Multiple agent possibilistic logic Generalized possibilistic logic

Didier Dubois ${ }^{1}$ and Henri Prade ${ }^{1}$

1. IRIT, CNRS, University of Toulouse, France

Introduction

- reasoning about pieces of (uncertain) information held by subgroups of agents
$(p, A) \quad$ "all agents in A are certain that p is true"
- not so much to try to take the best of the information provided by sets of agents viewed as sources as in fusion
rather to understand what claims a groupof agents supports with what other groups they are in conflict, about what
- to distinguish the individual inconsistency of agents from the global inconsistency of a group of agents

Contents

- multiple-agent logic
- multiple-agent possibilistic logic
- generalized possibilistic logic

Multiple-agent logic - Syntax

- pairs $\left(p_{i}, A_{i}\right) \quad p_{i}$ proposition $\quad A_{i} \neq \emptyset$ subset

$$
\text { of agents } A_{i} \subseteq A L L
$$

- multiple-agent logic base $=$ conjunction of such pairs
- $\quad(\neg p \vee q, A),(p \vee r, B) \vdash(q \vee r, A \cap B))$
- inconsistency of $K: \operatorname{inc}(K)=\cup\{A \mid K \vdash(\perp, A)\}$
- inc (K) subset of the agents individually inconsistent
- one may have $\operatorname{inc}(K)=\emptyset$ even if K^{*} is inconsistent

$$
K^{*}=\left\{p_{i} \mid\left(p_{i}, A_{i}\right) \in K\right\}
$$

- Example $K=\{(p, B),(\neg p, \bar{B})\}$

Multiple-agent logic - Semantics

- $\left(p_{i}, A_{i}\right) \quad \mathbf{N}\left(p_{i}\right) \supseteq A_{i}$
set necessity $\quad \mathbf{N}(p \wedge q)=\mathbf{N}(p) \cap \mathbf{N}(q)$
- $\mathbf{N}(p)=\overline{\Pi(\neg p)}$ and $\boldsymbol{\Pi}(p)=\bigcup_{\omega: \omega \vDash p} \pi_{K}(\omega)$
- set-valued possibility distribution $\pi_{K}(\omega)=$

$$
\begin{aligned}
\pi_{\left\{\left(p_{i}, A_{i}\right) \mid i=1, m\right\}}(\omega) & \left.=\bigcap_{i=1, m}\left(\left[p_{i}\right](\omega) \cup \overline{A_{i}}\right)\right) \\
{\left[p_{i}\right](\omega) } & =A L L \text { if } \omega \vDash p_{i} ;\left[p_{i}\right](\omega)=\emptyset \text { otherwise }
\end{aligned}
$$

- $K \vDash(p, A)$ iff $\forall \omega, \pi_{K}(\omega) \subseteq \pi_{\{(p, A)\}}(\omega)$
- $\operatorname{inc}(K)=\cap_{\omega} \overline{\pi_{K}(\omega)} \quad \operatorname{inc}(K)=\emptyset$ weaker than
$\exists \omega, \pi_{K}(\omega)=A L L$: the agents are collectively consistent

Standard possibilistic logic - Syntax

- pairs $\left(p_{i}, \alpha_{i}\right) \quad p_{i}$ proposition $\quad \alpha_{i}$ certainty level
- standard possibilistic base $=$ conjunction of such pairs
- $(\neg p \vee q, \alpha),(p \vee r, \beta) \vdash(q \vee r, \min (\alpha, \beta))$
- inconsistency level of a base K :

$$
\operatorname{inc}(K)=\max \{\alpha \mid K \vdash(\perp, \alpha)\}
$$

- $\operatorname{inc}(K)=0$ iff K^{*} is consistent $K^{*}=\left\{p_{i} \mid\left(p_{i}, \alpha_{i}\right) \in K\right\}$
- $K \vdash(p, \alpha)$ iff $K_{\alpha}^{*} \vdash p$ and $\alpha>\operatorname{inc}(K)$

$$
K_{\alpha}^{*}=\left\{\left(p_{i}, \alpha_{i}\right) \in K, \alpha_{i} \geq \alpha\right\}
$$

