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1. Intransitivity of indifference

1. Intransitivity of indifference

Prof. dr. Bernard De Baets (KERMIT) State-of-the-Art on Reciprocal Relations April 10–11, 2014 3 / 121



1. Intransitivity of indifference

The Sorites Paradox

Many versions of the Sorites Paradox:

The Bald Man Paradox: there is no particular
number of hairs whose loss marks the transition to
boldness

The Heap Paradox: no grain of wheat can be
identified as making the difference between a heap and
not being a heap

The Luce Paradox: sugar in coffee example
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1. Intransitivity of indifference

The Poincaré Paradox

Approximate equality of real numbers is not transitive, i.e. stating that
a ∈ R is similar to b ∈ R if

|a − b| ≤ ǫ

is not transitive

x

a− ǫ a a+ ǫ
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1. Intransitivity of indifference

Possible symmetric configurations (n = 3)

a

b c

a

b c

a

b c

a

b c
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1. Intransitivity of indifference

The Poincaré Paradox revisited

The fuzzy relation

Eǫ(a, b) = max

(

1 − |a − b|
ǫ

, 0

)

is TL-transitive, i.e. Eǫ(a, b) + Eǫ(b, c) − 1 ≤ Eǫ(a, c)

y

x

1

a− ǫ a a+ ǫ

The function dǫ = 1 − Eǫ is a metric: the triangle inequality holds

dǫ(a, b) + dǫ(b, c) ≥ dǫ(a, c)
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1. Intransitivity of indifference

T -Transitivity of fuzzy relations

Fuzzy relation: R : A2 → [0, 1], with a unipolar semantics

A fuzzy relation R on A is called T -transitive, with T a t-norm, if

T (R(a, b),R(b, c)) ≤ R(a, c)

for any a, b, c in A

a

b c

R(a,b)

R(b, c)

R(a, c)
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1. Intransitivity of indifference

Triangular norms

Basic continuous t-norms:

minimum TM min(x , y)
product TP xy

 Lukasiewicz t-norm TL max(x + y − 1, 0)
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1. Intransitivity of indifference

T -triplets

Consider three elements a1, a2 and a3:

A permutation (ai , aj , ak) is called a T -triplet if

T (R(ai , aj),R(aj , ak)) ≤ R(ai , ak)

There can be at most 6 T -triplets

T -transitivity expresses that there always are 6 T -triplets
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2. Intransitivity of preference
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2. Intransitivity of preference 2.1 Intransitivity of preference

Transitivity of preference

Transitivity of preference is a fundamental principle underlying most
major rational, prescriptive and descriptive contemporary models of
decision making

Rationality of individual and collective choice: a transitive person,
group or society that prefers choice option x to y and y to z must
prefer x to z

Intransitive relations are often perceived as something paradoxical
and are associated with irrational behaviour

Main argument: money pump
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2. Intransitivity of preference 2.1 Intransitivity of preference

Intransitivity of preference

Transitivity is expected to hold if preferences are based on a single
scale (fitness maximization)

Intransitive choices have been reported from both humans and other
animals, such as gray jays (Waite, 2001) collecting food for storage

Bounded rationality: intransitive choices are a suboptimal byproduct
of heuristics that usually perform well in real-world situations
(Kahneman and Tversky, 1969)

Intransitive choices can result from decision strategies that maximize
fitness (Houston, McNamara and Steer, 2007), as a kind of insurance
against a run of bad luck

Prof. dr. Bernard De Baets (KERMIT) State-of-the-Art on Reciprocal Relations April 10–11, 2014 13 / 121



2. Intransitivity of preference 2.1 Intransitivity of preference

Intransitivity in life

Life provides many examples of intransitive relations, they often seem to
be necessary and play a positive role

sports: team A which defeated team B, which in turn won from C,
can be overcome by C

13 love triangles:
a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

The God-Einstein-Oppenheimer dice puzzle
(New York Times, 30-03-09)

Integers 1–18 distributed over 3 dice:

A 1 2 13 14 15 16

B 7 8 9 10 11 12

C 3 4 5 6 17 18

Winning probabilities:

A

B C

24/36

24/36

20/36
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Statistical preference

Statistical preference: X is preferred to Y if Prob{X > Y } > 1
2

May lead to cycles (Steinhaus and Trybu la, 1959):

A

B C

There exist 10.705 cyclic distributions of the numbers 1–18 and 15 of
them constitute a cycle of the highest equal probability 21/36 = 7/12
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

A single die variant

Integers 1–18 distributed over 1 die: 3 numbers on each face

15 17 4 16 3 112 13 14 11 2 10

18 6 9 5 8 7

Winning probabilities:

R

G B

4/6

4/6

4/6

The single die can be seen as 3 coupled dice
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Rock-Paper-Scissors

Cyclic dice are a type of Rock-Paper-Scissors (RPS):
(ancient children’s game, jan-ken-pon, rochambeau)

rock defeats scissors

scissors defeat paper

rock loses to paper
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Rock-Paper-Scissors

The Rock-Paper-Scissors game:

is often used as a selection method in a way similar to coin flipping,
drawing straws, or throwing dice

unlike truly random selection methods, RPS can be played with a
degree of skill: recognize and exploit the non-random behaviour of
an opponent

World RPS Society:

“Serving the needs of decision makers since 1918”
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Rock-Paper-Scissors
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

