State-of-the-Art on Reciprocal Relations

Prof. dr. Bernard De Baets

Ghent University, Belgium

SSIU 2014 \& WIUI 2014, Olomouc, Czech Republic

$$
\text { April 10-11, } 2014
$$

Contents

Part I: Introduction

- Intransitivity of indifference
- Intransitivity of preference

Part II: Theoretical background

- Reciprocal relations
- Winning probability relations

Part III: Applications

- Graded stochastic dominance
- Poset ranking
- Ranking representability in ordinal regression

Part IV: Beyond transitivity

1. Intransitivity of indifference

The Sorites Paradox

Many versions of the Sorites Paradox:

- The Bald Man Paradox: there is no particular number of hairs whose loss marks the transition to
 boldness
- The Heap Paradox: no grain of wheat can be identified as making the difference between a heap and not being a heap
- The Luce Paradox: sugar in coffee example

The Poincaré Paradox

Approximate equality of real numbers is not transitive, i.e. stating that $a \in \mathbb{R}$ is similar to $b \in \mathbb{R}$ if

$$
|a-b| \leq \epsilon
$$

is not transitive

Possible symmetric configurations ($n=3$)

(b)
(C)

The Poincaré Paradox revisited

The fuzzy relation

$$
E_{\epsilon}(a, b)=\max \left(1-\frac{|a-b|}{\epsilon}, 0\right)
$$

is T_{L}-transitive, i.e. $E_{\epsilon}(a, b)+E_{\epsilon}(b, c)-1 \leq E_{\epsilon}(a, c)$

The function $d_{\epsilon}=1-E_{\epsilon}$ is a metric: the triangle inequality holds

$$
d_{\epsilon}(a, b)+d_{\epsilon}(b, c) \geq d_{\epsilon}(a, c)
$$

T-Transitivity of fuzzy relations

Fuzzy relation: $R: A^{2} \rightarrow[0,1]$, with a unipolar semantics

- A fuzzy relation R on A is called T-transitive, with T a t-norm, if

$$
T(R(a, b), R(b, c)) \leq R(a, c)
$$

for any a, b, c in A

Triangular norms

Basic continuous t-norms:

minimum	$T_{\mathbf{M}}$	$\min (x, y)$
product	$T_{\mathbf{P}}$	$x y$
Łukasiewicz t-norm	$T_{\mathbf{L}}$	$\max (x+y-1,0)$

T-triplets

Consider three elements a_{1}, a_{2} and a_{3} :

- A permutation $\left(a_{i}, a_{j}, a_{k}\right)$ is called a T-triplet if

$$
T\left(R\left(a_{i}, a_{j}\right), R\left(a_{j}, a_{k}\right)\right) \leq R\left(a_{i}, a_{k}\right)
$$

- There can be at most $6 T$-triplets
- T-transitivity expresses that there always are $6 T$-triplets

2. Intransitivity of preference

Transitivity of preference

Transitivity of preference is a fundamental principle underlying most major rational, prescriptive and descriptive contemporary models of decision making

- Rationality of individual and collective choice: a transitive person, group or society that prefers choice option x to y and y to z must prefer x to z
- Intransitive relations are often perceived as something paradoxical and are associated with irrational behaviour
- Main argument: money pump

Intransitivity of preference

- Transitivity is expected to hold if preferences are based on a single scale (fitness maximization)
- Intransitive choices have been reported from both humans and other animals, such as gray jays (Waite, 2001) collecting food for storage

- Bounded rationality: intransitive choices are a suboptimal byproduct of heuristics that usually perform well in real-world situations (Kahneman and Tversky, 1969)
- Intransitive choices can result from decision strategies that maximize fitness (Houston, McNamara and Steer, 2007), as a kind of insurance against a run of bad luck

Intransitivity in life

Life provides many examples of intransitive relations, they often seem to be necessary and play a positive role

- sports: team A which defeated team B, which in turn won from C, can be overcome by C
- 13 love triangles:

The God-Einstein-Oppenheimer dice puzzle

(New York Times, 30-03-09)
Integers 1-18 distributed over 3 dice:

A	1	2	13	14	15	16
B	7	8	9	10	11	12
C	3	4	5	6	17	18

Winning probabilities:

Statistical preference

Statistical preference: X is preferred to Y if $\operatorname{Prob}\{X>Y\}>\frac{1}{2}$

- May lead to cycles (Steinhaus and Trybuła, 1959):

- There exist 10.705 cyclic distributions of the numbers $1-18$ and 15 of them constitute a cycle of the highest equal probability $21 / 36=7 / 12$

A single die variant

Integers 1-18 distributed over 1 die: 3 numbers on each face

15	12	17	13	4	14	16	11	3	2	1	10

Winning probabilities:

The single die can be seen as 3 coupled dice

Rock-Paper-Scissors

Cyclic dice are a type of Rock-Paper-Scissors (RPS): (ancient children's game, jan-ken-pon, rochambeau)

- rock defeats scissors
- scissors defeat paper
- rock loses to paper

Rock-Paper-Scissors

The Rock-Paper-Scissors game:

- is often used as a selection method in a way similar to coin flipping, drawing straws, or throwing dice
- unlike truly random selection methods, RPS can be played with a degree of skill: recognize and exploit the non-random behaviour of an opponent
- World RPS Society:
"Serving the needs of decision makers since 1918"

Rock-Paper-Scissors

RPS in voting

The voting paradox of Condorcet (Marquis de Condorcet, 1785)
voter 1: $A>B>C$
voter 2: $B>C>A$
voter 3: $C>A>B$

Inspiration to Arrow's impossibility theorem: there is no choice procedure meeting the democratic assumptions

RPS in evolutionary biology: lizards

Common side-blotched lizard mating strategies (Sinervo and Lively, Nature, 1996) depending on the colour of throats of males

RPS in evolutionary biology: lizards

Lizard mating strategies:

- orange beats blue: males with orange throats can take territory from blue-throated males because they have more testosterone and body mass. As a result, orange males control large territories containing many females
- blue beats yellow: blue-throated males cooperate with each other to defend territories and closely guard females, so they are able to beat the sneaking strategy of yellow-throated males
- yellow beats orange: yellow-throated males are not territorial, but mimic female behavior and coloration to sneak onto the large territories of orange males to mate with females

RPS in evolutionary biology: Survival of the Weakest

Cyclic competitions in spatial ecosystems (Reichenbach et al., 2007; Frey, 2009) (alternative to Lotka-Volterra equations, computer simulations using cellular automata)

