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1. Intransitivity of indifference

1. Intransitivity of indifference
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1. Intransitivity of indifference

The Sorites Paradox

Many versions of the Sorites Paradox:

The Bald Man Paradox: there is no particular
number of hairs whose loss marks the transition to
boldness

The Heap Paradox: no grain of wheat can be
identified as making the difference between a heap and
not being a heap

The Luce Paradox: sugar in coffee example
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1. Intransitivity of indifference

The Poincaré Paradox

Approximate equality of real numbers is not transitive, i.e. stating that
a ∈ R is similar to b ∈ R if

|a − b| ≤ ǫ

is not transitive

x

a− ǫ a a+ ǫ
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1. Intransitivity of indifference

Possible symmetric configurations (n = 3)

a

b c

a

b c

a

b c

a

b c
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1. Intransitivity of indifference

The Poincaré Paradox revisited

The fuzzy relation

Eǫ(a, b) = max

(

1 − |a − b|
ǫ

, 0

)

is TL-transitive, i.e. Eǫ(a, b) + Eǫ(b, c) − 1 ≤ Eǫ(a, c)

y

x

1

a− ǫ a a+ ǫ

The function dǫ = 1 − Eǫ is a metric: the triangle inequality holds

dǫ(a, b) + dǫ(b, c) ≥ dǫ(a, c)

Prof. dr. Bernard De Baets (KERMIT) State-of-the-Art on Reciprocal Relations April 10–11, 2014 7 / 121



1. Intransitivity of indifference

T -Transitivity of fuzzy relations

Fuzzy relation: R : A2 → [0, 1], with a unipolar semantics

A fuzzy relation R on A is called T -transitive, with T a t-norm, if

T (R(a, b),R(b, c)) ≤ R(a, c)

for any a, b, c in A

a

b c

R(a,b)

R(b, c)

R(a, c)
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1. Intransitivity of indifference

Triangular norms

Basic continuous t-norms:

minimum TM min(x , y)
product TP xy

 Lukasiewicz t-norm TL max(x + y − 1, 0)
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1. Intransitivity of indifference

T -triplets

Consider three elements a1, a2 and a3:

A permutation (ai , aj , ak) is called a T -triplet if

T (R(ai , aj),R(aj , ak)) ≤ R(ai , ak)

There can be at most 6 T -triplets

T -transitivity expresses that there always are 6 T -triplets
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2. Intransitivity of preference

2. Intransitivity of preference
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2. Intransitivity of preference 2.1 Intransitivity of preference

Transitivity of preference

Transitivity of preference is a fundamental principle underlying most
major rational, prescriptive and descriptive contemporary models of
decision making

Rationality of individual and collective choice: a transitive person,
group or society that prefers choice option x to y and y to z must
prefer x to z

Intransitive relations are often perceived as something paradoxical
and are associated with irrational behaviour

Main argument: money pump
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2. Intransitivity of preference 2.1 Intransitivity of preference

Intransitivity of preference

Transitivity is expected to hold if preferences are based on a single
scale (fitness maximization)

Intransitive choices have been reported from both humans and other
animals, such as gray jays (Waite, 2001) collecting food for storage

Bounded rationality: intransitive choices are a suboptimal byproduct
of heuristics that usually perform well in real-world situations
(Kahneman and Tversky, 1969)

Intransitive choices can result from decision strategies that maximize
fitness (Houston, McNamara and Steer, 2007), as a kind of insurance
against a run of bad luck
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2. Intransitivity of preference 2.1 Intransitivity of preference

Intransitivity in life

Life provides many examples of intransitive relations, they often seem to
be necessary and play a positive role

sports: team A which defeated team B, which in turn won from C,
can be overcome by C

13 love triangles:
a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

The God-Einstein-Oppenheimer dice puzzle
(New York Times, 30-03-09)

Integers 1–18 distributed over 3 dice:

A 1 2 13 14 15 16

B 7 8 9 10 11 12

C 3 4 5 6 17 18

Winning probabilities:

A

B C

24/36

24/36

20/36

Prof. dr. Bernard De Baets (KERMIT) State-of-the-Art on Reciprocal Relations April 10–11, 2014 15 / 121



2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Statistical preference

Statistical preference: X is preferred to Y if Prob{X > Y } > 1
2

May lead to cycles (Steinhaus and Trybu la, 1959):

A

B C

There exist 10.705 cyclic distributions of the numbers 1–18 and 15 of
them constitute a cycle of the highest equal probability 21/36 = 7/12
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

A single die variant

Integers 1–18 distributed over 1 die: 3 numbers on each face

15 17 4 16 3 112 13 14 11 2 10

18 6 9 5 8 7

Winning probabilities:

R

G B

4/6

4/6

4/6

The single die can be seen as 3 coupled dice
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Rock-Paper-Scissors

Cyclic dice are a type of Rock-Paper-Scissors (RPS):
(ancient children’s game, jan-ken-pon, rochambeau)

rock defeats scissors

scissors defeat paper

rock loses to paper
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Rock-Paper-Scissors

The Rock-Paper-Scissors game:

is often used as a selection method in a way similar to coin flipping,
drawing straws, or throwing dice

unlike truly random selection methods, RPS can be played with a
degree of skill: recognize and exploit the non-random behaviour of
an opponent

World RPS Society:

