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Part 1: Theory
Aristotelian logic:

All human beings are mortal 8x [(H(x) ) M(x)]
Sokrates is a human being H(s)
Sokrates is mortal M(s)

It took thousands of years before Aristotelian informal logic was
expressed in a formal way, known as First-order Boolean Logic.
In 1960’s Zadeh introdused
Fuzzy Logic: General fuzzy rule systems:

Red apples are ripe if x is in A1 and y is in B1 then z is in C1

This apple is more or less red · · ·
if x is in An and y is in Bn then z is in Cn

This apple is almost ripe x is in A and y is in B therefore z is in C

Here the sets A,B,C etc are fuzzy; this means x is in A to a
degree 2 [0, 1]. For example an almost ripe apple is in the set
of ripe apples to a degree 0.9.



The question arises: what is the mathematics of fuzzy logic?
We aim to show that many – valued similarity plays a central
role in fuzzy inference. In science the ambition is to minimize
the set of axioms and maximize the set of the consequences of
the axioms, so we present the following algebraic axioms that
are necessary and sufficient to carry out fuzzy inference.

Wajsberg algebra axioms
Let L be a non–void set, 1 an element of L and !, ⇤ a binary
and unary operation, respectively, defined on L such that, for all
x , y , z 2 L, we have:

1 ! x = x , (1)
(x ! y) ! [(y ! z) ! (x ! z)] = 1, (2)

(x ! y) ! y = (y ! x) ! x , (3)
(x⇤ ! y⇤) ! (y ! x) = 1. (4)

Then the system L = hL,!,⇤ , 1i is a Wajsberg algebra.



We use only four equational axioms to establish a rich
structure: a Wajsberg algebra alias MV–algebra, which has a
similar role in many–valued logic than Boolean algebras have in
classical two valued logic; for example the operations �, � and
! are the algebraic counterparts of the logical connectives
and, or, implies in Łukasiewicz –Pavelka many–valued logic.
However, to be able to introduce fuzzy inference in an axiomatic
way, we will still need two more axioms. Unfortunately, they are
not equational. First consider

Complete MV-algebra
An MV–algebra L is complete if it contains all suprema and
infima, that is, for any subset {xi : i 2 �} ✓ L, we assume thatW

i2� xi 2 L and
V

i2� xi 2 L, where � is an index set.



n-divisors and injective MV–algebras
An element b of an MV-algebra L is called an n–divisor of a
non zero element a of L if

(a⇤ � (n � 1)b)⇤ = b and nb = a,

where 0b = 1, 1b = b and kb = (k � 1)b � b, k 2 N. If all
elements have n–divisors for all natural n, then L is called
divisible (the word has also another meaning). An MV-algebra L
is called injective if it is complete and divisible.

The six axioms of an injective MV-algebra are necessary and
sufficient to construct fuzzy IF–THEN inrefence systems. A
canonical example of an injective MV–algebra is the
Łukasiewicz structure defined on the real unit interval [0, 1]:
1 = 1, x⇤ = 1 � x , x ! y = min{1, 1 � x + y}.



Fuzzy similarity
Let L be an injective MV–algebra and let A be a non–void set. A
fuzzy similarityS on A is such a binary fuzzy relation that, for
each x , y , and z in A,

(i) S(x , x) = 1; everything is similar to itself,
(ii) S(x , y) = S(y , x); fuzzy similarity is a symmetric fuzzy
relation,
(iii) S(x , y)� S(y , z)  S(x , z); fuzzy similarity is a weakly
transitive fuzzy relation.

Fuzzy subsets
Recall an L–valued fuzzy subset X of A is an ordered couple
(A, µX ), where the membership function µX : A ! L tells the
degree to which an element a 2 A belongs to the fuzzy subset
X .



