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1. Intransitivity of indifference

1. Intransitivity of indifference
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1. Intransitivity of indifference

The Sorites Paradox

Many versions of the Sorites Paradox:

@ The Bald Man Paradox: there is no particular
number of hairs whose loss marks the transition to
boldness

@ The Heap Paradox: no grain of wheat can be
identified as making the difference between a heap and
not being a heap

@ The Luce Paradox: sugar in coffee example ?

J
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1. Intransitivity of indifference

The Poincaré Paradox

Approximate equality of real numbers is not transitive, i.e. stating that
a € Ris similar to b € R if

la—b| <e

is not transitive

1
a— € a a-+¢€
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Possible symmetric configurations (n = 3)

©

)

[T TN TG BTG D RS GG VIN DI State-of-the-Art on Reciprocal Relations _



1. Intransitivity of indifference

The Poincaré Paradox revisited

The fuzzy relation

EE(a,b):max<1— |a_b|,o)

€

is Ty-transitive, i.e. Ec(a,b)+ E.(b,c) —1 < E(a,c)

n
T T

a — € a a —]F €
The function d. =1 — E. is a metric: the triangle inequality holds
de(a, b) + de(b, c) > d(a, c)
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1. Intransitivity of indifference

T-Transitivity of fuzzy relations
Fuzzy relation: R : A%> — [0, 1], with a unipolar semantics

@ A fuzzy relation R on A is called T-transitive, with T a t-norm, if
T(R(a, b), R(b, ) < R(a, )

for any a, b, cin A

R(b,c)
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1. Intransitivity of indifference

Triangular norms

Basic continuous t-norms:

minimum Tm min(x, y)
product Tp Xy
tukasiewicz t-norm | T | max(x+y —1,0)
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1. Intransitivity of indifference

T-triplets

Consider three elements ay, a, and as:
@ A permutation (aj, aj, ax) is called a T-triplet if

T(R(ai’ aj)’ R(ajv ak)) < R(a,-, ak)

@ There can be at most 6 T-triplets

@ T-transitivity expresses that there always are 6 T-triplets

A A L R CEYGRM State-of-the-Art on Reciprocal Relations [IABGI0=1I20120 0z



2. Intransitivity of preference
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2. Intransitivity of preference

Transitivity of preference

Transitivity of preference is a fundamental principle underlying most

major rational, prescriptive and descriptive contemporary models of
decision making

@ Rationality of individual and collective choice: a transitive person,
group or society that prefers choice option x to y and y to z must
prefer x to z

@ Intransitive relations are often perceived as something paradoxical
and are associated with irrational behaviour

@ Main argument: money pump
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2. Intransitivity of preference

Intransitivity of preference

@ Transitivity is expected to hold if preferences are based on a single
scale (fitness maximization)

@ Intransitive choices have been reported from both humans and other
animals, such as gray jays (Waite, 2001) collecting food for storage

9\

@ Bounded rationality: intransitive choices are a suboptimal byproduct
of heuristics that usually perform well in real-world situations
(Kahneman and Tversky, 1969)

@ Intransitive choices can result from decision strategies that maximize
fitness (Houston, McNamara and Steer, 2007), as a kind of insurance
against a run of bad luck
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Intransitivity in life

Life provides many examples of intransitive relations, they often seem to
be necessary and play a positive role

@ sports: team A which defeated team B, which in turn won from C,
can be overcome by C

@ 13 love triangles:

©
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2. Intransitivity of preference

The God-Einstein-Oppenheimer dice puzzle
(New York Times, 30-03-09)

Integers 1-18 distributed over 3 dice:
|A1]2]13]14]15] 16|
| B7]8]9]10]11]12]
(c[3]4]5]6[17]18]

®

24/37 YO/%
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2. Intransitivity of preference

Statistical preference

Statistical preference: X is preferred to Y if Prob{X > Y} > %

@ May lead to cycles (Steinhaus and Trybuta, 1959):

®
®@_ ©

@ There exist 10.705 cyclic distributions of the numbers 1-18 and 15 of
them constitute a cycle of the highest equal probability 21/36 = 7/12
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2. Intransitivity of preference

A single die variant

Integers 1-18 distributed over 1 die: 3 numbers on each face

5|12 |17 (13|4 |14|16|11 ]3| 2]|1]10

18 6 9 5 8 7

Winning probabilities:

The single die can be seen as 3 coupled dice
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2. Intransitivity of preference

Rock-Paper-Scissors

Cyclic dice are a type of Rock-Paper-Scissors (RPS):
(ancient children’s game, jan-ken-pon, rochambeau)

@ rock defeats scissors
@ scissors defeat paper

@ rock loses to paper

Sussors

& aper

m
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2. Intransitivity of preference

Rock-Paper-Scissors

The Rock-Paper-Scissors game:

@ is often used as a selection method in a way similar to coin flipping,
drawing straws, or throwing dice