“Serving the needs of decision makers since 1918”
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Rock-Paper-Scissors
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

RPS in voting

The voting paradox of Condorcet (Marquis de Condorcet, 1785)

voter 1: A > B > C

voter 2: B > C > A

voter 3: C > A > B

A

B C

Inspiration to Arrow’s impossibility theorem: there is no choice
procedure meeting the democratic assumptions
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

RPS in evolutionary biology: lizards

Common side-blotched lizard mating strategies (Sinervo and Lively,
Nature, 1996) depending on the colour of throats of males
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

RPS in evolutionary biology: lizards

Lizard mating strategies:

orange beats blue: males with orange throats can take territory
from blue-throated males because they have more testosterone and
body mass. As a result, orange males control large territories
containing many females

blue beats yellow: blue-throated males cooperate with each other to
defend territories and closely guard females, so they are able to beat
the sneaking strategy of yellow-throated males

yellow beats orange: yellow-throated males are not territorial, but
mimic female behavior and coloration to sneak onto the large
territories of orange males to mate with females
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

RPS in evolutionary biology:
Survival of the Weakest

Cyclic competitions in spatial ecosystems (Reichenbach et al., 2007;
Frey, 2009) (alternative to Lotka-Volterra equations, computer simulations
using cellular automata)

in large populations, the weakest species would - with very high
probability - come out as the victor

biodiversity in RPS games is negatively correlated with the rate of
migration: critical rate of migration ǫcrit above which biodiversity gets
lost
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Simulating microbial competition

Simulation setting:

three subpopulations: A , B , C

initial population density: 25 % A , 25 % B , 25 % C , 25 %

cellular automaton on a square grid

environmental conditions discarded

A

B C
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Simulating microbial competition: mechanisms

Reproduction (µ):

Selection (σ):

Migration (ǫ):
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Simulation experiment 1

ǫ < ǫc
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Simulation experiment 2

ǫ > ǫc
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3. Reciprocal relations

3. Reciprocal relations
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3. Reciprocal relations 3.1 Reciprocal relations

Reciprocal relations

Reciprocal relation: Q : A2 → [0, 1], with a bipolar semantics, satisfying

Q(a, b) + Q(b, a) = 1

Example 1: 3-valued representation of a complete relation R

Q(a, b) =







1 , if R(a, b) = 1 and R(b, a) = 0
1/2 , if R(a, b) = R(b, a) = 1

0 , if R(a, b) = 0 and R(b, a) = 1

Example 2: winning probabilities associated with a random vector
(X1,X2, . . . ,Xn)

Q(Xi ,Xj) = Prob{Xi > Xj} + 1
2 Prob{Xi = Xj}

Prof. dr. Bernard De Baets (KERMIT) State-of-the-Art on Reciprocal Relations April 10–11, 2014 30 / 121



3. Reciprocal relations 3.1 Reciprocal relations

Reciprocal relations

Example 3: popular definition of a “fuzzy” preference relation

Q(a, b) =







∈ ]1/2, 1] , if a is rather preferred to b

1/2 , if a and b are indifferent
∈ [0, 1/2[ , if b is rather preferred to a

obeying the constraint Q(a, b) + Q(b, a) = 1, providing it with a
bipolar semantics

Strong reservations against use of the word “fuzzy”

Bipolar semantics

Intersection makes no sense
(cfr. intersection of complete relations is not complete)

Fuzzy preference structures are more expressive
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3. Reciprocal relations 3.1 Reciprocal relations

Possible complete asymmetric configurations (n = 3)

a

b c

a

b c
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3. Reciprocal relations 3.1 Reciprocal relations

Oppenheimer’s set of dice

A

B C

24/36

24/36

20/36

Reciprocal relation:

Q =













1/2 24/36 16/36

12/36 1/2 24/36

20/36 12/36 1/2
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3. Reciprocal relations 3.2 Stochastic transitivity

Stochastic transitivity

A reciprocal relation Q is called g-stochastic transitive if

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ g(Q(a, b),Q(b, c)) ≤ Q(a, c)

weak stochastic transitivity (g = 1/2): iff 1/2-cut of Q is transitive

moderate stochastic transitivity (g = min):
iff all α-cuts (with α ≥ 1/2) are transitive

strong stochastic transitivity (g = max)

A reciprocal relation Q is called partially stochastic transitive if

(Q(a, b) > 1/2 ∧ Q(b, c) > 1/2) ⇒ min(Q(a, b),Q(b, c)) ≤ Q(a, c) ;

iff all α-cuts (with α > 1/2) are transitive
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3. Reciprocal relations 3.2 Stochastic transitivity

Isostochastic transitivity

A reciprocal relation Q is called h-isostochastic transitive if

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ h(Q(a, b),Q(b, c)) = Q(a, c)

A reciprocal relation Q is called multiplicatively transitive (Tanino)
if

Q(a, c)

Q(c , a)
=

Q(a, b)

Q(b, a)
· Q(b, c)

Q(c , b)

Multiplicative transitivity = h-isostochastic transitivity w.r.t.

h(x , y) =
xy

xy + (1 − x)(1 − y)

(Hamacher t-conorm of the 3Π-uninorm)
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3. Reciprocal relations 3.3 Cycle-transitivity

Cycle-transitivity

Reciprocal relation Q:

αabc min{Q(a, b),Q(b, c),Q(c , a)}
βabc median{Q(a, b),Q(b, c),Q(c , a)}
γabc max{Q(a, b),Q(b, c),Q(c , a)}

a

b c

β

α

γ
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3. Reciprocal relations 3.3 Cycle-transitivity

Cycle-transitivity

A reciprocal relation Q is called cycle-transitive w.r.t. an upper
bound function U if

L(αabc , βabc , γabc ) ≤ αabc + βabc + γabc − 1 ≤ U(αabc , βabc , γabc )

A function U : ∆ = {(x , y , z) ∈ [0, 1]3 | x ≤ y ≤ z} → R is called an
upper bound function if it satisfies:

U(0, 0, 1) ≥ 0 and U(0, 1, 1) ≥ 1
for any (α, β, γ) ∈ ∆:

U(α, β, γ) ≥ 1 − U(1 − γ, 1 − β, 1 − α)

Dual lower bound function: function L : ∆ → R defined by

L(α, β, γ) = 1 − U(1 − γ, 1 − β, 1 − α)
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3. Reciprocal relations 3.3 Cycle-transitivity

Stochastic transitivity

g -stochastic transitivity = cycle-transitivity w.r.t.

Ug (α, β, γ) =











β + γ − g(β, γ) , if β ≥ 1/2 ∧ α < 1/2

1/2 , if α ≥ 1/2

2 , if β < 1/2

type upper bound function equivalent

weak β + γ − 1/2
moderate γ

strong β β , if β ≥ 1/2
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3. Reciprocal relations 3.3 Cycle-transitivity

Stochastic transitivity

Partial stochastic trans. = cycle-trans. w.r.t. Ups(α, β, γ) = γ :

αabc + βabc ≤ 1

Multiplicative transitivity = cycle-transitivity w.r.t.

UE (α, β, γ) = αβ + αγ + βγ − 2αβγ
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3. Reciprocal relations 3.3 Cycle-transitivity

T -transitivity of reciprocal relations

Although not compatible with the bipolar semantics, T -transitivity can be
imposed formally

1-Lipschitz T : |T (x1, y1) − T (x2, y2)| ≤ |x1 − x2| + |y1 − y2|

T -transitivity = cycle-transitivity w.r.t.

UT (α, β, γ) = α + β − T (α, β)

t-norm upper bound function equivalent

TM max(α, β) β
TP α + β − αβ
TL min(α + β, 1) 1

TM-trans. = cycle-trans. w.r.t. U(α, β, γ) = β :

αabc + γabc ≤ 1
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3. Reciprocal relations 3.3 Cycle-transitivity

T -transitivity of reciprocal relations

Theorem

Consider a reciprocal relation on a set of three elements:

There are either 3, 5 or 6 TM-triplets

There are either 3, 4, 5 or 6 TP-triplets

There are either 3 or 6 TL-triplets

A non-symmetric triangle inequality

TL-transitivity of a reciprocal relation = “triangle inequality”:

Q(a, b) + Q(b, c) ≥ Q(a, c)
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3. Reciprocal relations 3.3 Cycle-transitivity

Product-triplets

Three variants of TP-transitivity:

name upper bound f. equiv. condition # product-triplets

strong α + β − αβ αβ ≤ 1 − γ 6
moderate α + γ − αγ αγ ≤ 1 − β ≥ 5

weak β + γ − βγ βγ ≤ 1 − α ≥ 4

Prof. dr. Bernard De Baets (KERMIT) State-of-the-Art on Reciprocal Relations April 10–11, 2014 42 / 121



4. Winning probability relations

4. Winning probability relations
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4. Winning probability relations 4.1 The triangle inequality is omnipresent

TL-transitivity of winning probability relations

Theorem

The winning probability relation associated with any random vector is
TL-transitive, i.e. it satisfies the triangle inequality

Q(a, b) + Q(b, c) ≥ Q(a, c)
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4. Winning probability relations 4.2 Independent random variables

A probabilistic viewpoint

Three random variables X1, X2 and X3:

Prob{X1 > X2 ∧ X2 > X3} ≤ Prob{X1 > X3}

Even if they are independent, then not necessarily

Prob{X1 > X2}Prob{X2 > X3} ≤ Prob{X1 > X3}

How close are winning probabilities to being TP-transitive

Q(a, b)Q(b, c) ≤ Q(a, c) ?
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4. Winning probability relations 4.2 Independent random variables

Oppenheimer’s set of dice

Reciprocal relation:

Q =













1/2 24/36 16/36

12/36 1/2 24/36

20/36 12/36 1/2













Four product-triplets, the only conditions not fulfilled are

Q(b, c)Q(c , a) ≤ Q(b, a) and Q(c , a)Q(a, b) ≤ Q(c , b)

since
20

36
× 24

36
=

12

36
+

1

27
>

12

36
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4. Winning probability relations 4.2 Independent random variables

Pairwise independent random variables

Theorem (characterization for n = 3 and rational numbers)

The winning probability relation QP associated with pairwise
independent random variables is weakly TP-transitive (dice-transitive),
i.e.