RPS in voting

The voting paradox of Condorcet (Marquis de Condorcet, 1785)

voter 1: A > B > C

voter 2: B > C > A

voter 3: C > A > B

A

B C

Inspiration to Arrow’s impossibility theorem: there is no choice
procedure meeting the democratic assumptions

Prof. dr. Bernard De Baets (KERMIT) State-of-the-Art on Reciprocal Relations April 10–11, 2014 21 / 121



2. Intransitivity of preference 2.2 Rock-Paper-Scissors

RPS in evolutionary biology: lizards

Common side-blotched lizard mating strategies (Sinervo and Lively,
Nature, 1996) depending on the colour of throats of males
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

RPS in evolutionary biology: lizards

Lizard mating strategies:

orange beats blue: males with orange throats can take territory
from blue-throated males because they have more testosterone and
body mass. As a result, orange males control large territories
containing many females

blue beats yellow: blue-throated males cooperate with each other to
defend territories and closely guard females, so they are able to beat
the sneaking strategy of yellow-throated males

yellow beats orange: yellow-throated males are not territorial, but
mimic female behavior and coloration to sneak onto the large
territories of orange males to mate with females

Prof. dr. Bernard De Baets (KERMIT) State-of-the-Art on Reciprocal Relations April 10–11, 2014 23 / 121



2. Intransitivity of preference 2.2 Rock-Paper-Scissors

RPS in evolutionary biology:
Survival of the Weakest

Cyclic competitions in spatial ecosystems (Reichenbach et al., 2007;
Frey, 2009) (alternative to Lotka-Volterra equations, computer simulations
using cellular automata)

in large populations, the weakest species would - with very high
probability - come out as the victor

biodiversity in RPS games is negatively correlated with the rate of
migration: critical rate of migration ǫcrit above which biodiversity gets
lost
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Simulating microbial competition

Simulation setting:

three subpopulations: A , B , C

initial population density: 25 % A , 25 % B , 25 % C , 25 %

cellular automaton on a square grid

environmental conditions discarded

A

B C

Prof. dr. Bernard De Baets (KERMIT) State-of-the-Art on Reciprocal Relations April 10–11, 2014 25 / 121



2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Simulating microbial competition: mechanisms

Reproduction (µ):

Selection (σ):

Migration (ǫ):
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Simulation experiment 1

ǫ < ǫc
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Simulation experiment 2

ǫ > ǫc

Prof. dr. Bernard De Baets (KERMIT) State-of-the-Art on Reciprocal Relations April 10–11, 2014 28 / 121


HighMob.avi
Media File (video/avi)



3. Reciprocal relations
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3. Reciprocal relations 3.1 Reciprocal relations

Reciprocal relations

Reciprocal relation: Q : A2 → [0, 1], with a bipolar semantics, satisfying

Q(a, b) + Q(b, a) = 1

Example 1: 3-valued representation of a complete relation R

Q(a, b) =







1 , if R(a, b) = 1 and R(b, a) = 0
1/2 , if R(a, b) = R(b, a) = 1

0 , if R(a, b) = 0 and R(b, a) = 1

Example 2: winning probabilities associated with a random vector
(X1,X2, . . . ,Xn)

Q(Xi ,Xj) = Prob{Xi > Xj} + 1
2 Prob{Xi = Xj}
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3. Reciprocal relations 3.1 Reciprocal relations

Reciprocal relations

Example 3: popular definition of a “fuzzy” preference relation

Q(a, b) =







∈ ]1/2, 1] , if a is rather preferred to b

1/2 , if a and b are indifferent
∈ [0, 1/2[ , if b is rather preferred to a

obeying the constraint Q(a, b) + Q(b, a) = 1, providing it with a
bipolar semantics

Strong reservations against use of the word “fuzzy”

Bipolar semantics

Intersection makes no sense
(cfr. intersection of complete relations is not complete)

Fuzzy preference structures are more expressive

Prof. dr. Bernard De Baets (KERMIT) State-of-the-Art on Reciprocal Relations April 10–11, 2014 31 / 121



3. Reciprocal relations 3.1 Reciprocal relations

Possible complete asymmetric configurations (n = 3)

a

b c

a

b c
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3. Reciprocal relations 3.1 Reciprocal relations

Oppenheimer’s set of dice

A

B C

24/36

24/36

20/36

Reciprocal relation:

Q =













1/2 24/36 16/36

12/36 1/2 24/36

20/36 12/36 1/2












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3. Reciprocal relations 3.2 Stochastic transitivity

Stochastic transitivity

A reciprocal relation Q is called g-stochastic transitive if

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ g(Q(a, b),Q(b, c)) ≤ Q(a, c)

weak stochastic transitivity (g = 1/2): iff 1/2-cut of Q is transitive

moderate stochastic transitivity (g = min):
iff all α-cuts (with α ≥ 1/2) are transitive

strong stochastic transitivity (g = max)

A reciprocal relation Q is called partially stochastic transitive if

(Q(a, b) > 1/2 ∧ Q(b, c) > 1/2) ⇒ min(Q(a, b),Q(b, c)) ≤ Q(a, c) ;

iff all α-cuts (with α > 1/2) are transitive

Prof. dr. Bernard De Baets (KERMIT) State-of-the-Art on Reciprocal Relations April 10–11, 2014 34 / 121



3. Reciprocal relations 3.2 Stochastic transitivity

Isostochastic transitivity

A reciprocal relation Q is called h-isostochastic transitive if

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ h(Q(a, b),Q(b, c)) = Q(a, c)

