Multiple agent possibilistic logic Generalized possibilistic logic

Didier Dubois¹ and Henri Prade¹

1. IRIT, CNRS, University of Toulouse, France

- reasoning about pieces of (uncertain) information held by subgroups of agents
 - (p, A) "all agents in A are certain that p is true"
- *not so much* to try to take the best of the information provided by sets of agents viewed as sources as in fusion

rather to understand what claims a group of agents supports with what other groups they are in conflict, about what

• to distinguish the individual inconsistency of agents from the global inconsistency of a group of agents

Contents

- multiple-agent logic
- *multiple-agent* possibilistic logic

• generalized possibilistic logic

Multiple-agent logic - Syntax

- pairs (p_i, A_i) p_i proposition $A_i \neq \emptyset$ subset of agents $A_i \subseteq ALL$
- multiple-agent logic base = conjunction of such pairs
- $(\neg p \lor q, A), (p \lor r, B) \vdash (q \lor r, A \cap B))$
- inconsistency of K: $inc(K) = \cup \{A | K \vdash (\bot, A)\}$
- inc(K) subset of the agents individually inconsistent
- one may have $inc(K) = \emptyset$ even if K^* is inconsistent

$$K^* = \{p_i | (p_i, A_i) \in K\}$$

• Example $K = \{(p, B), (\neg p, \overline{B})\}$

Multiple-agent logic - Semantics

- (p_i, A_i) $\mathbf{N}(p_i) \supseteq A_i$ set necessity $\mathbf{N}(p \land q) = \mathbf{N}(p) \cap \mathbf{N}(q)$
- $\mathbf{N}(p) = \overline{\mathbf{\Pi}(\neg p)}$ and $\mathbf{\Pi}(p) = \bigcup_{\omega: \omega \models p} \pi_K(\omega)$
- *set-valued* possibility distribution $\pi_K(\omega) =$

 $\pi_{\{(p_i,A_i)|i=1,m\}}(\omega) = \bigcap_{i=1,m}([p_i](\omega) \cup \overline{A_i}))$ $[p_i](\omega) = ALL \text{ if } \omega \vDash p_i \text{ ; } [p_i](\omega) = \emptyset \text{ otherwise}$

- $K \vDash (p, A)$ iff $\forall \omega, \pi_K(\omega) \subseteq \pi_{\{(p,A)\}}(\omega)$
- $inc(K) = \bigcap_{\omega} \overline{\pi_K(\omega)}$ $inc(K) = \emptyset$ weaker than

 $\exists \omega, \pi_K(\omega) = ALL$: the agents are collectively consistent

- pairs (p_i, α_i) p_i proposition α_i certainty level
- standard possibilistic base = conjunction of such pairs
- $(\neg p \lor q, \alpha), (p \lor r, \beta) \vdash (q \lor r, \min(\alpha, \beta))$
- inconsistency level of a base K: $inc(K) = \max\{\alpha | K \vdash (\bot, \alpha)\}$
- inc(K) = 0 iff K^* is consistent $K^* = \{p_i | (p_i, \alpha_i) \in K\}$
- $K \vdash (p, \alpha)$ iff $K_{\alpha}^* \vdash p$ and $\alpha > inc(K)$

$$K_{\alpha}^* = \{ (p_i, \alpha_i) \in K, \alpha_i \ge \alpha \}$$

Standard possibilistic logic - Semantics

•
$$(p_i, \alpha_i)$$
 $N(p_i) \ge \alpha_i$
necessity $N(p \land q) = \min(N(p), N(q))$

- $N(p) = 1 \Pi(\neg p)$ and $\Pi(p) = \max_{\omega: \omega \models p} \pi_K(\omega)$
- possibility distribution

$$\pi_K(\omega) = \pi_{\{(p_i,\alpha_i)|i=1,m\}}(\omega)$$
$$= \min_{i=1,m} \max([p_i](\omega), 1 - \alpha_i)$$

 $[p_i](\omega) = 1$ if $\omega \vDash p_i$; $[p_i](\omega) = 0$ otherwise

- $K \vDash (p, \alpha)$ iff $\forall \omega, \pi_K(\omega) \le \pi_{\{(p,\alpha)\}}(\omega)$
- $inc(K) = 1 \max_{\omega} \pi_K(\omega)$

Multiple-agent possibilistic logic. Syntax

- pairs (p_i, α_i/A_i) p_i prop., α_i certainty level, A_i subs.
 agents
- Multiple-agent possibilistic logic base: conjunction of such pairs
- $(\neg p \lor q, \alpha/A), (p \lor r, \beta/B) \vdash (q \lor r, \min(\alpha, \beta)/A \cap B)$
- inconsistency level of a base K: $inc(K) = \bigcup \{ \alpha/A \mid K \vdash (\bot, \alpha/A) \}$
- inc(K) fuzzy subset of agents individually inconsistent