- in large populations, the weakest species would - with very high probability - come out as the victor
- biodiversity in RPS games is negatively correlated with the rate of migration: critical rate of migration $\epsilon_{\text {crit }}$ above which biodiversity gets lost

Simulating microbial competition

Simulation setting:

- three subpopulations:

- initial population density: 25% A $, 25 \% \sqrt{B}, 25 \% ~ C, 25 \% \square$
- cellular automaton on a square grid
- environmental conditions discarded

Simulating microbial competition: mechanisms

- Reproduction (μ):

- Selection (σ):

- Migration (ϵ):

Simulation experiment 1

$$
\epsilon<\epsilon_{C}
$$

Simulation experiment 2

$$
\epsilon>\epsilon_{C}
$$

3. Reciprocal relations

Reciprocal relations

Reciprocal relation: $Q: A^{2} \rightarrow[0,1]$, with a bipolar semantics, satisfying

$$
Q(a, b)+Q(b, a)=1
$$

- Example 1: 3-valued representation of a complete relation R

$$
Q(a, b)=\left\{\begin{array}{cl}
1 & , \text { if } R(a, b)=1 \text { and } R(b, a)=0 \\
1 / 2 & , \text { if } R(a, b)=R(b, a)=1 \\
0 & , \text { if } R(a, b)=0 \text { and } R(b, a)=1
\end{array}\right.
$$

- Example 2: winning probabilities associated with a random vector $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$

$$
Q\left(X_{i}, X_{j}\right)=\operatorname{Prob}\left\{X_{i}>X_{j}\right\}+\frac{1}{2} \operatorname{Prob}\left\{X_{i}=X_{j}\right\}
$$

Reciprocal relations

- Example 3: popular definition of a "fuzzy" preference relation

$$
Q(a, b)=\left\{\begin{array}{cl}
\in] 1 / 2,1] & , \text { if } a \text { is rather preferred to } b \\
1 / 2 & , \text { if } a \text { and } b \text { are indifferent } \\
\in[0,1 / 2[& , \text { if } b \text { is rather preferred to } a
\end{array}\right.
$$

obeying the constraint $Q(a, b)+Q(b, a)=1$, providing it with a bipolar semantics

Strong reservations against use of the word "fuzzy"

- Bipolar semantics
- Intersection makes no sense
(cfr. intersection of complete relations is not complete)
- Fuzzy preference structures are more expressive

Possible complete asymmetric configurations ($n=3$)

Oppenheimer's set of dice

Reciprocal relation:

$$
Q=\left(\begin{array}{ccc}
1 / 2 & 24 / 36 & 16 / 36 \\
12 / 36 & 1 / 2 & 24 / 36 \\
20 / 36 & 12 / 36 & 1 / 2
\end{array}\right)
$$

Stochastic transitivity

A reciprocal relation Q is called g-stochastic transitive if

$$
(Q(a, b) \geq 1 / 2 \wedge Q(b, c) \geq 1 / 2) \Rightarrow g(Q(a, b), Q(b, c)) \leq Q(a, c)
$$

- weak stochastic transitivity $(g=1 / 2)$: iff $1 / 2$-cut of Q is transitive
- moderate stochastic transitivity $(g=\min)$: iff all α-cuts (with $\alpha \geq 1 / 2$) are transitive
- strong stochastic transitivity ($g=\max$)

A reciprocal relation Q is called partially stochastic transitive if

$$
(Q(a, b)>1 / 2 \wedge Q(b, c)>1 / 2) \Rightarrow \min (Q(a, b), Q(b, c)) \leq Q(a, c) ;
$$

iff all α-cuts (with $\alpha>1 / 2$) are transitive

Isostochastic transitivity

A reciprocal relation Q is called h-isostochastic transitive if

$$
(Q(a, b) \geq 1 / 2 \wedge Q(b, c) \geq 1 / 2) \Rightarrow h(Q(a, b), Q(b, c))=Q(a, c)
$$

- A reciprocal relation Q is called multiplicatively transitive (Tanino) if

$$
\frac{Q(a, c)}{Q(c, a)}=\frac{Q(a, b)}{Q(b, a)} \cdot \frac{Q(b, c)}{Q(c, b)}
$$

- Multiplicative transitivity $=h$-isostochastic transitivity w.r.t.

$$
h(x, y)=\frac{x y}{x y+(1-x)(1-y)}
$$

(Hamacher t-conorm of the 3Π-uninorm)

Cycle-transitivity

Reciprocal relation Q :

$\alpha_{a b c}$	$\min \{Q(a, b), Q(b, c), Q(c, a)\}$
$\beta_{a b c}$	$\operatorname{median}\{Q(a, b), Q(b, c), Q(c, a)\}$
$\gamma_{a b c}$	$\max \{Q(a, b), Q(b, c), Q(c, a)\}$

Cycle-transitivity

- A reciprocal relation Q is called cycle-transitive w.r.t. an upper bound function U if

$$
L\left(\alpha_{a b c}, \beta_{a b c}, \gamma_{a b c}\right) \leq \alpha_{a b c}+\beta_{a b c}+\gamma_{a b c}-1 \leq U\left(\alpha_{a b c}, \beta_{a b c}, \gamma_{a b c}\right)
$$

- A function $U: \Delta=\left\{(x, y, z) \in[0,1]^{3} \mid x \leq y \leq z\right\} \rightarrow \mathbb{R}$ is called an upper bound function if it satisfies:
- $U(0,0,1) \geq 0$ and $U(0,1,1) \geq 1$
- for any $(\alpha, \beta, \gamma) \in \Delta$:

$$
U(\alpha, \beta, \gamma) \geq 1-U(1-\gamma, 1-\beta, 1-\alpha)
$$

- Dual lower bound function: function $L: \Delta \rightarrow \mathbb{R}$ defined by

$$
L(\alpha, \beta, \gamma)=1-U(1-\gamma, 1-\beta, 1-\alpha)
$$

Stochastic transitivity

- g-stochastic transitivity $=$ cycle-transitivity w.r.t.

$$
U_{g}(\alpha, \beta, \gamma)= \begin{cases}\beta+\gamma-g(\beta, \gamma) & , \text { if } \beta \geq 1 / 2 \wedge \alpha<1 / 2 \\ 1 / 2 & , \text { if } \alpha \geq 1 / 2 \\ 2 & , \text { if } \beta<1 / 2\end{cases}
$$

type	upper bound function	equivalent
weak	$\beta+\gamma-1 / 2$	
moderate	γ	
strong	β	$\beta \quad$, if $\beta \geq 1 / 2$

