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Gravitational Waves = GW polarisations
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Top: plus polarisation; bottom: cross polarisation.
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Gravitational Waves  order estimations

In optimistic scenario! two neutron stars coalesce in average once in 10* years, so
in volume of radius R = 10%% cm where there are 10° halaxies, we can expect 10
events a year. The amplitude of metric perturbation is about

h, ~ 10721%22.

If two masses are separated by distance L = 4 km, the deviation of this distance is
going to be equal

1 .
Algray = §hL ~ 2 x 10718519 (meters).

1Bethe H, Brown G, Astron. J., 506, 780 (1980)
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Gravitational Wave D s interferometric detector

By default it is tuned in dark port regime
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Gravitational Wave D s interferometric detector

Gravitational wave disbalances the arms so some light leaks out
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Gravitational Wave Detectors interferometric detector

Laser Interferometer Gravitational Wave Observatory
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noises and sensitivity
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Plotted is the square root of spectral density of all noises recalculated to
dimensionless metric perturbation:
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Gravitational Wave D s dard quantum limit

In order to measure displacement, we consequatively measure position of test
mass,
OX = Xt — Xp.

Measurement of position perturbs the momentum so

h

Axg =Ag;, Apg > ——.

X0 0’ Po 2,

ht

Ax. ~ A —Apg >

X T+ Po 2mA,

v
A(8X) = Axe 4+ Axp > Ag + —%
2mA0
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Gravitational Wave D s d

d quantum limit

In general case the measurement is provided by interaction hamiltonian

g:fzg,'\fo-Fj‘\C;nt:gtfo-FO(?q.

~

» Hoy — free evolution

A

» Y — observable of measuring device

> {§ — observable being measured
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Plotted is the square root of spectral density of all noises recalculated to
dimensionless metric perturbation:
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Optical Springs optical rigidity

Electro-magnetic rigidity has been first noted by V.B.Braginsky 2

Tuning onto the right slope Tuning onto the left slope
A /
K>0 K <0
<o I'>0
2y 2y
— 4
< > - | «——>] -
5 b
Positive rigidity and Negative rigidity and
negative damping (instability) positive damping
2V.B. Braginsky, I.I. Minakova Bull. MSU Il 1, 83 (1964)
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Optical Springs instability

Use of optical rigidity is always accompanied by instability

mx(t) = For(t) = —Kx(t — 14) =~ —Kx(t)+Kt.x(t).

Ways to avoid it

> Feedback3
» Additional Pump?*

3A. Buonanno, Y. Chen, Phys. Rev.D, 65, 042001 (2002)
4H. Rehbein, et. al., Phys. Rev. D, 78, 062003 (2008)
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Optical Springs scheme of antenna with double pump

LIGO Livingston Site
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Optical Springs scheme of antenna with double pump

LIGO Livingston Site
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S ibility and itivity to gravitational waves quival h

x = (xeTm — XiT™) — (YET™M — UIT™m)-

In spectral representation the equation of motion has the form
F(Q) = x(Q)x 1(Q);

X Q) = —mO? + Ky (Q) + Ka(Q).
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ibility and

ity to gravitational waves example of mechanical susceptibility

1
x(f)
0.20+
\
0.15 |
au
0.10
0.05 \\*
1 2 3

Peaks correspond to roots of charachteristic equation:

X Qi) = —mO? + K (Q;) + Kz(Q4) = 0.
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S ibility and itivity to gravitational waves double resonance

Double resonance is narrow-band regime

W]
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R
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1077

30 50 70 100 150 200 300

f, Hz

Wider band is desired so we try to establish triple-resonance
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ik | waves triple resonance

ility and itivity to gravi

Resume

» optical spring allows to overcome the SQL
> double optical spring is itself stable (no need to apply feedback)

» double- and triple-resonance regimes are attractive ones

» a simple criterion is developed to estimate the pumps tuning needed to
achieve the desired disposition of frequencies

> the regimes been investigated demonstrate high mechanical susceptibility and

> possibility to overcome the SQL in narrow (double-resonance) and wide
(triple resonance) bands.
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Modes in op hanical system s ptibility

Xi= | FExt-gae & x(Q) =x(QF©)

x — coordinate, F — force, x — susceptibility
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Each of peaks corresponds to eigen mode.
18.10.2012 18 / 35
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Modes in optomechanical system  energy estimation

Conventional case

So we guess

Optical rigidity

Finally,

x ' =-m0? - 2iyQ + mw};

E=E, + Ex = mwixd = kxd.

E~Re(x 1(Q) +mQ?)x*.