βγ ≤ 1 − α

(both clockwise and counter-clockwise)

Interpretation

The winning probability relation QP is at least 4
6 × 100% TP-transitive
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4. Winning probability relations 4.2 Independent random variables

Some interesting numbers for 3 dice

4 faces 5 faces 6 faces 7 faces

4 TP-triplets 8.66% 1.67% 0.325% 0.060%
5 TP-triplets 14.01% 7.98% 4.2 % 2.31 %

6 TP-triplets 85.90% 92.00% 95.8% 97.68%

total number 5.78E+03 1.26E+05 2.86E+06 6.65+07
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4. Winning probability relations 4.2 Independent random variables

Exploiting dice-transitivity

The relation >3
P:

X >3
P Y ⇔ QP(X ,Y ) >

√
5 − 1

2

is an asymmetric relation without cycles of length 3

The golden section φ =
√

5−1
2 : 22

36 <
√

5−1
2 < 23

36

A

B C

24/36

24/36

20/36
A

B C
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4. Winning probability relations 4.2 Independent random variables

Exploiting dice-transitivity

The relation >k
P:

X >k
P Y ⇔ QP(X ,Y ) > 1 − 1

4 cos2(π/(k + 2))

is an asymmetric relation without cycles of length k

The relation >∞
P :

X >∞
P Y ⇔ QP(X ,Y ) ≥ 3

4

is an asymmetric acyclic relation

The transitive closure >P of >∞
P is a strict order relation
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4. Winning probability relations 4.2 Independent random variables

One- and two-parameter families

Marginal distributions belonging to a same parametric family:

One-parameter: exponential, geometric, power-law (subfamilies of
Beta and Pareto families), Gumbel

multiplicative transitivity

Normal distributions with same σ: h-isostochastic transitivity with

h(x , y) = Φ(Φ−1(x) + Φ−1(y))

(with Φ the c.d.f. of standard normal distribution)

Normal distributions:

moderate stochastic transitivity
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4. Winning probability relations 4.3 Dependent random variables

Independence - Co-monoton. - Counter-monoton.
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QP(X ,Y ) = 7/16 QM(X ,Y ) = 3/8 QL(X ,Y ) = 1/2
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4. Winning probability relations 4.3 Dependent random variables

Copulas

Copula: C : [0, 1]2 → [0, 1] such that

neutral element 1, absorbing element 0
2-increasingness:

((x1 ≤ x2 ∧ y1 ≤ y2) ⇒ C (x1, y1) + C (x2, y2) ≥ C (x1, y2) + C (x2, y1)

Basic continuous t-norms are copulas and TL ≤ C ≤ TM

Relationship between t-norms and copulas:

copula + associativity ⇒ t-norm
t-norm + 1-Lipschitz ⇒ copula

1-Lipschitz t-norms = associative copulas
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4. Winning probability relations 4.3 Dependent random variables

Sklar’s theorem

Sklar’s theorem: for a random vector (X1,X2, . . . ,Xn) there exist
copulas Cij s.t.

FXi ,Xj
(x , y) = Cij(FXi

(x),FXj
(y))

Captures dependence structure irrespective of the marginals

Probabilistic interpretation:

TM co-monotonicity
TP independence
TL counter-monotonicity
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4. Winning probability relations 4.3 Dependent random variables

Dependence and the compatibility problem

The compatibility problem:

not all combinations of copulas are possible

all Cij = C is possible for C ∈ {TM, TP}
C12 = C13 = C23 = TL is impossible

Artificial coupling:

winning probabilities require only bivariate coupling

copula = comparison strategy

does not (necessarily) reflect the real dependence

Prof. dr. Bernard De Baets (KERMIT) State-of-the-Art on Reciprocal Relations April 10–11, 2014 55 / 121



4. Winning probability relations 4.3 Dependent random variables

Extreme couplings

Choose a copula C as comparison strategy and compute the winning
probabilities

QC (X ,Y ) = Prob{X > Y } + 1
2 Prob{X = Y }

Theorem

The winning probabilities associated with random variables compared
in a co-monotone manner satisfy the triangle inequality

The winning probabilities associated with random variables compared
in a counter-monotone manner satisfy partial stochastic
transitivity
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4. Winning probability relations 4.3 Dependent random variables

Exploiting cycle-transitivity: TM and TL

The relation >k
M:

X >k
M Y ⇔ QM(X ,Y ) >

k − 1

k

is an asymmetric relation without cycles of length k

The relation >M

X >M Y ⇔ QM(X ,Y ) = 1

is a strict order relation

The relation >L

X >L Y ⇔ QL(X ,Y ) >
1

2

is a strict order relation
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4. Winning probability relations 4.3 Dependent random variables

The Frank copula family

Frank family (T F
s )s∈[0,∞]: for s ∈ ]0, 1[∪ ]1,∞[

T F
s (x , y) = logs

(

1 +
(sx − 1)(sy − 1)

s − 1

)

Limit cases:
0 TM

1 TP

∞ TL

Prototypical solutions of the functional equation of Frank:

x + y − T (x , y) = 1 − T (1 − x , 1 − y)

T F
s -transitivity = cycle-transitivity w.r.t.

Us(α, β, γ) = α + β − T F
s (α, β) = SF

s (α, β)
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4. Winning probability relations 4.3 Dependent random variables

Coupling by a Frank copula

Theorem

For a Frank copula C = T F
s , the reciprocal relation QC is cycle-transitive

w.r.t.