Stochastic transitivity

- Partial stochastic trans. $=$ cycle-trans. w.r.t. $\quad U_{\mathrm{ps}}(\alpha, \beta, \gamma)=\gamma$:

$$
\alpha_{a b c}+\beta_{a b c} \leq 1
$$

- Multiplicative transitivity $=$ cycle-transitivity w.r.t.

$$
U_{E}(\alpha, \beta, \gamma)=\alpha \beta+\alpha \gamma+\beta \gamma-2 \alpha \beta \gamma
$$

T-transitivity of reciprocal relations

Although not compatible with the bipolar semantics, T-transitivity can be imposed formally

- 1-Lipschitz $T:\left|T\left(x_{1}, y_{1}\right)-T\left(x_{2}, y_{2}\right)\right| \leq\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$
- T-transitivity $=$ cycle-transitivity w.r.t.

$$
U_{T}(\alpha, \beta, \gamma)=\alpha+\beta-T(\alpha, \beta)
$$

t-norm	upper bound function	equivalent
$T_{\mathbf{M}}$	$\max (\alpha, \beta)$	β
$T_{\mathbf{P}}$	$\alpha+\beta-\alpha \beta$	
$T_{\mathbf{L}}$	$\min (\alpha+\beta, 1)$	1

- $T_{\mathbf{M}}$-trans. $=$ cycle-trans. w.r.t. $U(\alpha, \beta, \gamma)=\beta$:

$$
\alpha_{a b c}+\gamma_{a b c} \leq 1
$$

T-transitivity of reciprocal relations

Theorem

Consider a reciprocal relation on a set of three elements:

- There are either 3,5 or $6 T_{M}$-triplets
- There are either 3, 4, 5 or $6 T_{P}$-triplets
- There are either 3 or $6 T_{\mathrm{L}}$-triplets

A non-symmetric triangle inequality

T_{L}-transitivity of a reciprocal relation $=$ "triangle inequality":

$$
Q(a, b)+Q(b, c) \geq Q(a, c)
$$

Product-triplets

Three variants of T_{P}-transitivity:

name	upper bound f.	equiv. condition	\# product-triplets
strong	$\alpha+\beta-\alpha \beta$	$\alpha \beta \leq 1-\gamma$	6
moderate	$\alpha+\gamma-\alpha \gamma$	$\alpha \gamma \leq 1-\beta$	≥ 5
weak	$\beta+\gamma-\beta \gamma$	$\beta \gamma \leq 1-\alpha$	≥ 4

4. Winning probability relations

T_{L}-transitivity of winning probability relations

Theorem

The winning probability relation associated with any random vector is T_{L}-transitive, i.e. it satisfies the triangle inequality

$$
Q(a, b)+Q(b, c) \geq Q(a, c)
$$

A probabilistic viewpoint

Three random variables X_{1}, X_{2} and X_{3} :

$$
\operatorname{Prob}\left\{X_{1}>X_{2} \wedge X_{2}>X_{3}\right\} \leq \operatorname{Prob}\left\{X_{1}>X_{3}\right\}
$$

Even if they are independent, then not necessarily

$$
\operatorname{Prob}\left\{X_{1}>X_{2}\right\} \operatorname{Prob}\left\{X_{2}>X_{3}\right\} \leq \operatorname{Prob}\left\{X_{1}>X_{3}\right\}
$$

How close are winning probabilities to being T_{P}-transitive

$$
Q(a, b) Q(b, c) \leq Q(a, c) ?
$$

Oppenheimer's set of dice

Reciprocal relation:

$$
Q=\left(\begin{array}{ccc}
1 / 2 & 24 / 36 & 16 / 36 \\
12 / 36 & 1 / 2 & 24 / 36 \\
20 / 36 & 12 / 36 & 1 / 2
\end{array}\right)
$$

Four product-triplets, the only conditions not fulfilled are

$$
Q(b, c) Q(c, a) \leq Q(b, a) \quad \text { and } \quad Q(c, a) Q(a, b) \leq Q(c, b)
$$

since

$$
\frac{20}{36} \times \frac{24}{36}=\frac{12}{36}+\frac{1}{27}>\frac{12}{36}
$$

Pairwise independent random variables

Theorem (characterization for $n=3$ and rational numbers)
The winning probability relation $Q^{\mathbf{P}}$ associated with pairwise independent random variables is weakly T_{P}-transitive (dice-transitive), i.e.

$$
\beta \gamma \leq 1-\alpha
$$

(both clockwise and counter-clockwise)

Interpretation

The winning probability relation $Q^{\mathbf{P}}$ is at least $\frac{4}{6} \times 100 \% T_{P}$-transitive

Some interesting numbers for 3 dice

	4 faces	5 faces	6 faces	7 faces
$4 T_{\mathbf{P}}$-triplets	8.66%	1.67%	0.325%	0.060%
$5 T_{\mathbf{P}}$-triplets	14.01%	7.98%	4.2%	2.31%
$6 T_{\mathbf{P}}$-triplets	85.90%	92.00%	95.8%	97.68%
total number	$5.78 \mathrm{E}+03$	$1.26 \mathrm{E}+05$	$2.86 \mathrm{E}+06$	$6.65+07$

Exploiting dice-transitivity

- The relation $>_{p}^{3}$:

$$
X>_{\mathrm{P}}^{3} Y \quad \Leftrightarrow \quad Q^{\mathbf{P}}(X, Y)>\frac{\sqrt{5}-1}{2}
$$

is an asymmetric relation without cycles of length 3

- The golden section $\phi=\frac{\sqrt{5}-1}{2}: \frac{22}{36}<\frac{\sqrt{5}-1}{2}<\frac{23}{36}$

Exploiting dice-transitivity

- The relation $>{ }_{\mathbf{p}}^{k}$:

$$
X>{ }_{\mathbf{P}}^{k} Y \quad \Leftrightarrow \quad Q^{\mathbf{P}}(X, Y)>1-\frac{1}{4 \cos ^{2}(\pi /(k+2))}
$$

is an asymmetric relation without cycles of length k

- The relation $>_{\mathbf{p}}^{\infty}$:

$$
X>_{\mathrm{P}}^{\infty} Y \quad \Leftrightarrow \quad Q^{\mathbf{P}}(X, Y) \geq \frac{3}{4}
$$

is an asymmetric acyclic relation

- The transitive closure $>_{P}$ of $>_{p}^{\infty}$ is a strict order relation

One- and two-parameter families

Marginal distributions belonging to a same parametric family:

- One-parameter: exponential, geometric, power-law (subfamilies of Beta and Pareto families), Gumbel

multiplicative transitivity

- Normal distributions with same σ : h-isostochastic transitivity with

$$
h(x, y)=\Phi\left(\Phi^{-1}(x)+\Phi^{-1}(y)\right)
$$

(with Φ the c.d.f. of standard normal distribution)

- Normal distributions:
moderate stochastic transitivity

Independence - Co-monoton. - Counter-monoton.