Standard possibilistic logic - Semantics

- $\left(p_{i}, \alpha_{i}\right) \quad N\left(p_{i}\right) \geq \alpha_{i}$
necessity $N(p \wedge q)=\min (N(p), N(q))$
- $N(p)=1-\Pi(\neg p)$ and $\Pi(p)=\max _{\omega: \omega \neq p} \pi_{K}(\omega)$
- possibility distribution

$$
\begin{aligned}
& \pi_{K}(\omega)=\pi_{\left\{\left(p_{i}, \alpha_{i}\right) \mid i=1, m\right\}}(\omega) \\
& =\min _{i=1, m} \max \left(\left[p_{i}\right](\omega), 1-\alpha_{i}\right) \\
& {\left[p_{i}\right](\omega)=1 \text { if } \omega \vDash p_{i} ;\left[p_{i}\right](\omega)=0 \text { otherwise }}
\end{aligned}
$$

- $K \vDash(p, \alpha)$ iff $\forall \omega, \pi_{K}(\omega) \leq \pi_{\{(p, \alpha)\}}(\omega)$
- $\operatorname{inc}(K)=1-\max _{\omega} \pi_{K}(\omega)$

Multiple-agent possibilistic logic. Syntax

- pairs $\left(p_{i}, \alpha_{i} / A_{i}\right) \quad p_{i}$ prop., α_{i} certainty level, A_{i} subs. agents
- Multiple-agent possibilistic logic base: conjunction of such pairs
- $(\neg p \vee q, \alpha / A),(p \vee r, \beta / B) \vdash(q \vee r, \min (\alpha, \beta) / A \cap B)$
- inconsistency level of a base K :

$$
\operatorname{inc}(K)=\cup\{\alpha / A \mid K \vdash(\perp, \alpha / A)\}
$$

- $\operatorname{inc}(K)$ fuzzy subset of agents individually inconsistent

Multiple-agent possibilistic logic - Semantics

- $\left(p_{i}, \alpha_{i} / A_{i}\right) \quad \mathbf{N}\left(p_{i}\right) \supseteq \alpha_{i} / A_{i}$
$\alpha_{i} / A_{i}(a)=\alpha_{i}$ if $a_{i} \in A_{i}$ et $\alpha_{i} / A_{i}(a)=0$ si $a_{i} \notin A_{i}$
more generally $\left(p_{i}, \bigcup_{j} \alpha_{i, j} / A_{i j}\right)$
fuzzy set-valued necessity $\mathbf{N}(p \wedge q)=\mathbf{N}(p) \cap \mathbf{N}(q)$
- $\mathbf{N}(p)=\overline{\Pi(\neg p)}$ and $\boldsymbol{\Pi}(p)=\cup_{\omega: \omega \neq p} \pi_{K}(\omega)$
- $\operatorname{inc}(K)$ describes to what extent
different subsets of agents are inconsistent
to different degrees

Conclusion

- Multiple agent possibilistic logic
(A. Belhadi, D. Dubois, F. Khellaf-Haned, H. Prade)
J. of Applied Non-Classical Logics, Dec. 2013
- extensions
at most the agents in A believe p
at least one agent in A believes p generalized possibilistic logic

Generalized possibilistic logic

Possibilistic logic : epistemic semantics

Alternatively, we can consider satisfiability of a possibilistic formula by a possibility distribution on Ω

- For an epistemic state $\pi: \pi \models(p, \alpha)$ if and only if $N(p) \geq \alpha$ (this is known as "forcing").
- The set of (meta-)models of (p, α) is denoted by $\mathbf{P i}((p, \alpha))=\{\pi: \pi \models(p, \alpha)\}$.
- $\pi \models B$ iff $\pi \models(p, \alpha), \forall(p, \alpha) \in B: \mathbf{P i}(B)=\bigcap_{(p, \alpha) \in B} \mathbf{P i}((p, \alpha))$
- The bridge between the two semantics:

$$
\text { Proposition : } \operatorname{Pi}(B)=\left\{\pi: \pi(\omega) \leq \pi_{B}(\omega), \forall \omega \in \Omega\right\}
$$

π_{B} is the least specific possibility distribution satisfying B.
Note that, while a possible world satisfies (p, α) to a degree, an epistemic state π satisfies it or not.