@ unlike truly random selection methods, RPS can be played with a
degree of skill: recognize and exploit the non-random behaviour of
an opponent

@ World RPS Society:
“Serving the needs of decision makers since 1918"
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Rock-Paper-Scissors

Rock Gun

v Lightning

SN
.‘;:t'o’l' <s¥
l“"":",;,izmﬁg

LRSHEAAN
IR PRENK
24 LA

£7] o
FCIESN,

[T TN TG BTG D RS GG VIN DI State-of-the-Art on Reciprocal Relations




2. Intransitivity of preference

RPS in voting

The voting paradox of Condorcet (Marquis de Condorcet, 1785)

voterl: A > B > C
voter2: B > C > A
voter3: C > A > B

®
®_ _©

Inspiration to Arrow’s impossibility theorem: there is no choice
procedure meeting the democratic assumptions
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RPS in evolutionary biology: lizards

Common side-blotched lizard mating strategies (Sinervo and Lively,
Nature, 1996) depending on the colour of throats of males

s _
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RPS in evolutionary biology: lizards

Lizard mating strategies:

@ orange beats blue: males with orange throats can take territory
from blue-throated males because they have more testosterone and
body mass. As a result, orange males control large territories
containing many females

@ blue beats yellow: blue-throated males cooperate with each other to
defend territories and closely guard females, so they are able to beat
the sneaking strategy of yellow-throated males

@ yellow beats orange: yellow-throated males are not territorial, but
mimic female behavior and coloration to sneak onto the large
territories of orange males to mate with females
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2. Intransitivity of preference

RPS in evolutionary biology:
Survival of the Weakest

Cyclic competitions in spatial ecosystems (Reichenbach et al., 2007;
Frey, 2009) (alternative to Lotka-Volterra equations, computer simulations
using cellular automata)

@ in large populations, the weakest species would - with very high
probability - come out as the victor

@ biodiversity in RPS games is negatively correlated with the rate of
migration: critical rate of migration €.+ above which biodiversity gets
lost
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Simulating microbial competition

Simulation setting:

@ three subpopulations: IEI ,
@ initial population density: 25 % IE 25 % , 25 % , 25 % .

@ cellular automaton on a square grid

@ environmental conditions discarded

A

N~ 7
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Simulating microbial competition: mechanisms

CE -~ OO
@ Reproduction (u): (1 - ]
CIE -~ OO

] - CE
@ Selection (0): L] - L
O - CJE

O -0d O - B0

@ Migration (e): 0] — OO Il
OO0 - 00 OF - |3
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Simulation experiment 1
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Simulation experiment 2
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3. Reciprocal relations

3. Reciprocal relations
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Reciprocal relations

Reciprocal relation: @ : A2 — [0, 1], with a bipolar semantics, satisfying

Q(a,b) + Q(b,a) =1

@ Example 1: 3-valued representation of a complete relation R

1 , if R(a,b) =1 and R(b,a) =0
Q(a,b) =< 1/2 , if R(a,b) = R(b,a) =1
0 , if R(a,b) =0 and R(b,a) =1

@ Example 2: winning probabilities associated with a random vector
(X1, X2,..., Xp)

Q(X”)g) = PI‘Ob{X,' > )<J} + %PI‘Ob{Xi = )<J}
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3. Reciprocal relations

Reciprocal relations

@ Example 3: popular definition of a “fuzzy” preference relation

€11/2,1] , if a is rather preferred to b
Q(a,b) = 1/2 , if a and b are indifferent
€1[0,1/2] , if b is rather preferred to a

obeying the constraint Q(a, b) + Q(b, a) = 1, providing it with a
bipolar semantics

Strong reservations against use of the word “fuzzy”

@ Bipolar semantics
@ Intersection makes no sense
(cfr. intersection of complete relations is not complete)

@ Fuzzy preference structures are more expressive
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3. Reciprocal relations

Possible complete asymmetric configurations (n = 3)
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3. Reciprocal relations

Oppenheimer’s set of dice

24/36 <::> 20/36
OWFC,

24/36
Reciprocal relation:
1/2 24/36  16/36
Q= 12/36 1/2 24/36
20/36  12/36 1/2
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3. Reciprocal relations

Stochastic transitivity

A reciprocal relation @ is called g-stochastic transitive if

(Q(a,0) = 1/2 A Q(b,c) 21/2) = g(Q(a,b), Q(b,c)) < Q(a, )

@ weak stochastic transitivity (g = 1/2): iff 1/2-cut of Q is transitive
@ moderate stochastic transitivity (g = min):
iff all a-cuts (with o > 1/2) are transitive

@ strong stochastic transitivity (g = max)

A reciprocal relation @ is called partially stochastic transitive if
(Q(a,b) > 1/2 A Q(b,c) >1/2) = min(Q(a, b), Q(b, c)) < Q(a, ) ;

iff all a-cuts (with a > 1/2) are transitive
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Isostochastic transitivity

A reciprocal relation @ is called h-isostochastic transitive if

(Q(a,b) >1/2 N Q(b,c)>1/2) = h(Q(a,b),Q(b,c)) = Q(a,c)

@ A reciprocal relation Q is called multiplicatively transitive (Tanino)
if
Qa,c) _ Q(a,b) Q(b,c)
Q(c,a) Q(b,a) Q(c,b)

@ Multiplicative transitivity = h-isostochastic transitivity w.r.t.

