Olomouc Seminar

Decoherence effects on quantum teleportation:

transfer of information encoded into particles and fields

Kimin Park Nov 5th, 2012

- Information transfer conveyed by particle and fields
- Environmental and device effect

Particles and fields

- Wave-particle duality: Bohr's Complementarity principle
- Wave-particle superposition (Tang et al.), Wave-particle conversion (Miwa et al.)
- Particle-like qubit: Photons |H>,|V>,
- Field-like qubit: coherent states $|\alpha\rangle$, $|-\alpha\rangle$ (Cochrane et al., Jeong and Kim, Ralph et al.),

Single-rail qubit |1>, |0> (Lund and Ralph)

Optical QIP

(Discrete) variable

CVQC Continuous variable $x \sim a + a^{\dagger}$, $p \sim a - a^{\dagger}$

LOQC
Photon polarization
qubit $a|H\rangle + b|V\rangle$

CSQC Coherent state qubit $a|\alpha\rangle + b|-\alpha\rangle$

Information transfer (Communication)

	Classical Means	Quantum Means
Classical Information	Classical communication	 Superdense coding Quantum Key Distribution (e.g. BB84, E91)
Quantum Information	Measure and prepareDirect sending	 Teleportation (Bennett et al.) Remote state preparation (Bennett et al.) Interaction-mediated state transfer (e.g. Spin chain quantum wire)

• Difficult photonphoton coupling $|\psi\rangle \rightarrow U|\psi\rangle \stackrel{G}{\Rightarrow} |\alpha\rangle \rightarrow \qquad \qquad |\Psi_U^n\rangle$

 $|\alpha\rangle$

Off-line preparation& operation

Gate teleportation (Gottesman *et al.*, Nature **402**, 390 (1999))

Bell measurement

Photon polarization Bell states

$$|B_{1,2}\rangle = \frac{1}{\sqrt{2}}(|H\rangle|H\rangle \pm |V\rangle|V\rangle)$$

$$|B_{3,4}\rangle = \frac{1}{\sqrt{2}}(|H\rangle|V\rangle \pm |V\rangle|H\rangle)$$

- When one or both photons are removed, "failure".
- Success probability limited by 1/2.

Coherent state Bell states

$$|B_{1,2}\rangle = N_{1,2} (|\alpha\rangle|\alpha\rangle \pm |-\alpha\rangle|-\alpha\rangle)$$

$$|B_{3.4}\rangle = N_{3.4}(|\alpha\rangle|-\alpha\rangle \pm |-\alpha\rangle|\alpha\rangle)$$

- no click: fail
- Success probability $\propto 1 \frac{e^{-2\alpha^2}}{2}$ (99.98% for $\alpha = 2$)

(Lütkenhaus et al., PRA 59, 3295 (1999))

parity detectors

- One of the main obstacles in QIP
- Born-Markov approximation: Dissipation (photon-loss) by zero temperature, memory-less (time-local) bath
- $\frac{d\rho}{d\tau} = \gamma \sum_{i} a_{i} \rho a_{i}^{\dagger} \frac{\gamma}{2} \sum_{i} (a_{i}^{\dagger} a_{i} \rho + \rho a_{i}^{\dagger} a_{i}),$ (γ :interaction strength, a_{i} : annihilation operator)
- Cause of the difference in field-like and particle-like qubits
- Probabilitic loss of qubit, decay of coherence.

$$|H\rangle\langle H| \to t^2 |H\rangle\langle H| + (1 - t^2) |0\rangle\langle 0|$$

$$|V\rangle\langle V| \to t^2 |V\rangle\langle V| + (1 - t^2) |0\rangle\langle 0|$$

$$|H\rangle\langle V| \to t^2 |H\rangle\langle V| \quad (t = e^{\frac{-\gamma\tau}{2}})$$

 Continuous amplitude decay, exponential decay of coherence (faster decoherence for large α).

$$|\alpha\rangle\langle\alpha| \longrightarrow |t\alpha\rangle\langle t\alpha|, |\alpha\rangle\langle -\alpha| \longrightarrow e^{-2\alpha^2(1-t^2)}|t\alpha\rangle\langle -t\alpha|$$

Entangled Coherent States vs. Entangled Photon Pairs for Practical QIP

PHYSICAL REVIEW A 82, 062325 (2010)

Motivation

- Comparison of the wave-like and fieldlike information transfers
- Comparing LOQC with CSQC
- What α to use?
- Threshold error rate that allows faulttolerance.
- $\alpha \approx 1.6$ is preferred.
- Coherent state superposition(Schrödinger's cat state)

$$|\alpha\rangle \pm |-\alpha\rangle$$

- Key resource in CSQC
- $|\alpha| = 1.76$ (Gerrits *et al.*, PRA 82, 031802 (2010)).
- Arbitrary qubit: $|\alpha| = 1$ (Neergaard-Nielsen *et al.*, PRL **105**, 053602 (2010)).