A reciprocal relation Q is called multiplicatively transitive (Tanino)
if

Q(a, c)

Q(c , a)
=

Q(a, b)

Q(b, a)
· Q(b, c)

Q(c , b)

Multiplicative transitivity = h-isostochastic transitivity w.r.t.

h(x , y) =
xy

xy + (1 − x)(1 − y)

(Hamacher t-conorm of the 3Π-uninorm)
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3. Reciprocal relations 3.3 Cycle-transitivity

Cycle-transitivity

Reciprocal relation Q:

αabc min{Q(a, b),Q(b, c),Q(c , a)}
βabc median{Q(a, b),Q(b, c),Q(c , a)}
γabc max{Q(a, b),Q(b, c),Q(c , a)}

a

b c

β

α

γ
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3. Reciprocal relations 3.3 Cycle-transitivity

Cycle-transitivity

A reciprocal relation Q is called cycle-transitive w.r.t. an upper
bound function U if

L(αabc , βabc , γabc ) ≤ αabc + βabc + γabc − 1 ≤ U(αabc , βabc , γabc )

A function U : ∆ = {(x , y , z) ∈ [0, 1]3 | x ≤ y ≤ z} → R is called an
upper bound function if it satisfies:

U(0, 0, 1) ≥ 0 and U(0, 1, 1) ≥ 1
for any (α, β, γ) ∈ ∆:

U(α, β, γ) ≥ 1 − U(1 − γ, 1 − β, 1 − α)

Dual lower bound function: function L : ∆ → R defined by

L(α, β, γ) = 1 − U(1 − γ, 1 − β, 1 − α)
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3. Reciprocal relations 3.3 Cycle-transitivity

Stochastic transitivity

g -stochastic transitivity = cycle-transitivity w.r.t.

Ug (α, β, γ) =











β + γ − g(β, γ) , if β ≥ 1/2 ∧ α < 1/2

1/2 , if α ≥ 1/2

2 , if β < 1/2

type upper bound function equivalent

weak β + γ − 1/2
moderate γ

strong β β , if β ≥ 1/2
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3. Reciprocal relations 3.3 Cycle-transitivity

Stochastic transitivity

Partial stochastic trans. = cycle-trans. w.r.t. Ups(α, β, γ) = γ :

αabc + βabc ≤ 1

Multiplicative transitivity = cycle-transitivity w.r.t.

UE (α, β, γ) = αβ + αγ + βγ − 2αβγ
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3. Reciprocal relations 3.3 Cycle-transitivity

T -transitivity of reciprocal relations

Although not compatible with the bipolar semantics, T -transitivity can be
imposed formally

1-Lipschitz T : |T (x1, y1) − T (x2, y2)| ≤ |x1 − x2| + |y1 − y2|

T -transitivity = cycle-transitivity w.r.t.

UT (α, β, γ) = α + β − T (α, β)

t-norm upper bound function equivalent

TM max(α, β) β
TP α + β − αβ
TL min(α + β, 1) 1

TM-trans. = cycle-trans. w.r.t. U(α, β, γ) = β :

αabc + γabc ≤ 1
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3. Reciprocal relations 3.3 Cycle-transitivity

T -transitivity of reciprocal relations

Theorem

Consider a reciprocal relation on a set of three elements:

There are either 3, 5 or 6 TM-triplets

There are either 3, 4, 5 or 6 TP-triplets

There are either 3 or 6 TL-triplets

A non-symmetric triangle inequality

TL-transitivity of a reciprocal relation = “triangle inequality”:

Q(a, b) + Q(b, c) ≥ Q(a, c)
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3. Reciprocal relations 3.3 Cycle-transitivity

Product-triplets

Three variants of TP-transitivity:

name upper bound f. equiv. condition # product-triplets

strong α + β − αβ αβ ≤ 1 − γ 6
moderate α + γ − αγ αγ ≤ 1 − β ≥ 5

weak β + γ − βγ βγ ≤ 1 − α ≥ 4

Prof. dr. Bernard De Baets (KERMIT) State-of-the-Art on Reciprocal Relations April 10–11, 2014 42 / 121



4. Winning probability relations

4. Winning probability relations
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4. Winning probability relations 4.1 The triangle inequality is omnipresent

TL-transitivity of winning probability relations

Theorem

The winning probability relation associated with any random vector is
TL-transitive, i.e. it satisfies the triangle inequality

Q(a, b) + Q(b, c) ≥ Q(a, c)
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4. Winning probability relations 4.2 Independent random variables

A probabilistic viewpoint

Three random variables X1, X2 and X3:

Prob{X1 > X2 ∧ X2 > X3} ≤ Prob{X1 > X3}

Even if they are independent, then not necessarily

Prob{X1 > X2}Prob{X2 > X3} ≤ Prob{X1 > X3}

How close are winning probabilities to being TP-transitive

Q(a, b)Q(b, c) ≤ Q(a, c) ?
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4. Winning probability relations 4.2 Independent random variables

Oppenheimer’s set of dice

Reciprocal relation:

Q =













1/2 24/36 16/36

12/36 1/2 24/36

20/36 12/36 1/2













Four product-triplets, the only conditions not fulfilled are

Q(b, c)Q(c , a) ≤ Q(b, a) and Q(c , a)Q(a, b) ≤ Q(c , b)

since
20

36
× 24

36
=

12

36
+

1

27
>

12

36
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4. Winning probability relations 4.2 Independent random variables

Pairwise independent random variables

Theorem (characterization for n = 3 and rational numbers)

The winning probability relation QP associated with pairwise
independent random variables is weakly TP-transitive (dice-transitive),
i.e.