_ Xy
= A=)

(Hamacher t-conorm of the 3MM-uninorm)
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3. Reciprocal relations

Cycle-transitivity

Reciprocal relation @:

Qapc min{Q(av b)a Q(bv C)a Q(Cv a)}
Babe | median{Q(a, b), Q(b, c), Q(c,a)}
“Yabc maX{Q(aa b)v Q(ba C)v Q(Ca 3)}
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Cycle-transitivity

@ A reciprocal relation @ is called cycle-transitive w.r.t. an upper
bound function U if

L(aabCa /Babcf)/abc) < Qgpe + ﬂabc + Yabc — 1< U(aabCa ﬂabc:’)/abc)
@ A function U: A ={(x,y,z) €[0,1]® | x <y < z} — Ris called an
upper bound function if it satisfies:

o U(0,0,1) >0 and U(0,1,1) > 1
o for any (o, 8,7) € A:

U(a7ﬂ77)2 1L = U(1_771_/871_a)

@ Dual lower bound function: function L : A — R defined by
L(‘Lﬂ:’Y) =1- U(l _771 _ﬂ71 _05)
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Stochastic transitivity

@ g-stochastic transitivity = cycle-transitivity w.r.t.

B+7—g(B7)| iEB212Aa<1/2
Ug(o, B,7) =< 1/2 ,if a>1/2
2 L if B<1/2
‘ type ‘ upper bound function ‘ equivalent ‘
weak B+vy—1/2
moderate ¥
strong 164 g ,ifp>1/2
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Stochastic transitivity

@ Partial stochastic trans. = cycle-trans. w.r.t. Ups(a, 5,7) =7 :

Oape + Babe < 1

@ Multiplicative transitivity = cycle-transitivity w.r.t.

Ue(o, B,7) = aB + ay + By — 2a8y

Prof. dr. Bernard De Baets (KERMIT) [ R R N iR i el R [ B s T A b



T-transitivity of reciprocal relations

Although not compatible with the bipolar semantics, T-transitivity can be
imposed formally
o 1-Lipschitz T: |T(x1,y1) — T(x2, y2)| < |x1 — x2| + |[y1 — 2|

@ T-transitivity = cycle-transitivity w.r.t.
UT(OQﬂ:fY) = o+ /8 - T(a718)

‘ t-norm ‘ upper bound function ‘ equivalent ‘

Twm max(a, ) 8
Tp a+p—af
TL min(a + 3, 1) 1

@ Tm-trans. = cycle-trans. w.r.t. U(a, B,7) =5 :
Qape + Vabe <1
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T-transitivity of reciprocal relations

Consider a reciprocal relation on a set of three elements:

@ There are either 3, 5 or 6 Tyy-triplets

@ There are either 3, 4, 5 or 6 Tp-triplets

@ There are either 3 or 6 T-triplets

A non-symmetric triangle inequality

Ty, -transitivity of a reciprocal relation = “triangle inequality”:

Q(a,b) + Q(b,c) > Q(a, )
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Product-triplets

Three variants of Tp-transitivity:

‘ name ‘ upper bound f. ‘ equiv. condition ‘ # product-triplets ‘
strong a+ 0 —af af <1—x 6
moderate | a4+ 7y — ay ay<1-p >5
weak B+ — By fy<l-—a« >4

A A L R CEGRM State-of-the-Art on Reciprocal Relations [IABGI0= 1120120 Na iz



4. Winning probability relations

4. Winning probability relations
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4. Winning probability relations

T -transitivity of winning probability relations

The winning probability relation associated with any random vector is
T\ -transitive, i.e. it satisfies the triangle inequality

Q(a,b) + Q(b,c) > Q(a, )
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4. Winning probability relations

A probabilistic viewpoint

Three random variables X7, X5 and Xs:
Prob{X; > X2 A X5 > X3} < Prob{X; > X3}
Even if they are independent, then not necessarily
Prob{X; > X5} Prob{Xo > X3} < Prob{X; > X3}
How close are winning probabilities to being Tp-transitive

Q(a, b)Q(b,c) < Q(a,c) ?
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4. Winning probability relations