Copulas

- Copula: $C:[0,1]^{2} \rightarrow[0,1]$ such that
- neutral element 1 , absorbing element 0
- 2-increasingness:

$$
\left(\left(x_{1} \leq x_{2} \wedge y_{1} \leq y_{2}\right) \Rightarrow C\left(x_{1}, y_{1}\right)+C\left(x_{2}, y_{2}\right) \geq C\left(x_{1}, y_{2}\right)+C\left(x_{2}, y_{1}\right)\right.
$$

- Basic continuous t-norms are copulas and $T_{\mathrm{L}} \leq C \leq T_{\mathrm{M}}$
- Relationship between t-norms and copulas:

$$
\begin{array}{|l|l|}
\hline \text { copula }+ \text { associativity } & \Rightarrow \text { t-norm } \\
\text { t-norm }+ \text { 1-Lipschitz } & \Rightarrow \text { copula } \\
\hline
\end{array}
$$

- 1-Lipschitz t-norms = associative copulas

Sklar's theorem

- Sklar's theorem: for a random vector $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ there exist copulas $C_{i j}$ s.t.

$$
F_{X_{i}, X_{j}}(x, y)=C_{i j}\left(F_{X_{i}}(x), F_{X_{j}}(y)\right)
$$

- Captures dependence structure irrespective of the marginals
- Probabilistic interpretation:

T_{M}	co-monotonicity
T_{P}	independence
T_{L}	counter-monotonicity

Dependence and the compatibility problem

- The compatibility problem:
- not all combinations of copulas are possible
- all $C_{i j}=C$ is possible for $C \in\left\{T_{\mathbf{M}}, T_{\mathbf{P}}\right\}$
- $C_{12}=C_{13}=C_{23}=T_{\mathrm{L}}$ is impossible
- Artificial coupling:
- winning probabilities require only bivariate coupling
- copula $=$ comparison strategy
- does not (necessarily) reflect the real dependence

Extreme couplings

Choose a copula C as comparison strategy and compute the winning probabilities

$$
Q^{C}(X, Y)=\operatorname{Prob}\{X>Y\}+\frac{1}{2} \operatorname{Prob}\{X=Y\}
$$

Theorem

- The winning probabilities associated with random variables compared in a co-monotone manner satisfy the triangle inequality
- The winning probabilities associated with random variables compared in a counter-monotone manner satisfy partial stochastic transitivity

Exploiting cycle-transitivity: T_{M} and T_{L}

- The relation $>_{\mathrm{M}}^{k}$:

$$
X>_{\mathrm{M}}^{k} Y \quad \Leftrightarrow \quad Q^{\mathrm{M}}(X, Y)>\frac{k-1}{k}
$$

is an asymmetric relation without cycles of length k

- The relation $>_{M}$

$$
X>_{\mathbf{M}} Y \quad \Leftrightarrow \quad Q^{\mathbf{M}}(X, Y)=1
$$

is a strict order relation

- The relation $>_{L}$

$$
X>_{\mathbf{L}} Y \quad \Leftrightarrow \quad Q^{\mathbf{L}}(X, Y)>\frac{1}{2}
$$

is a strict order relation

The Frank copula family

- Frank family $\left(T_{s}^{\mathbf{F}}\right)_{s \in[0, \infty]}$: for $\left.s \in\right] 0,1[\cup] 1, \infty[$

$$
T_{s}^{\mathbf{F}}(x, y)=\log _{s}\left(1+\frac{\left(s^{x}-1\right)\left(s^{y}-1\right)}{s-1}\right)
$$

- Limit cases: | 0 | T_{M} |
| :---: | :---: |
| 1 | T_{P} |
| ∞ | T_{L} |
- Prototypical solutions of the functional equation of Frank:

$$
x+y-T(x, y)=1-T(1-x, 1-y)
$$

- T_{s}^{F}-transitivity $=$ cycle-transitivity w.r.t.

$$
U_{s}(\alpha, \beta, \gamma)=\alpha+\beta-T_{s}^{\mathbf{F}}(\alpha, \beta)=S_{s}^{\mathbf{F}}(\alpha, \beta)
$$

Coupling by a Frank copula

Theorem

For a Frank copula $C=T_{s}^{\mathrm{F}}$, the reciprocal relation Q^{C} is cycle-transitive w.r.t.

$$
U^{C}(\alpha, \beta, \gamma)=\beta+\gamma-T_{1 / s}^{\mathbf{F}}(\beta, \gamma)=S_{1 / s}^{\mathbb{F}}(\beta, \gamma)
$$

copula	upper bound f.	equivalent	known as
$T_{\mathbf{M}}$	$\min (\beta+\gamma, 1)$	1	triangle inequality
$T_{\mathbf{P}}$	$\beta+\gamma-\beta \gamma$		dice-transitivity
$T_{\mathbf{L}}$	$\max (\beta, \gamma)$	γ	partial stoch. trans.

The Frank copula family

- Cutting levels:

copula	s	level α_{s}
$T_{\mathbf{M}}$	0	$=1$
$T_{\mathbf{P}}$	1	$\geq 3 / 4$
$T_{\mathbf{L}}$	∞	$>1 / 2$

- The Frank copula family:

$$
\begin{gathered}
\alpha_{s}=1-\log _{s}\left(\frac{1+\sqrt{s}}{2}\right) \\
\alpha_{s}+\alpha_{1 / s}=3 / 2
\end{gathered}
$$

A picture says more than ...