UC (α, β, γ) = β + γ − T F
1/s

(β, γ) = SF
1/s

(β, γ)

copula upper bound f. equivalent known as

TM min(β + γ, 1) 1 triangle inequality
TP β + γ − βγ dice-transitivity
TL max(β, γ) γ partial stoch. trans.
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4. Winning probability relations 4.3 Dependent random variables

The Frank copula family

Cutting levels:

copula s level αs

TM 0 = 1
TP 1 ≥ 3/4
TL ∞ > 1/2

The Frank copula family:

αs = 1 − logs

(

1 +
√

s

2

)

αs + α1/s = 3/2
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4. Winning probability relations 4.3 Dependent random variables

A picture says more than . . .

-

6

s/(s + 1)

1

0

3/4

1/2

2/3

1/2

TM TP TL

1

k = 3

k = 4

k = ∞

r
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5. Graded stochastic dominance

5. Graded stochastic dominance
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5. Graded stochastic dominance 5.1 Stochastic dominance

Stochastic dominance

Purpose of stochastic dominance:

to define a (partial) order relation on a set of real-valued random
variables (RV)

should reflect that RV taking higher values are preferred

General principle:

pairwise comparison of RV

pointwise comparison of performance functions constructed from
the distribution function
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5. Graded stochastic dominance 5.1 Stochastic dominance

Performance functions

The cumulative distribution function (CDF) FX :

FX (x) = Prob{X ≤ x}

The area below the CDF FX :

GX (x) =

∫ x

−∞
FX (t) dt

fX

x0 1 x

1 1

1/2

0
0x

1

0 1

FX

00
1

GX
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5. Graded stochastic dominance 5.1 Stochastic dominance

1st and 2nd order stochastic dominance (SD)

Stochastic dominance relation:

X �FSD Y
def⇔ FX ≤ FY

⇔ E[u(X )] ≥ E[u(Y )]
for any increasing function u

X �SSD Y
def⇔ GX ≤ GY

⇔ E[u(X )] ≥ E[u(Y )]
for any increasing concave function u

Strict dominance relation:

X ≻ Y ⇔ X � Y and Y 6� X
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5. Graded stochastic dominance 5.1 Stochastic dominance

Graphical illustration of FSD

fY fX

FXFY

1
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5. Graded stochastic dominance 5.1 Stochastic dominance

Application areas

Decision making under uncertainty

Risk averse preference models in economics and finance:

e.g. in portfolio optimisation

Social statistics:

e.g. in the comparison of welfare and poverty indicators

Machine learning and multi-criteria decision making:

e.g. in ranking (= ordered sorting) algorithms (OSDL,
dominance-based rough sets, . . .)
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5. Graded stochastic dominance 5.1 Stochastic dominance

Discussion

SD induces a (classical) partial order relation on a set of RV:

no tolerance for small deviations, no grading

partial: usually sparse graphs

SD is theoretically attractive, but computationally difficult

SD uses marginal distributions only

SSD accumulates area from −∞ onwards

introduces an absolute reference point
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5. Graded stochastic dominance 5.2 Co-monotone comparison

Main objective: graded variants of SD

Our aim: construction of a reciprocal relation on a set of RV which
allows to induce a strict order relation on the set of RV

Choose a Frank copula C = T F
s as comparison strategy and compute:

QC (X ,Y ) = Prob{X > Y } + 1
2 Prob{X = Y }

The reciprocal relation QC is cycle-transitive w.r.t.

UC (α, β, γ) = β + γ − T F
1/s

(β, γ)

Compute (the transitive closure of) an appropriate (strict) α-cut of
QC
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5. Graded stochastic dominance 5.2 Co-monotone comparison

Example: co-monotone comparison

The case of TM: continuous RV

QM(X ,Y ) =

∫

x :FX (x)<FY (x)
fX (x) dx +

1

2

∫

x :FX (x)=FY (x)
fX (x) dx

QM(X , Y ) = 1 iff FX < FY where fX 6= 0:

more restrictive than ≻FSD
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5. Graded stochastic dominance 5.2 Co-monotone comparison

Graphical illustration

{

{

} t1

t2

t3

F( )x
FX

FY

FX

FY

0 x

QM(X ,Y ) = t1 + t3 +
1

2
t2
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5. Graded stochastic dominance 5.2 Co-monotone comparison

Co-monotone comparison revisited

The case of TM: discrete RV QM(X ,Y ) =
1

n

n
∑

k=1

δM
k

with

δM
k =







1 , if xk > yk

1/2 , if xk = yk

0 , if xk < yk

Parametrized version: p ∈ R
+

QM
p (X ,Y ) =

n
∑

k=1

(xk − yk)p
+

n
∑

k=1

|xk − yk |p
=

E[(X − Y )p
+]

E[|X − Y |p]

Limit case: QM
0 = QM
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5. Graded stochastic dominance 5.2 Co-monotone comparison

Co-monotone comparison revisited

p = 1: proportional expected difference

QPED(X ,Y ) =
E[(X − Y )+]

E[|X − Y |]
with QPED(X ,Y ) = 1 if and only if X ≻FSD Y

The case of continuous RV and p = 1:

QPED(X ,Y ) =

∫

(FY (x) − FX (x))+ dx
∫

|FY (x) − FX (x)|dx
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5. Graded stochastic dominance 5.2 Co-monotone comparison