Oppenheimer’s set of dice

Reciprocal relation:
1/2 24/36 16/36
Q=| 12/36 1/2  24/36
20/36  12/36 1/2
Four product-triplets, the only conditions not fulfilled are
Q(b,c)Q(c,a) < Q(b,a) and Q(c,a)Q(a,b) < Q(c, b)

since
20 24 12 1 12

36 3 36 27 ~ 36
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4. Winning probability relations

Pairwise independent random variables

Theorem (characterization for n = 3 and rational numbers)

The winning probability relation QP associated with pairwise
independent random variables is weakly Tp-transitive (dice-transitive),

ie.

fy<l-a

(both clockwise and counter-clockwise)

Interpretation

The winning probability relation QP is at least ¢ x 100% Tp-transitive
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4. Winning probability relations

Some interesting numbers for 3 dice

4 faces ‘ 5 faces ‘ 6 faces ‘ 7 faces
4 Tp-triplets 8.66% 1.67% 0.325% | 0.060%
5 Tp-triplets 14.01% 7.98% 42% | 231%
6 Tp-triplets 85.90% 92.00% 95.8% 97.68%
total number | 5.78E4+03 | 1.26E+05 | 2.86E+06 | 6.65+07
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4. Winning probability relations

Exploiting dice-transitivity

@ The relation >,33:

V5 -1
2
is an asymmetric relation without cycles of length 3

X>3Y < QF(X,Y)>

@ The golden section ¢ = @ 5 < */_ L < %

®

24/i;///"

&__© e_ 0

24/36
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4. Winning probability relations

Exploiting dice-transitivity

@ The relation >:

1
 4cos?(r/(k +2))

is an asymmetric relation without cycles of length k

X>pY < QP(X,Y)>1

@ The relation >p°:

X>XY & X, Y)>

NN

is an asymmetric acyclic relation

@ The transitive closure >p of >p° is a strict order relation
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4. Winning probability relations

One- and two-parameter families

Marginal distributions belonging to a same parametric family:

@ One-parameter: exponential, geometric, power-law (subfamilies of
Beta and Pareto families), Gumbel

‘ multiplicative transitivity ‘

@ Normal distributions with same o: h-isostochastic transitivity with
h(x,y) = ®(®~1(x) + ¢~(y))
(with ® the c.d.f. of standard normal distribution)

@ Normal distributions:

moderate stochastic transitivity‘
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4. Winning probability relations

Independence - Co-monoton. - Counter-monoton.

X Y X Y X Y
1 2 1 2 1 2
2 3 2 3 2 3
5 5 5 5 5 5
8 7 8 7 8 7
QP(X,Y)=17/16 QM(X,Y)=13/8 QY(X,Y)=1/2
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4. Winning probability relations

Copulas

@ Copula: C:[0,1]?> — [0,1] such that
@ neutral element 1, absorbing element 0
@ 2-increasingness:

((x1 <x2 A y1 <) = Clxt,y1) + Clxo, y2) > C(x1,y2) + C(x2, 1)

@ Basic continuous t-norms are copulasand T < C < Ty

@ Relationship between t-norms and copulas:

copula 4 associativity = t-norm
t-norm + 1-Lipschitz = copula

@ 1-Lipschitz t-norms = associative copulas
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4. Winning probability relations

Sklar’s theorem

@ Sklar's theorem: for a random vector (X1, Xo, ..., X,) there exist
copulas Cjj s.t.

Fx. x;(x,y) = Gj(Fx;(x), Fx;(y))
@ Captures dependence structure irrespective of the marginals

@ Probabilistic interpretation:

Twm co-monotonicity
Tp independence
Ty | counter-monotonicity
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4. Winning probability relations

Dependence and the compatibility problem

9@ The compatibility problem:

@ not all combinations of copulas are possible
o all Cjj = C is possible for C € {Twm, Tp}

@ Cp = Gi3 = Go3 = Ty is impossible

@ Artificial coupling:

@ winning probabilities require only bivariate coupling
@ copula = comparison strategy

o does not (necessarily) reflect the real dependence
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4. Winning probability relations

Extreme couplings

Choose a copula C as comparison strategy and compute the winning
probabilities

QE(X,Y) =Prob{X > Y} + § Prob{X = Y}

@ The winning probabilities associated with random variables compared
in a co-monotone manner satisfy the triangle inequality

@ The winning probabilities associated with random variables compared
in a counter-monotone manner satisfy partial stochastic
transitivity
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4. Winning probability relations

Exploiting cycle-transitivity: Ty and T

: K .
@ The relation >:
K M k—1
X>mY & Q (X’Y)>T
is an asymmetric relation without cycles of length k

@ The relation >pm
X>mY & VX, Y)=1

is a strict order relation

@ The relation >

N

X>Y < Q'(X,Y)>

is a strict order relation
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4. Winning probability relations

The Frank copula family

@ Frank family (TF)scq0.00) for s €]0,1[U]1, 00]

(s* = 1)(s¥ - 1))

TSF(Xay) = Iogs (1 +

s—1
0| Twm
@ Limitcases: | 1 | Tp
oo | Ty

@ Prototypical solutions of the functional equation of Frank:

X+y— T(X7y):1_ T(]-_X71_y)

@ TF-transitivity = cycle-transitivity w.r.t.