βγ ≤ 1 − α

(both clockwise and counter-clockwise)

Interpretation

The winning probability relation QP is at least 4
6 × 100% TP-transitive
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4. Winning probability relations 4.2 Independent random variables

Some interesting numbers for 3 dice

4 faces 5 faces 6 faces 7 faces

4 TP-triplets 8.66% 1.67% 0.325% 0.060%
5 TP-triplets 14.01% 7.98% 4.2 % 2.31 %

6 TP-triplets 85.90% 92.00% 95.8% 97.68%

total number 5.78E+03 1.26E+05 2.86E+06 6.65+07
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4. Winning probability relations 4.2 Independent random variables

Exploiting dice-transitivity

The relation >3
P:

X >3
P Y ⇔ QP(X ,Y ) >

√
5 − 1

2

is an asymmetric relation without cycles of length 3

The golden section φ =
√

5−1
2 : 22

36 <
√

5−1
2 < 23

36

A

B C

24/36

24/36

20/36
A

B C
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4. Winning probability relations 4.2 Independent random variables

Exploiting dice-transitivity

The relation >k
P:

X >k
P Y ⇔ QP(X ,Y ) > 1 − 1

4 cos2(π/(k + 2))

is an asymmetric relation without cycles of length k

The relation >∞
P :

X >∞
P Y ⇔ QP(X ,Y ) ≥ 3

4

is an asymmetric acyclic relation

The transitive closure >P of >∞
P is a strict order relation
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4. Winning probability relations 4.2 Independent random variables

One- and two-parameter families

Marginal distributions belonging to a same parametric family:

One-parameter: exponential, geometric, power-law (subfamilies of
Beta and Pareto families), Gumbel

multiplicative transitivity

Normal distributions with same σ: h-isostochastic transitivity with

h(x , y) = Φ(Φ−1(x) + Φ−1(y))

(with Φ the c.d.f. of standard normal distribution)

Normal distributions:

moderate stochastic transitivity
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4. Winning probability relations 4.3 Dependent random variables

Independence - Co-monoton. - Counter-monoton.

X Y
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QP(X ,Y ) = 7/16 QM(X ,Y ) = 3/8 QL(X ,Y ) = 1/2
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4. Winning probability relations 4.3 Dependent random variables

Copulas

Copula: C : [0, 1]2 → [0, 1] such that

neutral element 1, absorbing element 0
2-increasingness:

((x1 ≤ x2 ∧ y1 ≤ y2) ⇒ C (x1, y1) + C (x2, y2) ≥ C (x1, y2) + C (x2, y1)

Basic continuous t-norms are copulas and TL ≤ C ≤ TM

Relationship between t-norms and copulas:

copula + associativity ⇒ t-norm
t-norm + 1-Lipschitz ⇒ copula

1-Lipschitz t-norms = associative copulas
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4. Winning probability relations 4.3 Dependent random variables

Sklar’s theorem

Sklar’s theorem: for a random vector (X1,X2, . . . ,Xn) there exist
copulas Cij s.t.

FXi ,Xj
(x , y) = Cij(FXi

(x),FXj
(y))

Captures dependence structure irrespective of the marginals

Probabilistic interpretation:

TM co-monotonicity
TP independence
TL counter-monotonicity
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4. Winning probability relations 4.3 Dependent random variables

Dependence and the compatibility problem

The compatibility problem:

not all combinations of copulas are possible

all Cij = C is possible for C ∈ {TM, TP}
C12 = C13 = C23 = TL is impossible

Artificial coupling:

winning probabilities require only bivariate coupling

copula = comparison strategy

does not (necessarily) reflect the real dependence
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4. Winning probability relations 4.3 Dependent random variables

Extreme couplings

Choose a copula C as comparison strategy and compute the winning
probabilities

QC (X ,Y ) = Prob{X > Y } + 1
2 Prob{X = Y }

Theorem

The winning probabilities associated with random variables compared
in a co-monotone manner satisfy the triangle inequality

The winning probabilities associated with random variables compared
in a counter-monotone manner satisfy partial stochastic
transitivity
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4. Winning probability relations 4.3 Dependent random variables

Exploiting cycle-transitivity: TM and TL

The relation >k
M:

X >k
M Y ⇔ QM(X ,Y ) >

k − 1

k

is an asymmetric relation without cycles of length k

The relation >M

X >M Y ⇔ QM(X ,Y ) = 1

is a strict order relation

The relation >L

X >L Y ⇔ QL(X ,Y ) >
1

2

is a strict order relation
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4. Winning probability relations 4.3 Dependent random variables

The Frank copula family

Frank family (T F
s )s∈[0,∞]: for s ∈ ]0, 1[∪ ]1,∞[

T F
s (x , y) = logs

(

1 +
(sx − 1)(sy − 1)

s − 1

)

Limit cases:
0 TM

1 TP

∞ TL

Prototypical solutions of the functional equation of Frank:

x + y − T (x , y) = 1 − T (1 − x , 1 − y)

T F
s -transitivity = cycle-transitivity w.r.t.

Us(α, β, γ) = α + β − T F
s (α, β) = SF

s (α, β)
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4. Winning probability relations 4.3 Dependent random variables

Coupling by a Frank copula

Theorem

For a Frank copula C = T F
s , the reciprocal relation QC is cycle-transitive

w.r.t.