Given a fuzzy subset (A, µX ), define a fuzzy relation S on A by

S(a, b) = µX (a) $ µX (b), for any a, b 2 A. (5)

This fuzzy relation is trivially symmetric, it is reflexive and
transitive. Hence, any fuzzy set generates a fuzzy similarity, in
fact, this is true for L being any BL–algebra. Also notice that if
µX (b) = 1 then S(a, b) = µX (a).

Proposition
Consider n injective MV–algebra L valued fuzzy similarities
Si , i = 1, · · · , n on a set A. Then a fuzzy binary relation S on A,
defined by

S(x , y) =
S1(x , y)

n
� · · ·� Sn(x , y)

n

is an L valued fuzzy similarity on A.



Corollary
More generally, if Si , i = 1, · · · , n are n injective MV–algebra L
valued fuzzy similarities on a set A, then any weighted mean

SIM(x , y) =
m1S1(x , y)

M
� · · ·� mnSn(x , y)

M
,M =

nX

i=1

mi ,mi 2 N

is an L valued fuzzy similarity on A, called total fuzzy similarity.

The idea of partial similarity is not new. Indeed, (by Niiniluoto)
in 1843 J. S. Mill defined: If two objects A and B agree on k
attributes and disagree on m attributes, then the number

sim(A,B) =
k

k + m

can be taken to measure the degree of similarity or partial
identity between A and B. This sim–relation can be considered
as an injective MV-algebra valued similarity.



Injective MV–algebra valued Pavelka logic
There is an analogy between injective MV–algebras and Łuka–
siewicz–Pavelka logic on the one hand and Boolean algebras
and Classical logic on the other hand. Indeed, we can define a
logic language and interpret truth values semantically in an
injective MV–algebra; if ↵ is true at a degree a and � is true at a
degree b then ↵and� is true at a degree a � b. Tautological
degree of a formula ↵ is the infimum of all such interpretations.
We can also talk about fuzzy theories by fixing axioms and
rules of inference. Provability degree of a formula ↵ in a fuzzy
theory is the supremum of degrees of its all possible proves.

Tautological degree of ↵ and provability degree of ↵ coincide.

The following Algorithm is based on a fact that the average of
fuzzy similarities is a fuzzy similarity; this holds only in injective
MV–algebras.



Algorithm to Construct Fuzzy IF-THEN Inference I
Let us now return to our starting point, a fuzzy rule system
Rule 1: IF x1 is in A11 and · · · and xm is in A1m THEN y is in B1
Rule 2: IF x1 is in A21 and · · · and xm is in A1m THEN y is in B2

· · ·
Rule n: IF x1 is in An1 and · · · and xm is in Anm THEN y is in Bn

Here all Aij and Bj are fuzzy subsets but can be crips actions,
too. It is not necessary that the rule base is complete; some
rule combinations can be missing without any difficulties. It is
also possible that different IF–parts cause equal THEN–part,
but it is not possible that a fixed IF–part causes two different
THEN–parts.
We will not need any kind of defuzzification method – here the
Algorithm differs from Sugeno or Mamdani fuzzy inference –
instead of that everything is based on an experts knowledge
and properties of injective MV-algebra valued similarity.



Algorithm to Construct Fuzzy IF-THEN Inference II
Step 1: Create the dynamics of the inference system, i.e.
define the IF–THEN rules and give shapes to the
corresponding fuzzy sets.
Step 2: If necassary, give weights to various IF–parts to
emphasize their importance.
Step 3: List the rules with respect to the mutual importance of
their IF–parts.
Step 4: For each THEN–part, give a criteria on how to
distinguish outputs with equal degree of membership.
A general framework for a fuzzy IF–THEN inference system is
now ready. Step 3 and Step 4 are in place of defuzzification –
to create such an inference system might be more laborious
than Sugeno or Mamdani fuzzy inference, however, theoretical
basis of the Algoritm is well established.