Beyond the conjunction connective : disjunction

- The conjunction of poslog formulas is captured by both semantics:

$$
\mathbf{P i}((p, \alpha) \wedge(q, \beta))=\mathbf{P i}((p, \alpha)) \cap \mathbf{P i}((q, \beta))=\left\{\pi \mid \pi \leq \min \left(\pi_{(p, \alpha)}, \pi_{(q, \beta)}\right)\right\} .
$$

- A disjunction of poslog formula is no longer a poslog formula, because

$$
\mathbf{P i}((p, \alpha) \vee(q, \beta))=\left\{\pi \mid \pi_{(p, \alpha)} \geq \pi \text { or } \pi_{(q, \beta)} \geq \pi\right\}=\mathbf{P i}((p, \alpha)) \cup \mathbf{P i}((q, \beta))
$$

no longer possesses a least specific element

- $(p, \alpha) \vee(q, \alpha)$ semantically differs from $(p \vee q, \alpha)$ since

$$
\mathbf{P i}((p \vee q, \alpha))=\left\{\pi \mid \pi \leq \max \left(\pi_{(p, \alpha)}, \pi_{(q, \alpha)}\right)\right\} \supseteq \mathbf{P i}((p, \alpha) \cup \mathbf{P i}((q, \alpha))
$$

Only the epistemic semantics can account for disjunction of poslog formulas.

Beyond the conjunction connective : negation

- The negation $\neg(p, \alpha)$ of a poslog formula is no longer a poslog formula, because

$$
\mathbf{P i}(\neg(p, \alpha))=\left\{\pi \mid \pi \not \leq \pi_{(p, \alpha)}\right\}=\overline{\mathbf{P i}((p, \alpha))} \supset \mathbf{P i}((\neg p, \alpha)) .
$$

- Again, $\neg(p, \alpha)$ has no ontic semantics since $\mathbf{P i}(\neg(p, \alpha))$ has no greatest element.
- At the epistemic semantic level, it is clear that $\neg((p, \alpha) \wedge(q, \beta)) \equiv \neg(p, \alpha) \vee \neg(q, \beta)$
- To generalize poslog with disjunction and conjunction of poslog formulas one must drop the minimal specificity semantics and adopt the epistemic semantics.

Generalized possibilistic logic

- Syntax : Generalized possibilistic logic formulas are
- Atoms are pairs (p, α) where p is a propositional formula and $\alpha \in L$.
- A conjunction of formulas is a formula.
- A disjunction of formulas is a formula.
- The negation of a formula is a formula.
- Semantic inference :
if Φ and Ψ are generalized poslog formulae, then $\Phi \models \Psi$ if and only if $\mathbf{P i}(\Phi) \subseteq \mathbf{P i}(\Psi)$.
$B_{\text {gen }} \models \Psi$ iff $\cap_{\Phi \in B_{g e n}} \mathbf{P i}(\Phi) \subseteq \mathbf{P i}(\Psi)$
- Inference rule : Modus ponens : $\Phi, \neg \Phi \vee \Psi \vdash \Psi$.

Possibilistic logic vs. generalised poslog : example

The difference between the formulas $(\neg p \vee q, \alpha)$ and $\neg(p, \alpha) \vee(q, \alpha), \alpha>0$, in the presence of (p, α) affects inferences one may draw from them

- $(\neg p \vee q, \alpha) ;(p, \alpha) \vdash(q, \alpha)$ and $(\neg p \vee q, \alpha) ;(\neg q, \alpha) \vdash(\neg p, \alpha)$ hold $(N(\neg p) \geq \alpha)$.
- $\neg(p, \alpha) \vee(q, \alpha) ;(p, \alpha) \vdash(q, \alpha)$ still holds
but $\neg(p, \alpha) \vee(q, \alpha) ;(\neg q, \alpha) \vdash \neg(p, \alpha)$ only $(N(p)<\alpha)$.
Besides,
$\vDash(\neg p \vee q, \alpha) \rightarrow((p, \alpha) \rightarrow(q, \alpha))(=\neg(\neg p \vee q, \alpha) \vee \neg(p, \alpha) \vee(q, \alpha))$ holds:
it just says: if $N(\neg p \vee q) \geq \alpha$ and $N(p) \geq \alpha$ then $N(q) \geq \alpha \ldots$
This is a weighted extension of axiom K.