Multiple-agent possibilistic logic - Semantics

- $(p_i, \alpha_i/A_i)$ $\mathbf{N}(p_i) \supseteq \alpha_i/A_i$ $\alpha_i/A_i(a) = \alpha_i \text{ if } a_i \in A_i \text{ et } \alpha_i/A_i(a) = 0 \text{ si } a_i \notin A_i$ more generally $(p_i, \bigcup_j \alpha_{i,j}/A_{ij})$ *fuzzy* set-valued necessity $\mathbf{N}(p \land q) = \mathbf{N}(p) \cap \mathbf{N}(q)$ $\mathbf{N}(q) = \mathbf{N}(q) \cap \mathbf{N}(q)$
- $\mathbf{N}(p) = \mathbf{\Pi}(\neg p)$ and $\mathbf{\Pi}(p) = \bigcup_{\omega: \omega \vDash p} \pi_K(\omega)$
- inc(K) describes to what extent

different subsets of agents are inconsistent

to different degrees

Conclusion

- Multiple agent possibilistic logic
 - (A. Belhadi, D. Dubois, F. Khellaf-Haned, H. Prade)
 - J. of Applied Non-Classical Logics, Dec. 2013
- extensions

at most the agents in A believe *p at least one* agent in A believes *p* generalized possibilistic logic

Generalized possibilistic logic

Alternatively, we can consider satisfiability of a possibilistic formula by a possibility distribution on Ω

- For an epistemic state π : π ⊨ (p, α) if and only if N(p) ≥ α (this is known as "forcing").
- The set of (meta-)models of (p, α) is denoted by $\mathbf{Pi}((p, \alpha)) = \{\pi : \pi \models (p, \alpha)\}.$
- $\pi \models B \text{ iff } \pi \models (p, \alpha), \forall (p, \alpha) \in B: \mathbf{Pi}(B) = \bigcap_{(p, \alpha) \in B} \mathbf{Pi}((p, \alpha))$
- The bridge between the two semantics:

Proposition :
$$\mathbf{Pi}(B) = \{\pi : \pi(\omega) \le \pi_B(\omega), \forall \omega \in \Omega\}$$

 π_B is the least specific possibility distribution satisfying B.

Note that, while a possible world satisfies (p, α) to a degree, an epistemic state π satisfies it or not.

Beyond the conjunction connective : disjunction

• The conjunction of poslog formulas is captured by both semantics:

 $\mathbf{Pi}((p,\alpha) \land (q,\beta)) = \mathbf{Pi}((p,\alpha)) \cap \mathbf{Pi}((q,\beta)) = \{\pi | \pi \le \min(\pi_{(p,\alpha)}, \pi_{(q,\beta)})\}.$

• A disjunction of poslog formula is no longer a poslog formula, because

 $\mathbf{Pi}((p,\alpha) \lor (q,\beta)) = \{\pi \mid \pi_{(p,\alpha)} \ge \pi \text{ or } \pi_{(q,\beta)} \ge \pi\} = \mathbf{Pi}((p,\alpha)) \cup \mathbf{Pi}((q,\beta))$

no longer possesses a least specific element

• $(p, \alpha) \lor (q, \alpha)$ semantically differs from $(p \lor q, \alpha)$ since

 $\mathbf{Pi}((p \lor q, \alpha)) = \{\pi | \pi \le \max(\pi_{(p,\alpha)}, \pi_{(q,\alpha)})\} \supseteq \mathbf{Pi}((p,\alpha) \cup \mathbf{Pi}((q,\alpha)))$

Only the epistemic semantics can account for disjunction of poslog formulas.

Beyond the conjunction connective : negation

• The negation $\neg(p, \alpha)$ of a poslog formula is no longer a poslog formula, because

$$\mathbf{Pi}(\neg(p,\alpha)) = \{\pi \mid \pi \not\leq \pi_{(p,\alpha)}\} = \overline{\mathbf{Pi}((p,\alpha))} \supset \mathbf{Pi}((\neg p,\alpha)).$$

- Again, $\neg(p, \alpha)$ has no ontic semantics since $\mathbf{Pi}(\neg(p, \alpha))$ has no greatest element.
- At the epistemic semantic level, it is clear that $\neg((p, \alpha) \land (q, \beta)) \equiv \neg(p, \alpha) \lor \neg(q, \beta)$
- To generalize poslog with disjunction and conjunction of poslog formulas one must drop the minimal specificity semantics and adopt the epistemic semantics.

- Syntax : Generalized possibilistic logic formulas are
 - Atoms are pairs (p, α) where p is a propositional formula and $\alpha \in L$.
 - A conjunction of formulas is a formula.
 - A disjunction of formulas is a formula.
 - The negation of a formula is a formula.

• Semantic inference :

if Φ and Ψ are generalized poslog formulae, then $\Phi \models \Psi$ if and only if $\mathbf{Pi}(\Phi) \subseteq \mathbf{Pi}(\Psi)$. $B_{gen} \models \Psi$ iff $\cap_{\Phi \in B_{gen}} \mathbf{Pi}(\Phi) \subseteq \mathbf{Pi}(\Psi)$

• Inference rule : Modus ponens : $\Phi, \neg \Phi \lor \Psi \vdash \Psi$.