Practical Teleportation

- Teleportation under photon losses
- Entangled Coherent state (C):
- Entangled Single photon (S):
- Entangled Photon pair (P):

$$|ECS\rangle = N(|\alpha\rangle |-\alpha\rangle - |-\alpha\rangle |\alpha\rangle)$$

$$|\mathsf{ESP}\rangle = \frac{1}{\sqrt{2}}(|1\rangle|0\rangle - |0\rangle|1\rangle)$$

$$|\mathsf{EPP}\rangle = \frac{1}{\sqrt{2}}(|H\rangle|V\rangle - |V\rangle|H\rangle)$$

Entanglement vs. Teleportation fidelity

Normalized time $r = \sqrt{1 - e^{-\gamma \tau}}$

Negativity : $N = 2 \sum_{i} |\lambda_{i}|$ (λ_{i} : negative eigenvalues of PT)

Quality of the teleportations compared.

For small $\alpha \leq 0.8$, C>P (main result)

C stays over classical limit 2/3 for longer.

overlap $(\langle \alpha | -\alpha \rangle)$ + escape $(|H\rangle\langle H| \rightarrow |0\rangle\langle 0|)$

C>P for success probability for all α .

F vs. Detection efficiency

- η: detector efficiency (photon loss at the detector)
- Only C teleportation is easily "contaminated" by detection efficiency.
- Polarization Bell measurement filters out the loss.

 Loss is less detectable for C Bell measurements.

Section summary

- Particles transfers the information faithfully, and robust to inefficient detectors, while fields does it less faithfully, but more frequently.
- Entanglement: P>C
- Teleportation: $C>P(\alpha \leq 0.8)$: small amplitude), $C>P(r \geq 0.577)$: strong decoherence, $\alpha \geq 0.8$), $C<P(r \leq 0.577, \alpha \geq 0.8)$,
- Overlap of C and escape filtering of P is responsible.
- Detection inefficiency: P>C
- Pteleportation treats located errors more efficiently.

Quantum Teleportation between Particle-like and Field-like Qubits under Decoherence

Submitted to PRA

Motivation

- **Difficulty** in completion of individual schemes ⇒ **Hybrid** computation
- Teleportation can transfer information between different systems (a quantum interface): How would information with one property transmitted to that with complementary property?
- **Different dynamics** for different qubits under the environmental effects.

- Realization of a gate operation combining the qubits of different nature.
- Hybrid optical QIP using continuous-variable bus, controlled displacement atom-light interaction (van Loock et al., PRA 78, 022303 (2008))
- Polarization qubit CNOT gate by coherent state (Nemoto and Munro, PRL 93, 250502 (2004))
- Hybrid qubit $a|H\rangle|\alpha\rangle + b|V\rangle|-\alpha\rangle$ (Lee and Jeong, arXiv:1112.0825 (2011)) allows a near-deterministic QIP with relatively small resources.

Negativity vs. Teleportation

p-c entanglement is largest at α~1

Productive for $\alpha \ll 1$:

$$|H\rangle|\alpha\rangle + |V\rangle|-\alpha\rangle \sim (|H\rangle + |V\rangle)|0\rangle$$

Large dephasing for $\alpha \gg 1$:

$$|\alpha\rangle\langle-\alpha|\to e^{-2\alpha^2}|\alpha\rangle\langle-\alpha|.$$

p-s>p-c

- Smaller fidelity for large α.
- p→c > c→p (difference in fidelity)
- overlap $(\langle \alpha | -\alpha \rangle = e^{-2\alpha^2})$ + photon loss filtering.
- p→c is always larger than classical while c→p drops below it.
- c→p succeeds more frequently than p→c₁₆

Section summary

- Hybrid optical QIP by hybrid teleportation.
- p → c,s > p ← c,s
- For c and s, error remains in the qubit space, while not for p.
- Filtering and overlap is responsible for this.
- Particle nature of polarization qubit is the main cause of the difference.
- Can be interpreted as information transfer between microscopic and macroscopic objects.