Us(a,ﬁ,’}/) = Oé+ﬁ - TSF(Oé,ﬁ) = S;(Oé,ﬁ)
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4. Winning probability relations

Coupling by a Frank copula

For a Frank copula C = TF, the reciprocal relation Q€ is cycle-transitive
w.r.t.

Uc(aaﬁa’)/) :5+7 1/5(57’7) 1/5(57’7)

‘ copula ‘ upper bound f. ‘ equivalent ‘ known as ‘

Tm min(3 +v,1) 1 triangle inequality
Tp B+~—0y dice-transitivity
N max(03, ) ~ partial stoch. trans.
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4. Winning probability relations

The Frank copula family

o Cutting levels:

‘ copula ‘ s ‘ level as ‘
Twm 0|=1

Tp 1 |>3/4
TL oo | > 1/2

@ The Frank copula family:

1
as =1 — log, ( +2\/§)

as +ays = 3/2
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4. Winning probability relations

A picture says more than

0 12 1 /(s +1)

Tm Tp TL
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5. Graded stochastic dominance

5. Graded stochastic dominance
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Stochastic dominance

Purpose of stochastic dominance:

@ to define a (partial) order relation on a set of real-valued random
variables (RV)

@ should reflect that RV taking higher values are preferred
General principle:

@ pairwise comparison of RV

@ pointwise comparison of performance functions constructed from
the distribution function
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Performance functions

@ The cumulative distribution function (CDF) Fx:
Fx(x) = Prob{X < x}

@ The area below the CDF Fy:

Gx(x) = / Fy(t) dt

—00

fx
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1st and 2nd order stochastic dominance (SD)

Stochastic dominance relation:

(oW
9}
h

XrrspY < Fx<Fy
< E[u(X)] = E[u(Y)]
for any increasing function u
Xrssp Y € Gx <Gy
& E[u(X)] = E[u(Y)]
for any increasing concave function u

@ Strict dominance relation:

[ X-Y & X=VY and Y¥X|
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5. Graded stochastic dominance

Graphical illustration of FSD

Ik
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Application areas

9@ Decision making under uncertainty

@ Risk averse preference models in economics and finance:

@ e.g. in portfolio optimisation

@ Social statistics:

@ e.g. in the comparison of welfare and poverty indicators
@ Machine learning and multi-criteria decision making:

9 e.g. in ranking (= ordered sorting) algorithms (OSDL,
dominance-based rough sets, ...)
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; ;
Discussion

@ SD induces a (classical) partial order relation on a set of RV:

@ no tolerance for small deviations, no grading

o partial: usually sparse graphs
@ SD is theoretically attractive, but computationally difficult
@ SD uses marginal distributions only

@ SSD accumulates area from —oo onwards

@ introduces an absolute reference point
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Main objective: graded variants of SD

@ Our aim: construction of a reciprocal relation on a set of RV which
allows to induce a strict order relation on the set of RV

@ Choose a Frank copula C = TF as comparison strategy and compute:

QC(X,Y) =Prob{X > Y} + 5 Prob{X = Y}

@ The reciprocal relation Q€ is cycle-transitive w.r.t.

UC(a,ﬁ,'y) = ﬂ'i"y - T]!:/s(ﬁa’)/)

@ Compute (the transitive closure of) an appropriate (strict) a-cut of

QC
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Example: co-monotone comparison

@ The case of Tpm: continuous RV

M, v) = | KGax+3 [ () dx
x:Fx(x)<Fy(x) 2 x:Fx(x)=Fy(x)

o QM(X,Y) =1iff Fx < Fy where fx # 0:

‘ more restrictive than >prsp ‘
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Graphical illustration

v

1
QM(X,Y)=t1+t3+§t2
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5. Graded stochastic dominance

Co-monotone comparison revisited

@ The case of Tp: discrete RV QM X,Y)

25k

with
1 , i Xk > v
5,’? = 1/2 ) if Xk = Yk
0 R

@ Parametrized version: p € R

n

> (= yi)h

E[(X - Y)3]

QM(X Y) k= 1

Z Ik = vl
k=1

@ Limit case: Q(')V' =QM

" E[X - Y]]
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Co-monotone comparison revisited

@ p = 1: proportional expected difference

E[(X = V)]
E[[X - Y]]

with QPEP(X,Y) = 1 if and only if X =psp Y

QUEP(X, ¥) =

@ The case of continuous RV and p = 1:

/ (Fy(x) - Fx(x),

J 1R — Fxtol ax

QPED X Y
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Graphical illustration
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5. Graded stochastic dominance