UC (α, β, γ) = β + γ − T F
1/s

(β, γ) = SF
1/s

(β, γ)

copula upper bound f. equivalent known as

TM min(β + γ, 1) 1 triangle inequality
TP β + γ − βγ dice-transitivity
TL max(β, γ) γ partial stoch. trans.
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4. Winning probability relations 4.3 Dependent random variables

The Frank copula family

Cutting levels:

copula s level αs

TM 0 = 1
TP 1 ≥ 3/4
TL ∞ > 1/2

The Frank copula family:

αs = 1 − logs

(

1 +
√

s

2

)

αs + α1/s = 3/2
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4. Winning probability relations 4.3 Dependent random variables

A picture says more than . . .

-

6

s/(s + 1)

1

0

3/4

1/2

2/3

1/2

TM TP TL

1

k = 3

k = 4

k = ∞

r
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5. Graded stochastic dominance

5. Graded stochastic dominance
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5. Graded stochastic dominance 5.1 Stochastic dominance

Stochastic dominance

Purpose of stochastic dominance:

to define a (partial) order relation on a set of real-valued random
variables (RV)

should reflect that RV taking higher values are preferred

General principle:

pairwise comparison of RV

pointwise comparison of performance functions constructed from
the distribution function
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5. Graded stochastic dominance 5.1 Stochastic dominance

Performance functions

The cumulative distribution function (CDF) FX :

FX (x) = Prob{X ≤ x}

The area below the CDF FX :

GX (x) =

∫ x

−∞
FX (t) dt

fX

x0 1 x

1 1

1/2

0
0x

1

0 1

FX

00
1

GX

Prof. dr. Bernard De Baets (KERMIT) State-of-the-Art on Reciprocal Relations April 10–11, 2014 64 / 121



5. Graded stochastic dominance 5.1 Stochastic dominance

1st and 2nd order stochastic dominance (SD)

Stochastic dominance relation:

X �FSD Y
def⇔ FX ≤ FY

⇔ E[u(X )] ≥ E[u(Y )]
for any increasing function u

X �SSD Y
def⇔ GX ≤ GY

⇔ E[u(X )] ≥ E[u(Y )]
for any increasing concave function u

Strict dominance relation:

X ≻ Y ⇔ X � Y and Y 6� X

Prof. dr. Bernard De Baets (KERMIT) State-of-the-Art on Reciprocal Relations April 10–11, 2014 65 / 121



5. Graded stochastic dominance 5.1 Stochastic dominance

Graphical illustration of FSD

fY fX

FXFY

1
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5. Graded stochastic dominance 5.1 Stochastic dominance

Application areas

Decision making under uncertainty

Risk averse preference models in economics and finance:

e.g. in portfolio optimisation

Social statistics:

e.g. in the comparison of welfare and poverty indicators

Machine learning and multi-criteria decision making:

e.g. in ranking (= ordered sorting) algorithms (OSDL,
dominance-based rough sets, . . .)
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5. Graded stochastic dominance 5.1 Stochastic dominance

Discussion

SD induces a (classical) partial order relation on a set of RV:

no tolerance for small deviations, no grading

partial: usually sparse graphs

SD is theoretically attractive, but computationally difficult

SD uses marginal distributions only

SSD accumulates area from −∞ onwards

introduces an absolute reference point
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5. Graded stochastic dominance 5.2 Co-monotone comparison

Main objective: graded variants of SD

Our aim: construction of a reciprocal relation on a set of RV which
allows to induce a strict order relation on the set of RV

Choose a Frank copula C = T F
s as comparison strategy and compute:

QC (X ,Y ) = Prob{X > Y } + 1
2 Prob{X = Y }

The reciprocal relation QC is cycle-transitive w.r.t.

UC (α, β, γ) = β + γ − T F
1/s

(β, γ)

Compute (the transitive closure of) an appropriate (strict) α-cut of
QC
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5. Graded stochastic dominance 5.2 Co-monotone comparison

Example: co-monotone comparison

The case of TM: continuous RV

QM(X ,Y ) =

∫

x :FX (x)<FY (x)
fX (x) dx +

1

2

∫

x :FX (x)=FY (x)
fX (x) dx

QM(X , Y ) = 1 iff FX < FY where fX 6= 0:

more restrictive than ≻FSD
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5. Graded stochastic dominance 5.2 Co-monotone comparison

Graphical illustration

{

{

} t1

t2

t3

F( )x
FX

FY

FX

FY

0 x

QM(X ,Y ) = t1 + t3 +
1

2
t2
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5. Graded stochastic dominance 5.2 Co-monotone comparison

Co-monotone comparison revisited

The case of TM: discrete RV QM(X ,Y ) =
1

n

n
∑

k=1

δM
k

with

δM
k =







1 , if xk > yk

1/2 , if xk = yk

0 , if xk < yk

Parametrized version: p ∈ R
+

QM
p (X ,Y ) =

n
∑

k=1

(xk − yk)p
+

n
∑

k=1

|xk − yk |p
=

E[(X − Y )p
+]

E[|X − Y |p]

Limit case: QM
0 = QM
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5. Graded stochastic dominance 5.2 Co-monotone comparison

Co-monotone comparison revisited

p = 1: proportional expected difference

QPED(X ,Y ) =
E[(X − Y )+]