Algorithm to Construct Fuzzy IF-THEN Inference III
Assume now we have an actual input Actual = (X1, · · · ,Xm).
A corresponding output Y is counted in the following way.
(1): Consider each IF–part of each rule as a crisp case, that is
µAij (xj) = 1, for i = 1, · · · , n, j = 1, · · · ,m holds.
(2): Compute the degree of similarity between Actual and the
IF–part of each Rule i , i = 1, · · · , n. Since

µAij (Xi) $ µAij (xi) = µAij (Xi) $ 1 = µAij (Xi),

we only need to calculate averages or weighted averages of
membership degrees!
(3): Fire a Y such that µBk (Y ) = Similarity(Actual, Rule k )
corresponding to the greatest similarity degree between the
input Actual and the IF–part of a Rule k . If such a maximal rule
is not unique, use the preference list given in Step 3, and if
there are several such outputs Y , use a creteria given in Step 4.



If–Then rule systems as Pavelka’s fuzzy theories
Note that each rule of the Algorithm corresponds to a non
logical axiom of a form ↵ ) � of a fuzzy theory in injective
MV–algebra valued Łukasiewicz –Pavelka logic. Moreover,
computing the actual output can be viewed as an instance of
using Generalized Modus Ponens

RGMP : ↵,↵ ) � , a, b
� a � b

where ↵ corresponds to the IF–part of a Rule, � corresponds to
the THEN–part of the Rule, a is the degree of similarity of
Actual input and IF part of the Rule, and b = 1; the degree of
truth of ↵ ) �. This gives a theoretical many–valued logic
based justification to fuzzy inference.



Part 2: Applications
Total Fuzzy Similarity and the Algorithm – call it Total Fuzzy
Similarity Algorithm – can be utilized in

• Classification and clustering tasks
• Constructing fuzzy IF–THEN inference systems
• Decision making problems

The following examples are implemented in real life
applications. The aim here is to clarify the leading idea; we
have linguistic rules that can be expressed by fuzzy sets, and
certain comparison using the Algorithm is carried out.



Application 1 – Grouping hightway traffic fluency
According to U.S. Highway Capacity Manual , the fluency of a
highway is divided to 6 classes LOS(A), · · · , LOS(F), originally
defined by vehicle density (veh/mile). Chackroborty and Kikuchi
proposed the following linguistic division

Maneuver- Driving Con- Freedom to Proximity to
LOS ability (MAN) venience (CON) Sel. Spd. (SSP) Oth. Veh. (PRV)

Very Very Absolute
A good convenient freedom Very far
B Good Convenient Free Far

Less More or
C Restricted convenient Constrained less far

Very More
D Restricted Inconvenient constrained Close

Severely Very
E restricted Inconvenient None close

Bumper – to
F None Inconvenient None – Bumper

and characterized by the following fuzzy sets:
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Chackroborty and Kikuchi propose a rather complicated way to
determine the LOS(i) classes for an input value x [veh/mile].
Indeed, they use fuzzy measures, fuzzy integrals and Sugeno’s
�–weights.

By total fuzzy similarity method a traffic situation x in class
LOS(i), i = A, · · · ,F , is easily calculated via

SLOS(i)(x) = 1
4 [µMAN(i)(x)+µCON(i)(x)+µSSP(i)(x)+µPRV (i)(x)]

For example, if traffic flow x is 20 vehicles/mile, the these
equations yield the following table (membership degrees in
fuzzy sets are obtained by ocular estimate from respective
graphs)



Total sim.
i MAN(i) CON(i) SSP(i) PRV(i) degree
A 0 0.4 0.6 0 0.25
B 0.6 0.6 0.4 1 0.65
C 0.6 0 0 0 0.10
D 0 0 0 0 0
E 0 0 0 0 0
F 0 0 0 0 0

Thus, the traffic situation 20 vehicles/mile belongs primary to
class LOS(B), secondary to class LOS(A) and ternary to class
LOS(C). It is worth noticing that we obtain the same result than
Chackroborty and Kikuchi by the method they proposed.