Transitivity

The proportional expected difference relation QFP is partially
stochastic transitive

Use

@ The strict 1/2-cut of QPFP yields the strict order relation
characterized by

QYFP(X,Y)> = & E[X]>E[Y]

N[ —

@ Any a-cut (with @ > 1/2) yields a strict order relation:
with increasing « the graph (Hasse diagram) becomes
more and more sparse (Hasse tree)
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5. Graded stochastic domina

Example

Integers 1-9 distributed over 5 dice:

(Al1][4]9]
(B]3[4]8]
[ cl3][6]7]
(D]2][7]8]
[EN5]6]7]

Prof. dr. Bernard De Baets (KERMIT)

1/2
2/3
QPP = [2/3
4/5

3/4

1/3
1/2
2/3
3/4
4/5

1/3
1/3
1/2
2/3

1/5
1/4
1/3
1/2
3/5

1/4
1/5

2/5
1/2




Example

¥
¥
@ ©
?
®

@@
O,

a=3/5| «

Il

N
~

w

Prof. dr. Bernard De Baets (KERMIT)

© ®
i
6\OC)C{E>C>G © ©

a=3/4 a=4/5 a=1
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6. Poset ranking

6. Poset ranking: coupled RV
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Partially ordered sets

Partially ordered sets (posets) are witnessing an increased interest:

@ multi-criteria analysis without a common scale
@ allow for incomparability
@ usually based on product ordering in a multi-dimensional setting

@ the Hasse diagram technique in environmetrics and
chemometrics
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Real-world example: pollution in
Baden-Wurttemberg




Toy example: a poset and its linear extensions

Linear extension: an order-preserving permutation of the elements

I S0 0 000008
O 550300008
000000006
/[ GOOOOOOOO® @

R O R A R R
@ ® RO @

(%]
=
I}



Toy example: average rank

Discrete random variable X, describing the position of a in a random linear
extension

DOWEOEOOWOOW G

I ]
@ ©
[ ]
©®©
I ]
® ®
[ ]
®®

0}

O—C0——0—
O—O0—@—e—
O—0—@—0—
O—0—C——
O—O—C—0—
O—O@—0——
O—O—0—0—




Toy example: poset ranking (weak order)

Ranking the elements according to their average rank p(x;) = E[Xi]

a0 @

it
|L
|J..

Prof. dr. Bernard De Baets (KERMIT) [ R R N R it el R [ R s A b

O—@—0—c—




Toy example: mutual rank probabilities

Fraction of linear extensions in which a is ranked above b:

PI‘Ob{Xa > Xb} = %

oJoJooJOJOROROXORNC)
SNSRI AN S A A
PEOVEOOYE @
SRR R AN S A A
POEOOOLVOO @
NSRS RN A A
POOOOOOOE @
IR RS AN R A A
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6. Poset ranking

Mutual rank probability relation

Mutual rank probability relation: reciprocal relation expressing the
probability that x; is ranked above x;

QP(X,',XJ') = PI"Ob{X,' > )(_,}

Toy example:
1/2 3/9 0 0 0

6/9 1/2 3/9 0 1/9
Q=] 1 6/9 1/2 2/9 0

1 1 7/9 1/2 4/9
1 8/9 1 5/9 1/2
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Mutual rank probability relation

@ Distribution of the random vector (Xi,...,X,) depends on the
structure of the poset (if x; and x; are comparable, then Cjj = Tpm)

@ Average rank in terms of mutual rank probabilities:

P(Xi) =1+ Zﬁg, QP(Xian)

@ Proportional transitivity (Fishburn, 1986; Yu, 1998):
(QP(Q, b) >u A QP(bv C) > U) = QP(Q, C) >u
holds for u > p ~ 0.78
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Linear extension majority cycles

The Linear Extension Majority (LEM) relation is the strict 1/2-cut
of Qp: x; is ranked above x; if

Prob{X; > X;} > 1

@ The LEM relation may contain cycles (if n > 9): LEM k-cycles

@ Only 5 out of 183 231 posets of size 9 contain LEM 3-cycles, none of
them contains longer LEM cycles
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6. Poset ranking

Linear extension majority cycles

® () ®

Q(g,h) = Q(h,i) = Q(i,g) = 1A
®©/ ©® X@® Q(d;e) = Qe f) = Q(f. d) = {5y
Q(a,b) = Q(b,c) = Q(c,a) = 720

1431

@ ©® O

720
@ the strict a-cut at a = 1431 = 0.50314465 is cycle-free

@ only one poset of size 9 requires this «
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Proportional transitivity in posets

@ Find largest § : [0,1]2 — [0, 1] such that for any finite poset
6(Qp(xi, x;), Qr(xj, xk)) < Qp(xi, xk)

@ Kahn and Yu (1998): 6" < ¢ with 0* the conjunctor

0 ,ifu+v<l
5*(u,v) = min(u, v) , if u+ v —12>min(v?,v?)
(1= u)l=v) elsewhere
A—Vatv_1p
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6. Poset ranking

Transitivity
The mutual rank probability relation is moderately Tp-transitive, i.e.
ay<1l-p

(both clockwise and counter-clockwise)

Interpretation
The mutual rank probability relation is at least % x 100% Tp-transitive

Avoiding 3-cycles
The strict ¢-cut of Qp, with ¢ = 0.618034 the golden section, contains
no cycles of length 3
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Product-triplets and min-triplets

There are 1 104 891 746 non-isomorphic posets of 12 elements

0.025
f%% o T,triplets
o B .