E[|X − Y |]
with QPED(X ,Y ) = 1 if and only if X ≻FSD Y

The case of continuous RV and p = 1:

QPED(X ,Y ) =

∫

(FY (x) − FX (x))+ dx
∫

|FY (x) − FX (x)|dx
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5. Graded stochastic dominance 5.2 Co-monotone comparison

Graphical illustration

{

{

} t1

t2

t3

F( )x
FX

FY

FX

FY

0 x
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5. Graded stochastic dominance 5.2 Co-monotone comparison

Transitivity

Theorem

The proportional expected difference relation QPED is partially
stochastic transitive

Use

The strict 1/2-cut of QPED yields the strict order relation
characterized by

QPED(X ,Y ) >
1

2
⇔ E[X ] > E[Y ]

Any α-cut (with α > 1/2) yields a strict order relation:
with increasing α the graph (Hasse diagram) becomes
more and more sparse (Hasse tree)
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5. Graded stochastic dominance 5.2 Co-monotone comparison

Example

Integers 1–9 distributed over 5 dice:

A 1 4 9

B 3 4 8

C 3 6 7

D 2 7 8

E 5 6 7

QPED =























1/2 1/3 1/3 1/5 1/4

2/3 1/2 1/3 1/4 1/5

2/3 2/3 1/2 1/3 0

4/5 3/4 2/3 1/2 2/5

3/4 4/5 1 3/5 1/2






















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5. Graded stochastic dominance 5.2 Co-monotone comparison

Example

E

D

C

B

A

α = 3/5

A

α = 2/3

B

C

D E

D E

A B

α = 3/4

C

D E

A B

α = 4/5

C A B

α = 1

C

E

D
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6. Poset ranking

6. Poset ranking: coupled RV
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6. Poset ranking 6.1 The Hasse diagram technique

Partially ordered sets

Partially ordered sets (posets) are witnessing an increased interest:

multi-criteria analysis without a common scale

allow for incomparability

usually based on product ordering in a multi-dimensional setting

the Hasse diagram technique in environmetrics and
chemometrics
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6. Poset ranking 6.1 The Hasse diagram technique

Real-world example: pollution in
Baden-Württemberg
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6. Poset ranking 6.1 The Hasse diagram technique

Toy example: a poset and its linear extensions

Linear extension: an order-preserving permutation of the elements

e

c

a

d

b

e

d

c

b

a

d

e

c

b

a

e

c

d

b

a

e

d

b

c

a

d

e

b

c

a

d

b

e

c

a

e

c

d

a

b

e

d

c

a

b

d

e

c

a

b

5

4

3

2

1

Prof. dr. Bernard De Baets (KERMIT) State-of-the-Art on Reciprocal Relations April 10–11, 2014 81 / 121



6. Poset ranking 6.1 The Hasse diagram technique

Toy example: average rank

Discrete random variable Xa describing the position of a in a random linear
extension

e

d

c

b

a

d

e

c

b

a

e

c

d

b

a

e

d

b

c

a

d

e

b

c

a

d

b

e

c

a

e

c

d

a

b

e

d

c

a

b

d

e

c

a

b

5

4

3

2

1
1 2 3 4 5

0

5

10
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6. Poset ranking 6.1 The Hasse diagram technique

Toy example: poset ranking (weak order)

Ranking the elements according to their average rank ρ(xi ) = E[Xi ]

e

d

c

b

a
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6. Poset ranking 6.2 Mutual rank probabilities

Toy example: mutual rank probabilities

Fraction of linear extensions in which a is ranked above b:

Prob{Xa > Xb} = 3
9

e

d

c

b

a

d

e

c

b

a

e

c

d

b

a

e

d

b

c

a

d

e

b

c

a

d

b

e

c

a

e

c

d

a

b

e

d

c

a

b

d

e

c

a

b

5

4

3

2

1
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6. Poset ranking 6.2 Mutual rank probabilities

Mutual rank probability relation

Mutual rank probability relation: reciprocal relation expressing the
probability that xi is ranked above xj

QP(xi , xj ) = Prob{Xi > Xj}

Toy example:

Q =























1/2 3/9 0 0 0

6/9 1/2 3/9 0 1/9

1 6/9 1/2 2/9 0

1 1 7/9 1/2 4/9

1 8/9 1 5/9 1/2






















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6. Poset ranking 6.2 Mutual rank probabilities

Mutual rank probability relation

Distribution of the random vector (X1, . . . ,Xn) depends on the
structure of the poset (if xi and xj are comparable, then Cij = TM)

Average rank in terms of mutual rank probabilities:

ρ(xi ) = 1 +
∑

j 6=i QP(xi , xj )

Proportional transitivity (Fishburn, 1986; Yu, 1998):

(QP(a, b) ≥ u ∧ QP(b, c) ≥ u) ⇒ QP(a, c) ≥ u

holds for u ≥ ρ ≈ 0.78
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6. Poset ranking 6.2 Mutual rank probabilities

Linear extension majority cycles

The Linear Extension Majority (LEM) relation is the strict 1/2-cut
of QP : xi is ranked above xj if

Prob{Xi > Xj} > 1
2

The LEM relation may contain cycles (if n ≥ 9): LEM k-cycles

Only 5 out of 183 231 posets of size 9 contain LEM 3-cycles, none of
them contains longer LEM cycles
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6. Poset ranking 6.2 Mutual rank probabilities