X' =—pQ? + K1 (Q) + Ko (Q);
Se(Q) =Re(K{(Q) 4+ Ko(Q))Sy;
Sx = SF|X|2-

Se(Q) = Re(Ky + Ka)x[*SF
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Modes in optomechanical system  modes energy estimation

Q;i+3A0;
E— J Re(K1(Q) + Ka(Q))x (Q)PSH(Q)dQ
Q:i—3A0;

Here Q; and AQ; are real and imaginary parts of characteristic equation roots:

X Qi +1AQ;) = 0.
For three modes from first plot we obtain
El ~ 1311.0.1, E2 ~ 18hQ2, E3 ~ 111’1().3

Condition on quantum behavior observation

E: E.  2AQ;

_ 1
ROQ.  hO. O

yields values

= 0.034.

E; Es Es
—— =0.012; = 0.024;
h0; Qs h0>Q> hQ3Qs3

We can expect each mode behaving as quantum object!
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Modes in optomechanical system  mechanical squeezing

Mechanical oscillator

X 4 2y% + w3(1 + 8§ cos(2wot + d))x = f
x(t) = A(t) cos wot + B(t) sin wpt

2wy Sf(Q + (Uo)
SA(QO)~ —M

Al0) (y+e)2 4+ Q2

Sf(Q + (1)0)

S~ ey o2

€ ~ & (modulation depth)
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Modes in optomechanical system  eigen modes

Conventional coordinates
YR

ANV x1(t) = Ajcoswit + A cos wat;

X2 (t) = A1ky cos wit + Asks cos wot;

X1 X2

Eigen coordinates

&1(t) = Apcos wit;
2 &r(t) = Ap cos wot;

O

&1
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Modes in op hanical system  modul

Modulation of coupling spring constant results in modulation of eigen frequencies.
BUT: if w; and wy, differ significantly the modulation will not affect &;.
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Modes in optomechanical system  simplest problem

2(1)0
in
—_—

]

out X
a — input field; b — output field

x(t) = X(t)e 'wot 4 XT(t)et®ot = A(t) cos wot 4 B(t) sin wot

A, B undergo squeezing
A(Q) =X(Q) +X7(Q);  B(Q) = (X(Q) = X'(-Q))/i
Phase quadrature of reflected wave:

by = a, + Cx; € — coupling constant
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3 dimensional system

K(Q) ~ Optical power
Modulation of pump power allows modulation of rigidity
Sus ceptibility

7.0+
5.0r

3.0+
2.0

I . . . I . . . I f,HZ
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3 dimensional system

Initial conditions are fulfilled for one of modes, no modulation applied.

No modulation

|
LN
T

|
\)

e
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3 dimensional system

Initial conditions are fulfilled for one of modes, modulation is on.

Parametric modulation
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2 di H |

system

The system s itself instable; for stability we apply feedback.
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2 dimensional system  expansion over modes

The system evolution could be represented as a sum of harmonic oscillations:

(byl((tt))> _ ; [flv My fEgEeN t} _

» f; are modes amplitudes;
> A; are eigen frequencies (complex): A; = —iw; —vi.
> Vi are vectors of forms of eigen modes.
If the evolution is free, f; are constants depending on initial conditions.
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2 dimensional system  expansion over modes

The system evolution could be represented as a sum of harmonic oscillations:

bi(t) _ S oAt e (g eAt
(U(t) = ; [fl(t)vle + 17 (t)vi €
» f; are modes amplitudes;

> A; are eigen frequencies (complex): A; = —iw; —vi.

> Vi are vectors of forms of eigen modes.

If the evolution is free, f; are constants depending on initial conditions.
If we apply parametric modulation, f;(t) start depending on time.
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2 dimensional system  readout

We measure phase quadrature of a°:

a®(Q) —a°f(—Q)
V2 '

Combination of a carries information about the squeezing:

ad(p+Q)+ad(lp—Q)
V2

A12(Q) =
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2 di ional system P! | densities of output field
S Al S A2
15.0
100 it
100 - i
/ 50 I
7.0 / A
5.0 20 f / .
0 / \
20 // \ 10
- // \\ o Y,
N\ )
2.0
15 2 / N
-0.0 0.00 01 0.02 -0.01 0.00 0.01 0.02

1 0. X
Increase of modulation results in increasing of squeezing.
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Thank you!
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Appendices
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equations for gw antenna with two optical springs

X1+ 2y1x1 + wixg + A1z =0,
5&2 + 2’]/2)-(2 + w%xl — ?\22 = O,
—A1X1 — Aoxo +Z = 0.

AL =AY (14 2/mcos(2pt + & + §)) .
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2d system with feedback

The system of equations

by + gbi+2b; + Ay =

g : [o 9
9[2q2+q2+ 4(]1}v
i — Aby+ab; = —adp.

When parametric modulation of pump is on, A — A(1 + 2|m|cos(2pt + ¢)).
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