N o0.02 S 9 ° TM—trlpIets
Q ° 2
N o o
N S o
y— o o
S 0.015 o °
(%] © o
© ° 2

(e}
3 3
S 0.01F 2
© k)
c )
i)
S 0.005F %

0
084 086 088 09

092 094 096 098

1
fraction of T—triplets
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7. Ranking representability in machine learning

7. Ranking representability
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7. Ranking representability in machine learning

Machine learning setting

Object space X’ (usually m-dimensional vector space) and a finite
label set £ ={A1,..., A/}

@ Unknown distribution D over X x L

Conditional distributions D;

li.d. data sample of size n: D = {(x1,y1),-,(Xn,¥n)}
@ One-versus-one method: r(r — 1)/2 data subsamples

Dy = {(xi,yi) € D | yi € {\; \i}}
withl<k</<r
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7. Ranking representability in machine learning

One-versus-one classification
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7. Ranking representability in machine learning

Reduce MC classification to ordinal regression?
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7. Ranking representability in machine learning

Binary classification

@ Two classes labelled Ay and A\; (say Ak < \/)
@ Ranking function f : X — R

@ Performance evaluation: AUC (area under the ROC curve)

~

A(f, D) = i X ey, lir )< ()3 + 3 leroe)=F(x))

o Receiver Operating Characteristics
@ Mann-Whitney-Wilcoxon statistic

9 unbiased non-parametric estimator of the Expected Ranking
Accuracy (ERA)

Au(f) = Prob{f(Xx) < f(X))} + 3 Prob{f(Xx) = f(X)}
with X ~ Dy and X; ~ Dy
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7. Ranking representability in machine learning

Strict ranking representability

One-versus-one: r(r — 1)/2 ranking functions fy trained on data sets Dy

Strict ranking representability

The ensemble {fy} is called strictly ranking representable if there exists
a ranking function f : X = Rs.t. forall 1 < k < /< rand all

(xi»Yi), (i, ;) € Du

fu(xi) < fu(xj)) <= f(xi) < f(x;)

[Assumption: pairwise ranking functions and the single ranking function
have a similar degree of complexity]

Verifying strict ranking representability:
@ algorithm linear in the size of the data set (topological sorting)
@ limited applicability
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7. Ranking representability in machine learning

AUC ranking representability

@ Goal is a good performance on independent test data, not exactly the
same result on some training data!

@ Relaxation: require the same performance rather than the same
results

@ The ensemble {fy} is AUC ranking representable if there exists a
ranking function f : X - Rs.t. forall 1< k< /<r

~ ~

A(fui, D) = A(f, D)
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7. Ranking representability in machine learning

AUC ranking representability

@ For k < [, add the ranking function fy = —fy
@ The AUC form a reciprocal relation (put Q(k, k) = %)

A

Q(k, 1) = A(fu, D)

@ Strict ranking representability implies AUC ranking representability

@ AUC ranking representability implies dice-transitivity of @, i.e.
cycle-transitivity w.r.t.

UD(aaﬂav):ﬂ+7_ﬂ7

o Tm-transitivity of @ does NOT imply AUC ranking representability
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7. Ranking representability in machine learning

ERA ranking representability

@ The ensemble {fy} is ERA ranking representable if there exists a
ranking function f : X - Rs.t. forall 1< k< /<r

Asi(fu) = Aw(f)
@ For k < [, add the ranking function fy = —fy

@ The ERA form a reciprocal relation: Q(k, /) = Aw(fu)

@ Three-class case (r = 3): the ensemble {f,} is ERA ranking
representable iff Q is k-transitive with k the conjunctor

(u.v) 0 ,ifu+v<l
wk(u,v) = )
uv yifut+v>1

o Situated between dice-transitivity and Tp-transitivity
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8. Beyond transitivity
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8. Beyond transitivity

Rock-Paper-Scissors-Lizard

Integers 1-12 distributed over 4 dice:

[A1]6]12]
[B4]5]10]
[ c[3[8]9]
[Df2]7]11]

Statistical preference: 4-cycle ABCD and two 3-cycles ABC and BCD
@@

/)

®&__.©
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8. Beyond transitivity

Possible complete asymmetric configurations (n = 4)
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Product-triplets (n = 4)