Linear extension majority cycles

g h i

d e f

a b c

Q(g , h) = Q(h, i) = Q(i , g) = 720
1431

Q(d , e) = Q(e, f ) = Q(f , d) = 720
1431

Q(a, b) = Q(b, c) = Q(c , a) = 720
1431

the strict α-cut at α =
720

1431
= 0.50314465 is cycle-free

only one poset of size 9 requires this α
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6. Poset ranking 6.3 Moderate product-transitivity

Proportional transitivity in posets

Find largest δ : [0, 1]2 → [0, 1] such that for any finite poset

δ(QP (xi , xj),QP(xj , xk)) ≤ QP(xi , xk)

Kahn and Yu (1998): δ∗ ≤ δ with δ∗ the conjunctor

δ∗(u, v) =



















0 , if u + v < 1

min(u, v) , if u + v − 1 ≥ min(u2, v2)

(1 − u)(1 − v)

(1 −
√

u + v − 1)2
, elsewhere
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6. Poset ranking 6.3 Moderate product-transitivity

Transitivity

Theorem

The mutual rank probability relation is moderately TP-transitive, i.e.

αγ ≤ 1 − β

(both clockwise and counter-clockwise)

Interpretation

The mutual rank probability relation is at least 5
6 × 100% TP-transitive

Avoiding 3-cycles

The strict φ-cut of QP , with φ = 0.618034 the golden section, contains
no cycles of length 3
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6. Poset ranking 6.3 Moderate product-transitivity

Product-triplets and min-triplets

There are 1 104 891 746 non-isomorphic posets of 12 elements

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0
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7. Ranking representability in machine learning

7. Ranking representability
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7. Ranking representability in machine learning

Machine learning setting

Object space X (usually m-dimensional vector space) and a finite
label set L = {λ1, . . . , λr}
Unknown distribution D over X × L
Conditional distributions Dj

I.i.d. data sample of size n: D = {(x1, y1), . . . , (xn, yn)}
One-versus-one method: r(r − 1)/2 data subsamples

Dkl = {(xi , yi ) ∈ D | yi ∈ {λk , λl}}
with 1 ≤ k < l ≤ r
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7. Ranking representability in machine learning

One-versus-one classification
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7. Ranking representability in machine learning

Reduce MC classification to ordinal regression?
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7. Ranking representability in machine learning

Binary classification

Two classes labelled λk and λl (say λk < λl )

Ranking function f : X → R

Performance evaluation: AUC (area under the ROC curve)

Â(f ,Dkl ) = 1
nknl

∑

yi<yj
I{f (xi )<f (xj )} + 1

2 I{f (xi )=f (xj )}

Receiver Operating Characteristics

Mann-Whitney-Wilcoxon statistic

unbiased non-parametric estimator of the Expected Ranking
Accuracy (ERA)

Akl (f ) = Prob{f (Xk ) < f (Xl )} + 1
2 Prob{f (Xk ) = f (Xl )}

with Xk ∼ Dk and Xl ∼ Dl
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7. Ranking representability in machine learning

Strict ranking representability

One-versus-one: r(r − 1)/2 ranking functions fkl trained on data sets Dkl

Strict ranking representability

The ensemble {fkl} is called strictly ranking representable if there exists
a ranking function f : X → R s.t. for all 1 ≤ k < l ≤ r and all
(xi , yi ), (xj , yj) ∈ Dkl

fkl (xi ) < fkl(xj ) ⇐⇒ f (xi ) < f (xj )

[Assumption: pairwise ranking functions and the single ranking function
have a similar degree of complexity]

Verifying strict ranking representability:

algorithm linear in the size of the data set (topological sorting)

limited applicability
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7. Ranking representability in machine learning

AUC ranking representability

Goal is a good performance on independent test data, not exactly the
same result on some training data!

Relaxation: require the same performance rather than the same
results

The ensemble {fkl} is AUC ranking representable if there exists a
ranking function f : X → R s.t. for all 1 ≤ k < l ≤ r

Â(fkl ,Dkl ) = Â(f ,Dkl )
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7. Ranking representability in machine learning

AUC ranking representability

For k < l , add the ranking function flk = −fkl

The AUC form a reciprocal relation (put Q(k, k) = 1
2 )

Q(k, l) = Â(fkl ,Dkl )

Strict ranking representability implies AUC ranking representability

AUC ranking representability implies dice-transitivity of Q, i.e.
cycle-transitivity w.r.t.

UD(α, β, γ) = β + γ − βγ

TM-transitivity of Q does NOT imply AUC ranking representability
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7. Ranking representability in machine learning

ERA ranking representability

The ensemble {fkl} is ERA ranking representable if there exists a
ranking function f : X → R s.t. for all 1 ≤ k < l ≤ r

Akl(fkl ) = Akl (f )

For k < l , add the ranking function flk = −fkl

The ERA form a reciprocal relation: Q(k, l) = Akl(fkl )

Three-class case (r = 3): the ensemble {fkl} is ERA ranking
representable iff Q is κ-transitive with κ the conjunctor

κ(u, v) =

{

0 , if u + v < 1

uv , if u + v ≥ 1

Situated between dice-transitivity and TP-transitivity

Prof. dr. Bernard De Baets (KERMIT) State-of-the-Art on Reciprocal Relations April 10–11, 2014 100 / 121



8. Beyond transitivity

8. More dice games: beyond transitivity
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8. Beyond transitivity 8.1 Rock-Paper-Scissors-Lizard

Rock-Paper-Scissors-Lizard

Integers 1–12 distributed over 4 dice:

A 1 6 12

B 4 5 10

C 3 8 9

D 2 7 11

Statistical preference: 4-cycle ABCD and two 3-cycles ABC and BCD

A

B C

D

5/9

5/9

5/9

5/9

5/9 5/9

A

B C

D
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8. Beyond transitivity 8.1 Rock-Paper-Scissors-Lizard

Possible complete asymmetric configurations (n = 4)

A

B C

D A

B C

D

A

B C

D A

B C

D
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8. Beyond transitivity 8.1 Rock-Paper-Scissors-Lizard

Product-triplets (n = 4)

Interpretation

The winning probability relation QP is at least 4
6 × 100% TP-transitive

Some figures: number of product-triplets for 4 dice

4 faces 5 faces 6 faces

16 triplets - - -
17 triplets - - 0.000001 %
18 triplets 0.001% 0.00004% 0.000003 %
19 triplets 0.010% 0.0013% 0.0001%
20 triplets 0.26% 0.080% 0.018 %
21 triplets 3.37% 1.51% 0.54 %
22 triplets 17.45% 9.48% 4.91 %
23 triplets 10.63% 8.23% 5.35 %
24 triplets 68.28% 80.69% 89.18%

total number 2.63E+06 4.89E+08 9.30E+10
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8. Beyond transitivity 8.1 Rock-Paper-Scissors-Lizard

At least 16 product-triplets it is!

Integers 1–36 distributed over 4 dice:

A 4 5 6 7 8 9 10 34 35

B 11 12 13 14 15 16 17 18 36

C 1 19 20 21 22 23 24 25 26

D 2 3 27 28 29 30 31 32 33
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8. Beyond transitivity 8.2 Product-Ferrers property

Semi-transitivity and the Ferrers property

Semi-transitivity:
if aRb and bRc , then aRd or dRc

c

b

a

d

The Ferrers property:
if aRb and cRd , then aRd or cRb

db

ca

Key property of methods for ranking
fuzzy intervals (numbers), rather
than transitivity!
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8. Beyond transitivity 8.2 Product-Ferrers property

T -semi-transitivity

A fuzzy relation R on A is called T -semi-transitive, with T a t-norm and
T ∗ its dual t-conorm, if

T (R(a, b),R(b, c)) ≤ T ∗(R(a, d),R(d , c))

for any a, b, c , d in A

c

b

a

d
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8. Beyond transitivity 8.2 Product-Ferrers property

T -Ferrers property

A fuzzy relation R on A is called T -Ferrers, with T a t-norm and T ∗ its
dual t-conorm, if

T (R(a, b),R(c , d)) ≤ T ∗(R(a, d),R(c , b))

for any a, b, c , d in A

db

ca
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8. Beyond transitivity 8.2 Product-Ferrers property

Reciprocal relations

Complete relations: transitivity implies semi-transitivity and the
Ferrers property

Reciprocal relations: if T is 1-Lipschitz continuous, then

T -transitivity implies T -semi-transitivity

T -transitivity implies the T -Ferrers property

TL-Ferrers

The winning probability relation associated with a random vector is
TL-Ferrers
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8. Beyond transitivity 8.2 Product-Ferrers property

The Ferrers property

Four independent random variables X1, X2, X3 and X4:

Prob{X1 > X2}Prob{X3 > X4}
≤ Prob{X1 > X4} + Prob{X3 > X2} − Prob{X1 > X4}Prob{X3 > X2}

Theorem

The winning probability relation QP associated with pairwise
independent random variables is TP-Ferrers
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8. Beyond transitivity 8.2 Product-Ferrers property

A stronger version of the TP-Ferrers property

Weak TP-transitivity and the TP-Ferrers property revisited

A reciprocal relation Q is weakly TP-transitive (dice-transitive) if and
only if for any 3 consecutive weights (t1, t2, t3) it holds that

t1 + t2 + t3 − 1 ≥ min(t1t2, t2t3, t3t1)

A reciprocal relation Q is TP-Ferrers if and only if for any 4
consecutive weights (t1, t2, t3, t4) it holds that

t1 + t2 + t3 + t4 − 1 ≥ t1t3 + t2t4

4-cycle condition

The winning probability relation QP associated with pairwise independent
random variables satisfies for any for any 4 consecutive weights
(t1, t2, t3, t4)

t1 + t2 + t3 + t4 − 1 ≥ t1t3 + t2t4 + min(t1, t3) min(t2, t4)
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Conclusion

Conclusion
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Conclusion

Conclusion

Cyclic phenomena are not necessarily incompatible with transitivity,
but arise due to the granularity considered

Cycle-transitivity yields a general framework for studying the
transitivity of reciprocal relations

Frequentist interpretation of the transitivity of winning
probabilities in terms of product-transitivity

Alternative theories of stochastic dominance

AUC as a means to distinguish between multi-class classification and
ordinal regression

In silico species competition and coexistence
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Conclusion
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Epilogue

What if God does throw dice?

Integers 1–20 distributed over 5 dice:

A 1 5 12 20

B 2 6 15 18

C 3 9 14 17

D 4 8 11 19

E 7 10 13 16

Whatever X , Y selected by Oppenheimer and Einstein, God can select Z

such that

Prob{Z > max(X ,Y )} > Prob{X > max(Y ,Z )}

Prob{Z > max(X ,Y )} > Prob{Y > max(X ,Z )}
This cannot be realized with 3 or 4 dice
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