5. Graded stochastic dominance

Stochastic dominance

Purpose of stochastic dominance:

- to define a (partial) order relation on a set of real-valued random variables (RV)
- should reflect that RV taking higher values are preferred

General principle:

- pairwise comparison of RV
- pointwise comparison of performance functions constructed from the distribution function

Performance functions

- The cumulative distribution function (CDF) F_{X} :

$$
F_{X}(x)=\operatorname{Prob}\{X \leq x\}
$$

- The area below the CDF F_{X} :

$$
G_{X}(x)=\int_{-\infty}^{x} F_{X}(t) d t
$$

1st and 2nd order stochastic dominance (SD)

Stochastic dominance relation:

$X \succeq_{\text {FSD }} Y$	$\stackrel{\text { def }}{\Leftrightarrow}$	$F_{X} \leq F_{Y}$
	\Leftrightarrow	$\mathbf{E}[u(X)] \geq \mathbf{E}[u(Y)]$
	for any increasing function u	

- Strict dominance relation:

$$
\begin{array}{|lll}
\hline X \succ Y & \Leftrightarrow & X \succeq Y \quad \text { and } \quad Y \nsucceq X \\
\hline
\end{array}
$$

Graphical illustration of FSD

Application areas

- Decision making under uncertainty
- Risk averse preference models in economics and finance:
- e.g. in portfolio optimisation
- Social statistics:
- e.g. in the comparison of welfare and poverty indicators
- Machine learning and multi-criteria decision making:
- e.g. in ranking (= ordered sorting) algorithms (OSDL, dominance-based rough sets, ...)

Discussion

- SD induces a (classical) partial order relation on a set of RV:
- no tolerance for small deviations, no grading
- partial: usually sparse graphs
- SD is theoretically attractive, but computationally difficult
- SD uses marginal distributions only
- SSD accumulates area from $-\infty$ onwards
- introduces an absolute reference point

Main objective: graded variants of SD

- Our aim: construction of a reciprocal relation on a set of RV which allows to induce a strict order relation on the set of RV
- Choose a Frank copula $C=T_{s}^{\mathrm{F}}$ as comparison strategy and compute:

$$
Q^{C}(X, Y)=\operatorname{Prob}\{X>Y\}+\frac{1}{2} \operatorname{Prob}\{X=Y\}
$$

- The reciprocal relation Q^{C} is cycle-transitive w.r.t.

$$
U^{C}(\alpha, \beta, \gamma)=\beta+\gamma-T_{1 / s}^{\mathbf{F}}(\beta, \gamma)
$$

- Compute (the transitive closure of) an appropriate (strict) α-cut of Q^{C}

Example: co-monotone comparison

- The case of T_{M} : continuous RV

$$
Q^{\mathbf{M}}(X, Y)=\int_{x: F_{X}(x)<F_{Y}(x)} f_{X}(x) \mathrm{d} x+\frac{1}{2} \int_{x: F_{X}(x)=F_{Y}(x)} f_{X}(x) \mathrm{d} x
$$

- $Q^{\mathrm{M}}(X, Y)=1$ iff $F_{X}<F_{Y}$ where $f_{X} \neq 0$:

$$
\text { more restrictive than } \succ_{\mathrm{FSD}}
$$

Graphical illustration

$$
Q^{\mathrm{M}}(X, Y)=t_{1}+t_{3}+\frac{1}{2} t_{2}
$$

Co-monotone comparison revisited

- The case of T_{M} : discrete RV $Q^{\mathbf{M}}(X, Y)=\frac{1}{n} \sum_{k=1}^{n} \delta_{k}^{\mathrm{M}}$ with

$$
\delta_{k}^{M}=\left\{\begin{array}{cl}
1 & , \text { if } x_{k}>y_{k} \\
1 / 2 & , \text { if } x_{k}=y_{k} \\
0 & , \text { if } x_{k}<y_{k}
\end{array}\right.
$$

- Parametrized version: $p \in \mathbb{R}^{+}$

$$
Q_{p}^{\mathrm{M}}(X, Y)=\frac{\sum_{k=1}^{n}\left(x_{k}-y_{k}\right)_{+}^{p}}{\sum_{k=1}^{n}\left|x_{k}-y_{k}\right|^{p}}=\frac{\mathbf{E}\left[(X-Y)_{+}^{p}\right]}{\mathbf{E}\left[|X-Y|^{p}\right]}
$$

- Limit case: $Q_{0}^{\mathrm{M}}=Q^{\mathrm{M}}$

Co-monotone comparison revisited

- $p=1$: proportional expected difference

$$
Q^{\mathrm{PED}}(X, Y)=\frac{\mathrm{E}\left[(X-Y)_{+}\right]}{\mathrm{E}[|X-Y|]}
$$

with $Q^{\text {PED }}(X, Y)=1$ if and only if $X \succ_{\text {FSD }} Y$

- The case of continuous RV and $p=1$:

$$
Q^{\mathrm{PED}}(X, Y)=\frac{\int\left(F_{Y}(x)-F_{X}(x)\right)_{+} \mathrm{d} x}{\int\left|F_{Y}(x)-F_{X}(x)\right| \mathrm{d} x}
$$

Graphical illustration

Transitivity

Theorem

The proportional expected difference relation $Q^{P E D}$ is partially stochastic transitive

Use

- The strict $1 / 2$-cut of $Q^{\text {PED }}$ yields the strict order relation characterized by

$$
Q^{\mathrm{PED}}(X, Y)>\frac{1}{2} \quad \Leftrightarrow \quad \mathrm{E}[X]>\mathrm{E}[Y]
$$

- Any α-cut (with $\alpha>1 / 2$) yields a strict order relation: with increasing α the graph (Hasse diagram) becomes more and more sparse (Hasse tree)

Example

Integers 1-9 distributed over 5 dice:

A	1	4	9
B	3	4	8
C	3	6	7
D	2	7	8
E	5	6	7

$$
Q^{\mathrm{PED}}=\left(\begin{array}{ccccc}
1 / 2 & 1 / 3 & 1 / 3 & 1 / 5 & 1 / 4 \\
2 / 3 & 1 / 2 & 1 / 3 & 1 / 4 & 1 / 5 \\
2 / 3 & 2 / 3 & 1 / 2 & 1 / 3 & 0 \\
4 / 5 & 3 / 4 & 2 / 3 & 1 / 2 & 2 / 5 \\
3 / 4 & 4 / 5 & 1 & 3 / 5 & 1 / 2
\end{array}\right)
$$

Example

6. Poset ranking: coupled RV

Partially ordered sets

Partially ordered sets (posets) are witnessing an increased interest:

- multi-criteria analysis without a common scale
- allow for incomparability
- usually based on product ordering in a multi-dimensional setting
- the Hasse diagram technique in environmetrics and chemometrics

Real-world example: pollution in Baden-Württemberg

Toy example: a poset and its linear extensions

Linear extension: an order-preserving permutation of the elements

Toy example: average rank

Discrete random variable X_{a} describing the position of a in a random linear extension

Toy example: poset ranking (weak order)

Ranking the elements according to their average rank $\rho\left(x_{i}\right)=\mathbf{E}\left[X_{i}\right]$

