind this structure may lead to substantially enlarge the theoretical settings of both RST and FCA
- This helped us to provide an organized view of the related literature and to suggest new directions worth investigating
- Such a structured view, which also includes possibility theory (and modal logic), may contribute to the foundations of a basic framework for information processing

- It can be shown that both RST (rough set theory) and FCA have the same type of underlying structure: the cube of oppositions
- We have pointed out how having in mind this structure may lead to substantially enlarge the theoretical settings of both RST and FCA
- This helped us to provide an organized view of the related literature and to suggest new directions worth investigating
- Such a structured view, which also includes possibility theory (and modal logic), may contribute to the foundations of a basic framework for information processing

Prade (DISCo & IRIT)

Structures FCA / RST

9 aprile 2014 32 / 31

イロト イポト イヨト イヨト

- It can be shown that both RST (rough set theory) and FCA have the same type of underlying structure: the cube of oppositions
- We have pointed out how having in mind this structure may lead to substantially enlarge the theoretical settings of both RST and FCA
- This helped us to provide an organized view of the related literature and to suggest new directions worth investigating
- Such a structured view, which also includes possibility theory (and modal logic), may contribute to the foundations of a basic framework for information processing

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- square of oppositions closely related to the study of syllogisms
- a cube of oppositions
- 3 theories developed for 30 years
 - for analyzing relations between objects and properties
 - for handling indiscernible objects, and
 - for modeling epistemic uncertainty have their roots in the square of oppositions

fuzzy relations

in formal concept analysis and rough sets

structures of opposition useful in argumentation