Graphical illustration

{

{

} t1

t2

t3

F( )x
FX

FY

FX

FY

0 x
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5. Graded stochastic dominance 5.2 Co-monotone comparison

Transitivity

Theorem

The proportional expected difference relation QPED is partially
stochastic transitive

Use

The strict 1/2-cut of QPED yields the strict order relation
characterized by

QPED(X ,Y ) >
1

2
⇔ E[X ] > E[Y ]

Any α-cut (with α > 1/2) yields a strict order relation:
with increasing α the graph (Hasse diagram) becomes
more and more sparse (Hasse tree)
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5. Graded stochastic dominance 5.2 Co-monotone comparison

Example

Integers 1–9 distributed over 5 dice:

A 1 4 9

B 3 4 8

C 3 6 7

D 2 7 8

E 5 6 7

QPED =























1/2 1/3 1/3 1/5 1/4

2/3 1/2 1/3 1/4 1/5

2/3 2/3 1/2 1/3 0

4/5 3/4 2/3 1/2 2/5

3/4 4/5 1 3/5 1/2
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5. Graded stochastic dominance 5.2 Co-monotone comparison

Example

E

D

C

B

A

α = 3/5

A

α = 2/3

B

C

D E

D E

A B

α = 3/4

C

D E

A B

α = 4/5

C A B

α = 1

C

E

D
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6. Poset ranking

6. Poset ranking: coupled RV
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6. Poset ranking 6.1 The Hasse diagram technique

Partially ordered sets

Partially ordered sets (posets) are witnessing an increased interest:

multi-criteria analysis without a common scale

allow for incomparability

usually based on product ordering in a multi-dimensional setting

the Hasse diagram technique in environmetrics and
chemometrics
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6. Poset ranking 6.1 The Hasse diagram technique

Real-world example: pollution in
Baden-Württemberg
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6. Poset ranking 6.1 The Hasse diagram technique

Toy example: a poset and its linear extensions

Linear extension: an order-preserving permutation of the elements

e

c

a

d

b

e

d

c

b

a

d

e

c

b

a

e

c

d

b

a

e

d

b

c

a

d

e

b

c

a

d

b

e

c

a

e

c

d

a

b

e

d

c

a

b

d

e

c

a

b
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4

3

2

1
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6. Poset ranking 6.1 The Hasse diagram technique

Toy example: average rank

Discrete random variable Xa describing the position of a in a random linear
extension

e

d

c

b

a

d

e

c

b

a

e

c

d

b

a

e

d

b

c

a

d

e

b

c

a

d

b

e

c

a

e

c

d

a

b

e

d

c

a

b

d

e

c

a

b

5

4

3

2

1
1 2 3 4 5

0

5

10
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6. Poset ranking 6.1 The Hasse diagram technique

Toy example: poset ranking (weak order)

Ranking the elements according to their average rank ρ(xi ) = E[Xi ]

e

d

c

b

a
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6. Poset ranking 6.2 Mutual rank probabilities

Toy example: mutual rank probabilities

Fraction of linear extensions in which a is ranked above b:

Prob{Xa > Xb} = 3
9

e

d

c

b

a

d

e

c

b

a

e

c

d

b

a

e

d

b

c

a

d

e

b

c

a

d

b

e

c

a

e

c

d

a

b

e

d

c

a

b

d

e
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1
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6. Poset ranking 6.2 Mutual rank probabilities

Mutual rank probability relation

Mutual rank probability relation: reciprocal relation expressing the
probability that xi is ranked above xj

QP(xi , xj ) = Prob{Xi > Xj}

Toy example:

Q =























1/2 3/9 0 0 0

6/9 1/2 3/9 0 1/9

1 6/9 1/2 2/9 0

1 1 7/9 1/2 4/9

1 8/9 1 5/9 1/2
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6. Poset ranking 6.2 Mutual rank probabilities

Mutual rank probability relation

Distribution of the random vector (X1, . . . ,Xn) depends on the
structure of the poset (if xi and xj are comparable, then Cij = TM)

Average rank in terms of mutual rank probabilities:

ρ(xi ) = 1 +
∑

j 6=i QP(xi , xj )

Proportional transitivity (Fishburn, 1986; Yu, 1998):

(QP(a, b) ≥ u ∧ QP(b, c) ≥ u) ⇒ QP(a, c) ≥ u

holds for u ≥ ρ ≈ 0.78
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6. Poset ranking 6.2 Mutual rank probabilities

Linear extension majority cycles

The Linear Extension Majority (LEM) relation is the strict 1/2-cut
of QP : xi is ranked above xj if

Prob{Xi > Xj} > 1
2

The LEM relation may contain cycles (if n ≥ 9): LEM k-cycles

Only 5 out of 183 231 posets of size 9 contain LEM 3-cycles, none of
them contains longer LEM cycles
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6. Poset ranking 6.2 Mutual rank probabilities

Linear extension majority cycles

g h i

d e f

a b c

Q(g , h) = Q(h, i) = Q(i , g) = 720
1431

Q(d , e) = Q(e, f ) = Q(f , d) = 720
1431

Q(a, b) = Q(b, c) = Q(c , a) = 720
1431

the strict α-cut at α =
720

1431
= 0.50314465 is cycle-free

only one poset of size 9 requires this α
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6. Poset ranking 6.3 Moderate product-transitivity

Proportional transitivity in posets

Find largest δ : [0, 1]2 → [0, 1] such that for any finite poset

δ(QP (xi , xj),QP(xj , xk)) ≤ QP(xi , xk)

Kahn and Yu (1998): δ∗ ≤ δ with δ∗ the conjunctor

δ∗(u, v) =



















0 , if u + v < 1

min(u, v) , if u + v − 1 ≥ min(u2, v2)

(1 − u)(1 − v)

(1 −
√

u + v − 1)2
, elsewhere
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6. Poset ranking 6.3 Moderate product-transitivity

Transitivity

Theorem

The mutual rank probability relation is moderately TP-transitive, i.e.