Toy example: mutual rank probabilities

Fraction of linear extensions in which a is ranked above b :

$$
\operatorname{Prob}\left\{X_{a}>X_{b}\right\}=\frac{3}{9}
$$

Mutual rank probability relation

Mutual rank probability relation: reciprocal relation expressing the probability that x_{i} is ranked above x_{j}

$$
Q_{P}\left(x_{i}, x_{j}\right)=\operatorname{Prob}\left\{X_{i}>X_{j}\right\}
$$

Toy example:

$$
Q=\left(\begin{array}{ccccc}
1 / 2 & 3 / 9 & 0 & 0 & 0 \\
6 / 9 & 1 / 2 & 3 / 9 & 0 & 1 / 9 \\
1 & 6 / 9 & 1 / 2 & 2 / 9 & 0 \\
1 & 1 & 7 / 9 & 1 / 2 & 4 / 9 \\
1 & 8 / 9 & 1 & 5 / 9 & 1 / 2
\end{array}\right)
$$

Mutual rank probability relation

- Distribution of the random vector $\left(X_{1}, \ldots, X_{n}\right)$ depends on the structure of the poset (if x_{i} and x_{j} are comparable, then $C_{i j}=T_{\mathbf{M}}$)
- Average rank in terms of mutual rank probabilities:

$$
\rho\left(x_{i}\right)=1+\sum_{j \neq i} Q_{P}\left(x_{i}, x_{j}\right)
$$

- Proportional transitivity (Fishburn, 1986; Yu, 1998):

$$
\left(Q_{P}(a, b) \geq u \wedge Q_{P}(b, c) \geq u\right) \Rightarrow Q_{P}(a, c) \geq u
$$

holds for $u \geq \rho \approx 0.78$

Linear extension majority cycles

The Linear Extension Majority (LEM) relation is the strict 1/2-cut of $Q_{P}: x_{i}$ is ranked above x_{j} if

$$
\operatorname{Prob}\left\{X_{i}>X_{j}\right\}>\frac{1}{2}
$$

- The LEM relation may contain cycles (if $n \geq 9$): LEM k-cycles
- Only 5 out of 183231 posets of size 9 contain LEM 3-cycles, none of them contains longer LEM cycles

Linear extension majority cycles

$$
\begin{aligned}
& Q(g, h)=Q(h, i)=Q(i, g)=\frac{720}{1431} \\
& Q(d, e)=Q(e, f)=Q(f, d)=\frac{720}{1431} \\
& Q(a, b)=Q(b, c)=Q(c, a)=\frac{720}{1431}
\end{aligned}
$$

- the strict α-cut at $\alpha=\frac{720}{1431}=0.50314465$ is cycle-free
- only one poset of size 9 requires this α

Proportional transitivity in posets

- Find largest $\delta:[0,1]^{2} \rightarrow[0,1]$ such that for any finite poset

$$
\delta\left(Q_{P}\left(x_{i}, x_{j}\right), Q_{P}\left(x_{j}, x_{k}\right)\right) \leq Q_{P}\left(x_{i}, x_{k}\right)
$$

- Kahn and $\mathrm{Yu}(1998): \delta^{*} \leq \delta$ with δ^{*} the conjunctor

$$
\delta^{*}(u, v)= \begin{cases}0 & , \text { if } u+v<1 \\ \min (u, v) & , \text { if } u+v-1 \geq \min \left(u^{2}, v^{2}\right) \\ \frac{(1-u)(1-v)}{(1-\sqrt{u+v-1})^{2}} & , \text { elsewhere }\end{cases}
$$

Transitivity

Theorem

The mutual rank probability relation is moderately T_{P}-transitive, i.e.

$$
\alpha \gamma \leq 1-\beta
$$

(both clockwise and counter-clockwise)

Interpretation

The mutual rank probability relation is at least $\frac{5}{6} \times 100 \% T_{p}$-transitive

Avoiding 3-cycles

The strict ϕ-cut of Q_{P}, with $\phi=0.618034$ the golden section, contains no cycles of length 3

Product-triplets and min-triplets

There are 1104891746 non-isomorphic posets of 12 elements

7. Ranking representability

Machine learning setting

- Object space \mathcal{X} (usually m-dimensional vector space) and a finite label set $\mathcal{L}=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$
- Unknown distribution \mathcal{D} over $\mathcal{X} \times \mathcal{L}$
- Conditional distributions \mathcal{D}_{j}
- l.i.d. data sample of size $n: D=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)\right\}$
- One-versus-one method: $r(r-1) / 2$ data subsamples

$$
D_{k l}=\left\{\left(\mathbf{x}_{i}, y_{i}\right) \in D \mid y_{i} \in\left\{\lambda_{k}, \lambda_{l}\right\}\right\}
$$

with $1 \leq k<I \leq r$

One-versus-one classification

Reduce MC classification to ordinal regression?

Binary classification

- Two classes labelled λ_{k} and λ_{I} (say $\lambda_{k}<\lambda_{I}$)
- Ranking function $f: \mathcal{X} \rightarrow \mathbb{R}$
- Performance evaluation: AUC (area under the ROC curve)

$$
\hat{A}\left(f, D_{k l}\right)=\frac{1}{n_{k} n_{l}} \sum_{y_{i}<y_{j}} I_{\left\{f\left(\mathbf{x}_{i}\right)<f\left(\mathrm{x}_{j}\right)\right\}}+\frac{1}{2} I_{\left\{f\left(\mathrm{x}_{i}\right)=f\left(\mathrm{x}_{j}\right)\right\}}
$$

- Receiver Operating Characteristics
- Mann-Whitney-Wilcoxon statistic
- unbiased non-parametric estimator of the Expected Ranking Accuracy (ERA)

$$
A_{k l}(f)=\operatorname{Prob}\left\{f\left(X_{k}\right)<f\left(X_{l}\right)\right\}+\frac{1}{2} \operatorname{Prob}\left\{f\left(X_{k}\right)=f\left(X_{l}\right)\right\}
$$

with $X_{k} \sim \mathcal{D}_{k}$ and $X_{I} \sim \mathcal{D}_{I}$

Strict ranking representability

One-versus-one: $r(r-1) / 2$ ranking functions $f_{k l}$ trained on data sets $D_{k l}$

Strict ranking representability

The ensemble $\left\{f_{k l}\right\}$ is called strictly ranking representable if there exists a ranking function $f: \mathcal{X} \rightarrow \mathbb{R}$ s.t. for all $1 \leq k<I \leq r$ and all $\left(\mathbf{x}_{i}, y_{i}\right),\left(\mathbf{x}_{j}, y_{j}\right) \in D_{k l}$

$$
f_{k l}\left(\mathbf{x}_{i}\right)<f_{k l}\left(\mathbf{x}_{j}\right) \quad \Longleftrightarrow \quad f\left(\mathbf{x}_{i}\right)<f\left(\mathbf{x}_{j}\right)
$$