Conclusions

- Particles transfers the information faithfully, and robust to inefficient detectors, while fields does it less faithfully, but more frequently.
- A criteria for the choice of the amplitude of the coherent state with regard to the decoherence effect is provided.
- A hybrid strategy of optical QIP schemes having different advantages and disadvantages is investigated under realistic situations.

Future works

- Light-matter interfaced QIP (Yao and Belyanin, Phys. Rev. Lett. 108, 255503 (2012).) graphene under magnetic field
- Decoherence and Macro-realism (Kofler and Brukner, Phys. Rev. Lett. 99, 180403 (2007).)
- Interacting quantum-classical systems (Elze, Phys. Rev. A 85, 052109 (2012).)

Thank you!

micro-Macro entanglement

Schrödinger's cat.

• $\frac{1}{\sqrt{2}}(|H\rangle|\alpha\rangle + |V\rangle|-\alpha\rangle)$ may be interpreted as an micro-macro entanglement.

de Martini et al., PRL 100, 253601 (2008).

• $|\Sigma\rangle = \frac{1}{\sqrt{2}}(|H\rangle|\Phi^{+}\rangle + |V\rangle|\Phi^{-}\rangle)$ is generated via quantum-injected optical parametric amplification (QI-OPA).

Decoherence

- $(a|0\rangle + b|1\rangle)_s|0\rangle_E \Rightarrow a|0\rangle|0\rangle + b|1\rangle|1\rangle$
- When only the system is observed, the reduced density matrix is seen as a mixture.

$$\rho = \begin{pmatrix} |a|^2 & 0\\ 0 & |b|^2 \end{pmatrix}$$

Quantum teleportation

(Bennett et al., PRL 70,1895 (1993))

- Central element of QIP
- Information is conveyed to another mode nonlocally.
- ~I
- Need a Bell measurement and entangled state.

Teleportation fidelity

- Pure input state |ψ⟩ → Mixed output state ρ
- $F = \int d\psi \langle \psi | \rho | \psi \rangle$
- Classical limit (no-cloning bound): 2/3

Attenuation

- Optical fiber: $\gamma_F \approx 1.2 \times 10^4 s^{-1}$, 0.18 dB/km (van Loock *et al.*, PRA **78**, 062319 (2008))
- Air(rayleigh scattering): $\gamma_a \approx 1.8 \times 10^2 s^{-1}$ (Sneep and Ubachs, JQSRT 92, 293 (2005)).

Coherent amplitude damping

Time rescaling

Summary of last talk (reminder)

- Quantum aspect of information can bring a significant improvement in security and computation power.
- There exists two (discrete) optical QIP schemes using photon polarization and coherent states, which possess different advantages and disadvantages.
- Teleportation is an important element for both.

Reminder

- Decoherence is caused by <u>the interaction of an system with its</u> <u>environment</u>, and is an phenomenon a system generally loses its quantum properties.
- Dissipation (photon loss) is the dominant decoherence mechanism for optical systems.
- A photon polarization qubit suffers an <u>escape effect</u>, while a coherent state qubit suffers a decay of <u>its amplitude and dephasing</u>.

Progress made since

- I wrote my thesis.
- Summarized a more tight backgrounds about hybrid QIPs.
- Made the analysis more clear.

micro-Macro entanglement

- Sekatski et al., Phys. Rev. Lett. 103, 113601 (2009).
- $|\Sigma\rangle = \frac{1}{\sqrt{2}}(|H\rangle|\Phi^{+}\rangle + |V\rangle|\Phi^{-}\rangle)$ observed with human eyes shows a Bell-violation.

Teleportation fidelity and singlet fraction

(Horodecki et al., PRA 60, 1888 (1999))

- Average fidelity of quantum teleportation $f = \int \langle \psi | \Lambda(|\psi) \langle \psi |) | \psi \rangle$ is related to maximal entangled fidelity of the channel $F(\rho^{\Lambda}) = \text{Tr}(|\Phi\rangle\langle\Phi|\rho^{\Lambda})$.
- $f = \frac{dF(\rho^{\Lambda})+1}{d+1}$, for which ρ^{Λ} should have a local reduced density matrix proportional to identity operator.

Entanglement and teleportation

- A mixed state which does not violate Bell inequality may be useful for teleportation: $\rho = \frac{1}{8}I + \frac{1}{2}|\psi\rangle\langle\psi|$ (Popescu, PRL 72, 797 (1994)).
- A set of states that shows Bell nonlocality is a strict subset of non-separable states (Werner, PRA 40, 4277 (1989)).