αγ ≤ 1 − β

(both clockwise and counter-clockwise)

Interpretation

The mutual rank probability relation is at least 5
6 × 100% TP-transitive

Avoiding 3-cycles

The strict φ-cut of QP , with φ = 0.618034 the golden section, contains
no cycles of length 3

Prof. dr. Bernard De Baets (KERMIT) State-of-the-Art on Reciprocal Relations April 10–11, 2014 90 / 121



6. Poset ranking 6.3 Moderate product-transitivity

Product-triplets and min-triplets

There are 1 104 891 746 non-isomorphic posets of 12 elements
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7. Ranking representability in machine learning

7. Ranking representability
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7. Ranking representability in machine learning

Machine learning setting

Object space X (usually m-dimensional vector space) and a finite
label set L = {λ1, . . . , λr}
Unknown distribution D over X × L
Conditional distributions Dj

I.i.d. data sample of size n: D = {(x1, y1), . . . , (xn, yn)}
One-versus-one method: r(r − 1)/2 data subsamples

Dkl = {(xi , yi ) ∈ D | yi ∈ {λk , λl}}
with 1 ≤ k < l ≤ r
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7. Ranking representability in machine learning

One-versus-one classification
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7. Ranking representability in machine learning

Reduce MC classification to ordinal regression?
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7. Ranking representability in machine learning

Binary classification

Two classes labelled λk and λl (say λk < λl )

Ranking function f : X → R

Performance evaluation: AUC (area under the ROC curve)

Â(f ,Dkl ) = 1
nknl

∑

yi<yj
I{f (xi )<f (xj )} + 1

2 I{f (xi )=f (xj )}

Receiver Operating Characteristics

Mann-Whitney-Wilcoxon statistic

unbiased non-parametric estimator of the Expected Ranking
Accuracy (ERA)

Akl (f ) = Prob{f (Xk ) < f (Xl )} + 1
2 Prob{f (Xk ) = f (Xl )}

with Xk ∼ Dk and Xl ∼ Dl
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7. Ranking representability in machine learning

Strict ranking representability

One-versus-one: r(r − 1)/2 ranking functions fkl trained on data sets Dkl

Strict ranking representability

The ensemble {fkl} is called strictly ranking representable if there exists
a ranking function f : X → R s.t. for all 1 ≤ k < l ≤ r and all
(xi , yi ), (xj , yj) ∈ Dkl

fkl (xi ) < fkl(xj ) ⇐⇒ f (xi ) < f (xj )

[Assumption: pairwise ranking functions and the single ranking function
have a similar degree of complexity]

Verifying strict ranking representability:

algorithm linear in the size of the data set (topological sorting)

limited applicability
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7. Ranking representability in machine learning

AUC ranking representability

Goal is a good performance on independent test data, not exactly the
same result on some training data!

Relaxation: require the same performance rather than the same
results

The ensemble {fkl} is AUC ranking representable if there exists a
ranking function f : X → R s.t. for all 1 ≤ k < l ≤ r

Â(fkl ,Dkl ) = Â(f ,Dkl )
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7. Ranking representability in machine learning

AUC ranking representability

For k < l , add the ranking function flk = −fkl

The AUC form a reciprocal relation (put Q(k, k) = 1
2 )

Q(k, l) = Â(fkl ,Dkl )

Strict ranking representability implies AUC ranking representability

AUC ranking representability implies dice-transitivity of Q, i.e.
cycle-transitivity w.r.t.

UD(α, β, γ) = β + γ − βγ

TM-transitivity of Q does NOT imply AUC ranking representability
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7. Ranking representability in machine learning

ERA ranking representability

The ensemble {fkl} is ERA ranking representable if there exists a
ranking function f : X → R s.t. for all 1 ≤ k < l ≤ r

Akl(fkl ) = Akl (f )

For k < l , add the ranking function flk = −fkl

The ERA form a reciprocal relation: Q(k, l) = Akl(fkl )

Three-class case (r = 3): the ensemble {fkl} is ERA ranking
representable iff Q is κ-transitive with κ the conjunctor

κ(u, v) =

{

0 , if u + v < 1

uv , if u + v ≥ 1

Situated between dice-transitivity and TP-transitivity
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8. Beyond transitivity

8. More dice games: beyond transitivity
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8. Beyond transitivity 8.1 Rock-Paper-Scissors-Lizard

Rock-Paper-Scissors-Lizard

Integers 1–12 distributed over 4 dice:

A 1 6 12

B 4 5 10

C 3 8 9

D 2 7 11

Statistical preference: 4-cycle ABCD and two 3-cycles ABC and BCD

A

B C

D

5/9

5/9

5/9

5/9

5/9 5/9

A

B C

D
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8. Beyond transitivity 8.1 Rock-Paper-Scissors-Lizard

Possible complete asymmetric configurations (n = 4)

A

B C

D A

B C

D

A

B C

D A

B C

D
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8. Beyond transitivity 8.1 Rock-Paper-Scissors-Lizard

Product-triplets (n = 4)

Interpretation

The winning probability relation QP is at least 4
6 × 100% TP-transitive

Some figures: number of product-triplets for 4 dice

4 faces 5 faces 6 faces

16 triplets - - -
17 triplets - - 0.000001 %
18 triplets 0.001% 0.00004% 0.000003 %
19 triplets 0.010% 0.0013% 0.0001%
20 triplets 0.26% 0.080% 0.018 %
21 triplets 3.37% 1.51% 0.54 %
22 triplets 17.45% 9.48% 4.91 %
23 triplets 10.63% 8.23% 5.35 %
24 triplets 68.28% 80.69% 89.18%

total number 2.63E+06 4.89E+08 9.30E+10
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8. Beyond transitivity 8.1 Rock-Paper-Scissors-Lizard

At least 16 product-triplets it is!

Integers 1–36 distributed over 4 dice:

A 4 5 6 7 8 9 10 34 35

B 11 12 13 14 15 16 17 18 36

C 1 19 20 21 22 23 24 25 26

D 2 3 27 28 29 30 31 32 33
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8. Beyond transitivity 8.2 Product-Ferrers property

Semi-transitivity and the Ferrers property

Semi-transitivity:
if aRb and bRc , then aRd or dRc

c

b

a

d

The Ferrers property:
if aRb and cRd , then aRd or cRb

db

ca

Key property of methods for ranking
fuzzy intervals (numbers), rather
than transitivity!
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8. Beyond transitivity 8.2 Product-Ferrers property

T -semi-transitivity

A fuzzy relation R on A is called T -semi-transitive, with T a t-norm and
T ∗ its dual t-conorm, if

T (R(a, b),R(b, c)) ≤ T ∗(R(a, d),R(d , c))

for any a, b, c , d in A

c

b

a

d
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8. Beyond transitivity 8.2 Product-Ferrers property

T -Ferrers property

A fuzzy relation R on A is called T -Ferrers, with T a t-norm and T ∗ its
dual t-conorm, if

T (R(a, b),R(c , d)) ≤ T ∗(R(a, d),R(c , b))

for any a, b, c , d in A

db

ca
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8. Beyond transitivity 8.2 Product-Ferrers property

Reciprocal relations

Complete relations: transitivity implies semi-transitivity and the
Ferrers property

Reciprocal relations: if T is 1-Lipschitz continuous, then

T -transitivity implies T -semi-transitivity

T -transitivity implies the T -Ferrers property

TL-Ferrers

The winning probability relation associated with a random vector is
TL-Ferrers
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8. Beyond transitivity 8.2 Product-Ferrers property

The Ferrers property

Four independent random variables X1, X2, X3 and X4:

Prob{X1 > X2}Prob{X3 > X4}
≤ Prob{X1 > X4} + Prob{X3 > X2} − Prob{X1 > X4}Prob{X3 > X2}

Theorem

The winning probability relation QP associated with pairwise
independent random variables is TP-Ferrers
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8. Beyond transitivity 8.2 Product-Ferrers property

A stronger version of the TP-Ferrers property

Weak TP-transitivity and the TP-Ferrers property revisited

A reciprocal relation Q is weakly TP-transitive (dice-transitive) if and
only if for any 3 consecutive weights (t1, t2, t3) it holds that

t1 + t2 + t3 − 1 ≥ min(t1t2, t2t3, t3t1)

A reciprocal relation Q is TP-Ferrers if and only if for any 4
consecutive weights (t1, t2, t3, t4) it holds that

t1 + t2 + t3 + t4 − 1 ≥ t1t3 + t2t4

4-cycle condition

The winning probability relation QP associated with pairwise independent
random variables satisfies for any for any 4 consecutive weights
(t1, t2, t3, t4)

t1 + t2 + t3 + t4 − 1 ≥ t1t3 + t2t4 + min(t1, t3) min(t2, t4)
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Conclusion

Conclusion
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Conclusion

Conclusion

Cyclic phenomena are not necessarily incompatible with transitivity,
but arise due to the granularity considered

Cycle-transitivity yields a general framework for studying the
transitivity of reciprocal relations

Frequentist interpretation of the transitivity of winning
probabilities in terms of product-transitivity

Alternative theories of stochastic dominance

AUC as a means to distinguish between multi-class classification and
ordinal regression

In silico species competition and coexistence
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Conclusion
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Epilogue

What if God does throw dice?

Integers 1–20 distributed over 5 dice:

A 1 5 12 20

B 2 6 15 18

C 3 9 14 17

D 4 8 11 19

E 7 10 13 16

Whatever X , Y selected by Oppenheimer and Einstein, God can select Z

such that

Prob{Z > max(X ,Y )} > Prob{X > max(Y ,Z )}

Prob{Z > max(X ,Y )} > Prob{Y > max(X ,Z )}
This cannot be realized with 3 or 4 dice
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