[Assumption: pairwise ranking functions and the single ranking function have a similar degree of complexity]

Verifying strict ranking representability:

- algorithm linear in the size of the data set (topological sorting)
- limited applicability

AUC ranking representability

- Goal is a good performance on independent test data, not exactly the same result on some training data!
- Relaxation: require the same performance rather than the same results
- The ensemble $\left\{f_{k l}\right\}$ is AUC ranking representable if there exists a ranking function $f: \mathcal{X} \rightarrow \mathbb{R}$ s.t. for all $1 \leq k<I \leq r$

$$
\hat{A}\left(f_{k l}, D_{k l}\right)=\hat{A}\left(f, D_{k l}\right)
$$

AUC ranking representability

- For $k<l$, add the ranking function $f_{l k}=-f_{k l}$
- The AUC form a reciprocal relation (put $Q(k, k)=\frac{1}{2}$)

$$
Q(k, I)=\hat{A}\left(f_{k l}, D_{k l}\right)
$$

- Strict ranking representability implies AUC ranking representability
- AUC ranking representability implies dice-transitivity of Q, i.e. cycle-transitivity w.r.t.

$$
U_{D}(\alpha, \beta, \gamma)=\beta+\gamma-\beta \gamma
$$

- $T_{\text {M }}$-transitivity of Q does NOT imply AUC ranking representability

ERA ranking representability

- The ensemble $\left\{f_{k l}\right\}$ is ERA ranking representable if there exists a ranking function $f: \mathcal{X} \rightarrow \mathbb{R}$ s.t. for all $1 \leq k<I \leq r$

$$
A_{k l}\left(f_{k l}\right)=A_{k l}(f)
$$

- For $k<l$, add the ranking function $f_{l k}=-f_{k l}$
- The ERA form a reciprocal relation: $Q(k, I)=A_{k l}\left(f_{k l}\right)$
- Three-class case $(r=3)$: the ensemble $\left\{f_{k l}\right\}$ is ERA ranking representable iff Q is κ-transitive with κ the conjunctor

$$
\kappa(u, v)= \begin{cases}0 & , \text { if } u+v<1 \\ u v & , \text { if } u+v \geq 1\end{cases}
$$

- Situated between dice-transitivity and T_{P}-transitivity

8. More dice games: beyond transitivity

Rock-Paper-Scissors-Lizard

Integers 1-12 distributed over 4 dice:

A	1	6	12
B	4	5	10
C	3	8	9
D	2	7	11

Statistical preference: 4-cycle $A B C D$ and two 3-cycles $A B C$ and $B C D$

Possible complete asymmetric configurations ($n=4$)

Product-triplets $(n=4)$

Interpretation

The winning probability relation $Q^{\mathbf{P}}$ is at least $\frac{4}{6} \times 100 \% T_{\mathrm{P}}$-transitive
Some figures: number of product-triplets for 4 dice

	4 faces	5 faces	6 faces
16 triplets	-	-	-
17 triplets	-	-	0.000001%
18 triplets	0.001%	0.00004%	0.000003%
19 triplets	0.010%	0.0013%	0.0001%
20 triplets	0.26%	0.080%	0.018%
21 triplets	3.37%	1.51%	0.54%
22 triplets	17.45%	9.48%	4.91%
23 triplets	10.63%	8.23%	5.35%
24 triplets	68.28%	80.69%	89.18%
total number	$2.63 \mathrm{E}+06$	$4.89 \mathrm{E}+08$	$9.30 \mathrm{E}+10$

At least 16 product-triplets it is!

Integers 1-36 distributed over 4 dice:

A	4	5	6	7	8	9	10	34	35
B	11	12	13	14	15	16	17	18	36
C	1	19	20	21	22	23	24	25	26
D	2	3	27	28	29	30	31	32	33

Semi-transitivity and the Ferrers property

Semi-transitivity:
if $a R b$ and $b R c$, then $a R d$ or $d R c$

The Ferrers property:
if $a R b$ and $c R d$, then $a R d$ or $c R b$

Key property of methods for ranking fuzzy intervals (numbers), rather than transitivity!

T-semi-transitivity

A fuzzy relation R on A is called T-semi-transitive, with T a t-norm and T^{*} its dual t-conorm, if

$$
T(R(a, b), R(b, c)) \leq T^{*}(R(a, d), R(d, c))
$$

for any a, b, c, d in A

T-Ferrers property

A fuzzy relation R on A is called T-Ferrers, with T a t-norm and T^{*} its dual t -conorm, if

$$
T(R(a, b), R(c, d)) \leq T^{*}(R(a, d), R(c, b))
$$

for any a, b, c, d in A

Reciprocal relations

- Complete relations: transitivity implies semi-transitivity and the Ferrers property
- Reciprocal relations: if T is 1 -Lipschitz continuous, then
- T-transitivity implies T-semi-transitivity
- T-transitivity implies the T-Ferrers property

TL-Ferrers

The winning probability relation associated with a random vector is T_{L}-Ferrers

The Ferrers property

Four independent random variables X_{1}, X_{2}, X_{3} and X_{4} :

$$
\begin{gathered}
\operatorname{Prob}\left\{X_{1}>X_{2}\right\} \operatorname{Prob}\left\{X_{3}>X_{4}\right\} \\
\leq \operatorname{Prob}\left\{X_{1}>X_{4}\right\}+\operatorname{Prob}\left\{X_{3}>X_{2}\right\}-\operatorname{Prob}\left\{X_{1}>X_{4}\right\} \operatorname{Prob}\left\{X_{3}>X_{2}\right\}
\end{gathered}
$$

Theorem

The winning probability relation $Q^{\mathbf{P}}$ associated with pairwise independent random variables is T_{P}-Ferrers

A stronger version of the T_{p}-Ferrers property

Weak T_{p}-transitivity and the T_{p}-Ferrers property revisited

- A reciprocal relation Q is weakly T_{p}-transitive (dice-transitive) if and only if for any 3 consecutive weights $\left(t_{1}, t_{2}, t_{3}\right)$ it holds that

$$
t_{1}+t_{2}+t_{3}-1 \geq \min \left(t_{1} t_{2}, t_{2} t_{3}, t_{3} t_{1}\right)
$$