Syntax for weighted epistemic formulas

A classical propositional language \mathcal{L}
Let $\Lambda=\left\{0, \frac{1}{k}, \frac{2}{k}, \ldots, 1\right\}$, where $k \in \mathbb{N} \backslash\{0\}$, the set of considered certainty levels

Idea encapsulate each formula α of \mathcal{L} in a valued modality denoted $N_{a}(\alpha), a>0$.

$$
\text { possibility: } \Pi_{b}(\neg \alpha):=\neg N_{a}(\alpha), a+b=1-\frac{1}{k} .
$$

- $N_{a}(\alpha)$ encodes constraint $N([\alpha]) \geq a$ for $a>0$: previously denoted (α, a)
- $\Pi_{b}(\alpha)$ encodes constraint $\Pi([\alpha]) \geq b$ for $b>0$
- $\neg N_{a}(\alpha)$ thus encodes $\Pi([\neg \alpha])>1-a$, then $\Pi([\neg \alpha]) \geq 1-a+\frac{1}{k}$, i.e. $\Pi_{1-a+\frac{1}{k}}(\neg \alpha)$
- we need at least 3 certainty levels ($k \geq 2$) in order to be able to distinguish between $\neg N_{1}(\alpha)$ and $\Pi_{1}(\neg \alpha)$.

$L \Pi G$: Axioms

- (LP)
- $(K): N_{a}(\alpha \rightarrow \beta) \rightarrow\left(N_{a}(\alpha) \rightarrow N_{a}(\beta)\right)$;
- $(N): N_{1}(\alpha), \forall \alpha$ tel que $\vdash_{L P} \alpha$;
- $(D): N_{a}(\alpha) \rightarrow \Pi_{1}(\alpha), \forall a>0$;
- $(A F): N_{a_{1}}(\alpha) \rightarrow N_{a_{2}}(\alpha)$, si $a_{1} \geq a_{2}$.

Inference rule: (MP) $\{\phi, \phi \rightarrow \psi\} \vdash \psi$.

One recover the possibilistic logic modus ponens and the hybrid rule

- $\left\{N_{a_{1}}(\alpha), N_{a_{2}}(\alpha \rightarrow \beta)\right\} \vdash N_{\min \left(a_{1}, a_{2}\right)}(\beta)$
- $\left\{\Pi_{a_{1}}(\alpha), N_{a_{2}}(\alpha \rightarrow \beta)\right\} \vdash \Pi_{a_{1}}(\beta)$ si $a_{2}>1-a_{1}$

The set of models of a formula ϕ in $L \Pi G$ is a set of possibility distributions π

Semantics

The satisfaction of formulas in $L \Pi G$ by possibility distributions is defined recursively:

- $\pi \models N_{a}(\alpha)$, iff $N([\alpha])=\inf _{w \models \neg \alpha} 1-\pi(w) \geq a, \forall \alpha \in \mathcal{L}$.
- $\pi \models \neg \phi$, iff $\pi \not \models \phi$.
- $\pi \models \phi \wedge \psi$, iff $\pi \models \phi$ and $\pi \models \psi$.

Let \mathcal{B} be a base, the semantical inference $\mathcal{B} \models \phi$ means :

$$
\forall \pi \text {, if } \pi \models \psi, \forall \psi \in \mathcal{B} \text { then } \pi \models \phi .
$$

Compleness

Compleness Theorem $\mathcal{B} \vdash_{L \Pi G} \phi \Longleftrightarrow \mathcal{B} \models_{L \Pi G} \phi$.

- As in propositional logic, $L \Pi G$ is sound and complete for its classical interpretations
- A propositional interpretation of the language $L \Pi G$ $v:\left\{N_{a}(\alpha), \alpha \in \mathcal{L}, a \in \Lambda \backslash\{0\}\right\} \rightarrow\{0,1\}$ that satisfies (AF) is a set function:

$$
g_{v}([\alpha])=\max \left\{a: v\left(N_{a}(\alpha)\right)=1\right\} .
$$

- If v satisfies $\mathrm{K}, \mathrm{N}, \mathrm{D}$ then $g_{v}(\mathcal{V})=1, g_{v}(\emptyset)=0$ and $g_{v}([\alpha \wedge \beta])=\min \left(g_{v}\left([\alpha], g_{v}([\beta])\right)\right.$.
- g_{v} is a necessity measure based on a unique possibility distribution π_{v}.

Thus classical interpretations of $L \Pi G$ are in a one-to-one correspondence with the possibility distributions.