Contributions to the Field

- Suggested a new criteria for a choice of amplitude of coherent state qubit.
- Investigated the crucial element of a new strategy of hybrid QIP.

- Mostly centered on the realization of a gate operation utilizing the qubits of different nature.
- Cirac et al., Phys. Rev. Lett 78, 3221 (1997).
- $(c_g|g\rangle + c_e|e\rangle)|g\rangle \rightarrow |g\rangle(c_g|g\rangle + c_e|e\rangle)$

- Lim et al., Phys. Rev. Lett. 95, 030505 (2005)
- Atom-cavity-like system (sources for the generation of single photons on demand)
- Two-qubit phase gate: $U_{CZ} = \text{diag}(1,1,1,-1)$

- Reliable reading and writing of topologically protected quantum memory using an atomic or photonic qubit (Jiang et al., Nature Physics 4, 482 (2008)).
- Hybrid quantum computer of continuous and discrete quantum variables (Lloyd, arXiv: quant-ph/0008057 (2000)), utilizing the easiness of quantum Fourier transform in continuous variable QIP.
- Hybrid qubit in the form of $|0_L\rangle = (|H\rangle + |V\rangle)|\alpha\rangle$, $|1_L\rangle = (|H\rangle |V\rangle)|\alpha\rangle$ may show advantages in universal gate operation and fault tolerance (Lee and Jeong, arXiv:1112.0825 (2011)).

- Nemoto et al., Phys. Rev.
 Lett. 93, 250502 (2004).
- Near-deterministic CNOT gate using a part containing a coherent state.
- A weak cross-Kerr nonlinearity ($U = \exp[i\theta n_a n_p]$) with strong coherent state and

Entanglement generation

• ECS:
$$(|\alpha\rangle + |-\alpha\rangle)|0\rangle \stackrel{\text{BS}}{\Longrightarrow} \left|\frac{\alpha}{\sqrt{2}}\right\rangle \left|-\frac{\alpha}{\sqrt{2}}\right\rangle + \left|\frac{\alpha}{\sqrt{2}}\right\rangle \left|-\frac{\alpha}{\sqrt{2}}\right\rangle$$

EPP:

(Kwiat et al., PRL 75, 4337 (1995))

Entanglement generation

• p-c: $(|H\rangle + |V\rangle)|\alpha\rangle \stackrel{NL}{\Rightarrow} |H\rangle|\alpha\rangle + |V\rangle|\alpha e^{-i\phi}\rangle$ (Gerry, PRA 59, 4095 (1999))

Polarization qubit and single-rail qubit

- Photon polarization (dual-rail for spatial-mode)
- $|H\rangle = |1\rangle|0\rangle, |V\rangle = |0\rangle|1\rangle (|1\rangle = \hat{a}^{\dagger}|0\rangle)$
- qubit: $a|H\rangle + b|V\rangle$
- Single-rail photon qubit
- qubit: $a|0\rangle + b|1\rangle$
- Called a Field-like encoding together with coherent state qubit

Research Interests

- <u>Decoherence:</u> quantum → classical
- Hybrid QIP
- Measurement: weak measurement, phase estimation

Backgrounds: Quantum Information

Quantum Information

"Information is physical." (Landauer 1961)

$$S(\rho) = -\mathrm{Tr}(\rho \ln \rho)$$

- "...the laws of information transmission are restricted or governed by the laws of physics..." (Galindo and Martin-Delgado, RMP (2002))
- "Quantum" aspect of information & "Informational" aspect of quantum mechanics (quantum simulator).

(Wikipedia)

• qubit $a|0\rangle + b|1\rangle$ (atom, cavity, electron, quantum dot, photons...)

Advantages

Exponential computation power (quantum parallelism).

$$U(|0\rangle + |1\rangle) = U|0\rangle + U|1\rangle$$

$$1 \longrightarrow U$$

$$0 \longrightarrow U$$

- Factoring numbers (Shor), searching the database (Grover)...
- Unconditionally secure (quantum key distribution)

$$|\psi\rangle|0\rangle \rightarrow |\psi\rangle|\psi\rangle$$
 (no-cloning)

FAQ

Classical computer

- Q. Why should we use the "quantum" information?
- A. The resources. 1 qubit $= \infty$ bits to represent.
- Q. Where is this quantum advantage from?
- A. The **full space** of the state is exploited. As a price, we give up copying.