- A reciprocal relation Q is $T_{\mathbf{P}}$-Ferrers if and only if for any 4 consecutive weights $\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$ it holds that

$$
t_{1}+t_{2}+t_{3}+t_{4}-1 \geq t_{1} t_{3}+t_{2} t_{4}
$$

4-cycle condition

The winning probability relation $Q^{\mathbf{P}}$ associated with pairwise independent random variables satisfies for any for any 4 consecutive weights
$\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$

$$
t_{1}+t_{2}+t_{3}+t_{4}-1 \geq t_{1} t_{3}+t_{2} t_{4}+\min \left(t_{1}, t_{3}\right) \min \left(t_{2}, t_{4}\right)
$$

Conclusion

Conclusion

- Cyclic phenomena are not necessarily incompatible with transitivity, but arise due to the granularity considered
- Cycle-transitivity yields a general framework for studying the transitivity of reciprocal relations
- Frequentist interpretation of the transitivity of winning probabilities in terms of product-transitivity
- Alternative theories of stochastic dominance
- AUC as a means to distinguish between multi-class classification and ordinal regression
- In silico species competition and coexistence

What if God does throw dice?

Integers 1-20 distributed over 5 dice:

A	1	5	12	20
B	2	6	15	18
C	3	9	14	17
D	4	8	11	19
E	7	10	13	16

Whatever X, Y selected by Oppenheimer and Einstein, God can select Z such that

$$
\begin{aligned}
& \operatorname{Prob}\{Z>\max (X, Y)\}>\operatorname{Prob}\{X>\max (Y, Z)\} \\
& \operatorname{Prob}\{Z>\max (X, Y)\}>\operatorname{Prob}\{Y>\max (X, Z)\}
\end{aligned}
$$

This cannot be realized with 3 or 4 dice

References: Bell inequalities

(1) S. Janssens, B. De Baets and H. De Meyer, Bell-type inequalities for parametric families of triangular norms, Kybernetika 40 (2004), 89-106.
(2) S. Janssens, B. De Baets and H. De Meyer, Bell-type inequalities for quasi-copulas, Fuzzy Sets and Systems 148 (2004), 263-278.
(3) B. De Baets, S. Janssens and H. De Meyer, Meta-theorems on inequalities for scalar fuzzy set cardinalities, Fuzzy Sets and Systems 157 (2006), 1463-1476.

References: similarity measures

(1) B. De Baets, H. De Meyer and H. Naessens, A class of rational cardinality-based similarity measures, J. Comput. Appl. Math. 132 (2001), 51-69.
(2) B. De Baets and H. De Meyer, Transitivity-preserving fuzzification schemes for cardinality-based similarity measures, European J. Oper. Res. 160 (2005), 726-740.
(3) B. De Baets, S. Janssens and H. De Meyer, On the transitivity of a parametric family of cardinality-based similarity measures, Internat. J. Approximate Reasoning 50 (2009), 104-116.

References: comparison of random variables

(1) B. De Schuymer, H. De Meyer, B. De Baets, S. Jenei, On the cycle-transitivity of the dice model, Theory and Decision 54 (2003), 264-285
(2) H. De Meyer, B. De Baets, B. De Schuymer, Extreme copulas and the comparison of ordered lists, Theory and Decision 62 (2007), 195-217.
(3) B. De Schuymer, H. De Meyer, B. De Baets, Cycle-transitive comparison of independent random variables, J. Multivariate Analysis 96 (2005), 352-373.
(9) H. De Meyer, B. De Baets, B. De Schuymer, On the transitivity of the comonotonic and countermonotonic comparison of random variables, J. Multivariate Analysis 98 (2007), 177-193.
(5) B. De Baets, H. De Meyer, Cycle-transitive comparison of artificially coupled random variables, Int. J. Approx. Reasoning 47 (2008), 306-322.

References: order theory

(1) K. De Loof, H. De Meyer and B. De Baets, Exploiting the lattice of ideals representation of a poset, Fundamenta Informaticae 71 (2006), 309-321.
(2) K. De Loof, B. De Baets, H. De Meyer, Counting linear extension majority cycles in posets on up to 13 points, Computers and Mathematics with Applications 59 (2010), 1541-1547.
(3) B. De Baets, H. De Meyer, K. De Loof, On the cycle-transitivity of the mutual rank probability relation of a poset, Fuzzy Sets and Systems 161 (2010), 2695-2708.
(3) K. De Loof, B. De Baets and H. De Meyer, Approximation of average ranks in posets, MATCH - Communications in Mathematical and in Computer Chemistry 66 (2011), 219-229.
(5) K. De Loof, B. De Baets and H. De Meyer, A necessary 4-cycle condition for dice representability of reciprocal relations, 4OR 7 (2009), 169-189.
(0) K. De Loof, B. De Baets, H. De Meyer, Cycle-free cuts of mutual rank probability relations, Kybernetika, submitted.

References: machine learning

(1) W. Waegeman, B. De Baets, A transitivity analysis of bipartite rankings in pairwise multi-class classification, Information Sciences 180 (2010), 4099-4117.
(2) T. Pahikkala, W. Waegeman, E. Tsivtsivadze, T. Salakoski, B. De Baets, Learning intransitive reciprocal relations with kernel methods, European J. Oper. Res. 206 (2010), 676-685.
(3) W. Waegeman, B. De Baets, On the ERA representability of pairwise bipartite ranking functions, Artificial Intelligence Journal 175 (2011), 1223-1250.

References: decomposition of fuzzy relations

(1) B. Van de Walle, B. De Baets and E. Kerre, Characterizable fuzzy preference structures, Annals of Operations Research 80 (1998), 105-136.
(2) B. De Baets and J. Fodor, Additive fuzzy preference structures: the next generation, in: Principles of Fuzzy Preference Modelling and Decision Making (B. De Baets and J. Fodor, eds.), Academia Press, 2003, pp. 15-25. Additive decomposition of fuzzy pre-orders, Fuzzy Sets and Systems 158 (2007), 830-842.
(3) S. Díaz, S. Montes and B. De Baets, Transitivity bounds in additive fuzzy preference structures, IEEE Trans. Fuzzy Systems 15 (2007), 275-286.
(9) S. Díaz, B. De Baets and S. Montes, On the compositional characterization of complete fuzzy pre-orders, Fuzzy Sets and Systems 159 (2008), 2221-2239.
(3) S. Díaz, B. De Baets and S. Montes, General results on the decomposition of transitive fuzzy relations, Fuzzy Optimization and Decision Making 9 (2010), 1-29.