The difference between the formulas $(\neg p \lor q, \alpha)$ and $\neg (p, \alpha) \lor (q, \alpha), \alpha > 0$, in the presence of (p, α) affects inferences one may draw from them

- $(\neg p \lor q, \alpha); (p, \alpha) \vdash (q, \alpha) \text{ and } (\neg p \lor q, \alpha); (\neg q, \alpha) \vdash (\neg p, \alpha) \text{ hold } (N(\neg p) \ge \alpha).$
- $\neg(p, \alpha) \lor (q, \alpha); (p, \alpha) \vdash (q, \alpha) \text{ still holds}$ but $\neg(p, \alpha) \lor (q, \alpha); (\neg q, \alpha) \vdash \neg(p, \alpha) \text{ only } (N(p) < \alpha).$

Besides,

 $\models (\neg p \lor q, \alpha) \to ((p, \alpha) \to (q, \alpha)) (= \neg (\neg p \lor q, \alpha) \lor \neg (p, \alpha) \lor (q, \alpha)) \text{ holds:}$

it just says: if $N(\neg p \lor q) \ge \alpha$ and $N(p) \ge \alpha$ then $N(q) \ge \alpha$...

This is a weighted extension of axiom K.

A classical propositional language \mathcal{L} Let $\Lambda = \{0, \frac{1}{k}, \frac{2}{k}, ..., 1\}$, where $k \in \mathbb{N} \setminus \{0\}$, the set of considered certainty levels

Idea encapsulate each formula α of \mathcal{L} in a *valued* modality denoted $N_a(\alpha), a > 0$.

possibility:
$$\Pi_b(\neg \alpha) := \neg N_a(\alpha), a + b = 1 - \frac{1}{k}.$$

- $N_a(\alpha)$ encodes constraint $N([\alpha]) \ge a$ for a > 0: previously denoted (α, a)
- $\Pi_b(\alpha)$ encodes constraint $\Pi([\alpha]) \ge b$ for b > 0
- $\neg N_a(\alpha)$ thus encodes $\Pi([\neg \alpha]) > 1 a$, then $\Pi([\neg \alpha]) \ge 1 a + \frac{1}{k}$, i.e. $\Pi_{1-a+\frac{1}{k}}(\neg \alpha)$
- we need at least 3 certainty levels $(k \ge 2)$ in order to be able to distinguish between $\neg N_1(\alpha)$ and $\Pi_1(\neg \alpha)$.

$L\Pi G$: Axioms

• (LP)

•
$$(K): N_a(\alpha \to \beta) \to (N_a(\alpha) \to N_a(\beta));$$

- $(N): N_1(\alpha), \forall \alpha \text{ tel que } \vdash_{LP} \alpha;$
- $(D): N_a(\alpha) \to \Pi_1(\alpha), \forall a > 0;$
- $(AF): N_{a_1}(\alpha) \to N_{a_2}(\alpha), \text{ si } a_1 \ge a_2.$

Inference rule: (MP) $\{\phi, \phi \rightarrow \psi\} \vdash \psi$.

One recover the possibilistic logic modus ponens and the hybrid rule

- $\{N_{a_1}(\alpha), N_{a_2}(\alpha \to \beta)\} \vdash N_{\min(a_1, a_2)}(\beta)$
- $\{\Pi_{a_1}(\alpha), N_{a_2}(\alpha \to \beta)\} \vdash \Pi_{a_1}(\beta) \text{ si } a_2 > 1 a_1$

The set of models of a formula ϕ in $L\Pi G$ is a set of possibility distributions π

Semantics

The satisfaction of formulas in $L\Pi G$ by possibility distributions is defined recursively:

- $\pi \models N_a(\alpha)$, iff $N([\alpha]) = \inf_{w \models \neg \alpha} 1 \pi(w) \ge a, \forall \alpha \in \mathcal{L}$.
- $\pi \models \neg \phi$, iff $\pi \not\models \phi$.
- $\pi \models \phi \land \psi$, iff $\pi \models \phi$ and $\pi \models \psi$.

Let \mathcal{B} be a base, the semantical inference $\mathcal{B} \models \phi$ means :

$$\forall \pi, \text{ if } \pi \models \psi, \forall \psi \in \mathcal{B} \text{ then } \pi \models \phi.$$

Compleness Theorem $\mathcal{B} \vdash_{L\Pi G} \phi \iff \mathcal{B} \models_{L\Pi G} \phi.$

- As in propositional logic, $L\Pi G$ is sound and complete for its classical interpretations
- A propositional interpretation of the language LΠG
 v: {N_a(α), α ∈ L, a ∈ Λ \ {0}} → {0, 1} that satisfies (AF) is a set function:

$$g_v([\alpha]) = \max\{a : v(N_a(\alpha)) = 1\}.$$

- If v satisfies K, N, D then $g_v(\mathcal{V}) = 1, g_v(\emptyset) = 0$ and $g_v([\alpha \land \beta]) = \min(g_v([\alpha], g_v([\beta])).$
- g_v is a necessity measure based on a unique possibility distribution π_v .

Thus classical interpretations of $L\Pi G$ are in a one-to-one correspondence with the possibility distributions.