Interpretation

The winning probability relation QP is at least % x 100% Tp-transitive

Some figures: number of product-triplets for 4 dice

‘ 4 faces ‘ 5 faces ‘ 6 faces
16 triplets - - -
17 triplets - - | 0.000001 %
18 triplets 0.001% | 0.00004% | 0.000003 %
19 triplets 0.010% | 0.0013% 0.0001%
20 triplets 0.26% 0.080% 0.018 %
21 triplets 3.37% 1.51% 0.54 %
22 triplets 17.45% 9.48% 4.91 %
23 triplets 10.63% 8.23% 5.35 %
24 triplets 68.28% 80.69% 89.18%
total number | 2.63E+06 | 4.89E+08 9.30E+10
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8. Beyond transitivity

At least 16 product-triplets it is!

Integers 1-36 distributed over 4 dice:

A 4]5]6]|7][8]9]10][34]35]
| B11]12[13[14 15[ 1617 |18 36 |
[C] 1 ]19]20]21[22]23][24]25] 26|
D2 ]3[27]28][29]30]31]32]33]
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8. Beyond transitivity

Semi-transitivity and the Ferrers property

Semi-transitivity: The Ferrers property:
if aRb and bRc, then aRd or dRc if aRb and cRd, then aRd or cRb

@© (®) (@
¥. . B

AT

®) (@ @ ©
A A

; Key property of methods for ranking
s fuzzy intervals (numbers), rather

O than transitivity!
a
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T-semi-transitivity

A fuzzy relation R on A is called T-semi-transitive, with T a t-norm and
T* its dual t-conorm, if

T(R(a,b),R(b,c)) < T*(R(a,d),R(d,c))
forany a, b, c,din A
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T-Ferrers property

A fuzzy relation R on A is called T-Ferrers, with T a t-norm and T* its
dual t-conorm, if

T(R(a,b),R(c,d)) < T*(R(a,d), R(c, b))
forany a, b, c,din A

e O

......
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Reciprocal relations

@ Complete relations: transitivity implies semi-transitivity and the
Ferrers property

@ Reciprocal relations: if T is 1-Lipschitz continuous, then

o T-transitivity implies T-semi-transitivity
o T-transitivity implies the T-Ferrers property

The winning probability relation associated with a random vector is
T.-Ferrers
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The Ferrers property

Four independent random variables X1, X5, X3 and X;:

PrOb{Xl > Xz}PrOb{X3 > X4}
< Prob{X; > Xs} + Prob{X3 > X} — Prob{X; > X4}Prob{Xz > Xz}

The winning probability relation QP associated with pairwise
independent random variables is Tp-Ferrers

[T TN TG BTG D RS GG VIN DI State-of-the-Art on Reciprocal Relations _



8. Beyond transitivity

A stronger version of the Tp-Ferrers property

Weak Tp-transitivity and the Tp-Ferrers property revisited

@ A reciprocal relation Q is weakly Tp-transitive (dice-transitive) if and
only if for any 3 consecutive weights (t1, t2, t3) it holds that

t1 + tp+ t3 — 1 > min(tytp, tats, t3ty)

@ A reciprocal relation @ is Tp-Ferrers if and only if for any 4
consecutive weights (t1, ta, t3, t4) it holds that

th+b+t3+ts—12>tit3+ oty

4-cycle condition

The winning probability relation QP associated with pairwise independent
random variables satisfies for any for any 4 consecutive weights
(t17 t27 t37 t4)

t1 +th+t3+tg — 1> tit3 + tota + min(ty, t3) min(tz, ta)
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Conclusion

Conclusion
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Conclusion

@ Cyclic phenomena are not necessarily incompatible with transitivity,
but arise due to the granularity considered

@ Cycle-transitivity yields a general framework for studying the
transitivity of reciprocal relations

@ Frequentist interpretation of the transitivity of winning
probabilities in terms of product-transitivity

@ Alternative theories of stochastic dominance

@ AUC as a means to distinguish between multi-class classification and
ordinal regression

@ In silico species competition and coexistence
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Ty -transitivity

dice transitivity
= weak product
an

weak stochastic

transitivity

moderate product
transitivity

partial stochastic
transitivity

Tp-transitivity
= strong product
an

oderate stochastic
transitivity

strong stochasti:
transitivity

Tm-transitivity transitivity
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What if God does throw dice?

Integers 1-20 distributed over 5 dice:

[AJ1]5[12]20]
[ B]l2]6 [15]18]
[CI3]9 [1a]17]
[D]4[8 [11]19]
|E|7]10]13]16]

Whatever X, Y selected by Oppenheimer and Einstein, God can select Z
such that

Prob{Z > max(X, Y)} > Prob{X > max(Y, Z)}

Prob{Z > max(X, Y)} > Prob{Y > max(X, Z)}

This cannot be realized with 3 or 4 dice
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