Application 2 – Determining Athlete’s Thresholds.
A 100 meters sprinter has to run a short distance very fast,
therefore, he has to have much training in the anaerobic zone
where his pulse is close to maximal value, while a long distance
runner needs endurance, thus, he needs training in the aerobic
zone.

It is important for an athlete to let diagnose his aerobic and
anaerobic thresholds regularly. These tests can be done e.g.
on a running track ergo meter, see the following picture.



   

A test to determine a sportsman’s aerobic and anaerobic thresholds is going on. The 
sportsman is wearing a mask that collects his respiration gases, continuous blood sample 
equipment is connected to his right forefinger and pulse is measured by belt around breast. 

Running track ergo meter. 
Test lasts usually 30 min. 
Load is increased in 3 min 
intervals, so the athlete’s  
pulse increases until almost 
maximal value is reached. 



Aerobic and anaerobic thresholds are functions of
• blood lactate [mmol/l]
• ventilation CO2 [l/min]
• O2 uptake [%].

They, in turn, are functions of heartbeat [b/min].

A test starts with a 3 minutes warm–up, then pulse is around
100 b/min, and then the load is increased in every 3 minutes
and blood lactate, ventilation CO2, O2 uptake and heartbeat are
measured. A test lasts until volitional exhaustion (pulse near
200 b/min); this takes usually 20–30 minutes.

All measured data is collected on a test protocol, an example is
presented on the next slide.



 

An aerobic and anaerobic test protocol 
 

All measured values are plotted on one graph: Ventilation [l/min], lactate [mmol/l], O2 uptake [%] and a 
relation Ventilation/ O2 ventilation are all functions of heartbeat [b/min]. Based on such information and 
using certain vague rules (presented on the next slide), an experienced medical doctor or a coach is able 
to determine the aerobic threshold (Aek here 145 b/min) and anaerobic threshold (Ank here 175 b/min).  
 

Pulse [beats/min] 



The criteria to identify aerobic threshold are
• blood lactate has a very low value, blood lactate value starts
to increase (most important criterion),
• ventilation is increasing, O2 uptake [%] value is very high (the
second most important criterion),
• pulse is about 40 b/min less than the maximal measured
pulse, maximal tolerance being +/- 20 b/min.

Similarly, the criteria to identify anaerobic threshold are
• blood lactate value is rapidly increasing and is 3 mmol/l (most
important criterion),
• ventilation is clearly increasing (the second most important
criterion), O2 uptake [%] value is decreasing (the third most
important criterion),
• pulse is about 20 b/min less than the maximal measured
pulse, maximal tolerance being +/- 5 b/min.



Clearly, all these criteria are expressible by fuzzy sets. They
are context dependent, too. For example maximal pulse – 40
depends on a respective measurement. To mimic a specialist’s
action in determine an aerobic threshold, we need only one rule
– expressible by a 5 component rule vector – namely
Blood lactate has a very low value
AND
blood lactate value starts to increase
AND
ventilation is increasing
AND
O2 uptake [%] value is very high
AND
pulse is about 40 b/min less than the maximal measured pulse.

To determine an anaerobic threshold, a similar rule is needed.



The principal idea in automated threshold determination is to
compare each measured input vector with the rule vector and
search out the most similar one, i.e. apply total fuzzy similarity
method. Mika Hempilä implemented this idea in his diploma
work in which he
• consulting with medical experts, defined and implemented all
the needed context dependent fuzzy sets,
• extended discrete rule vectors and input vectors to continuous
valued vectors by using Spine functions,
• created a Matlab software which, after receiving an input
vector – data of a threshold protocol – plots the corresponding
graphs and reports where the most similar case is located; see
an example on the next slide.
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Total similarity degree 
for aerobic threshold, 
max value = 147 

Total  
similarity  
degree for  
anaerobic  
threshold, 
max value 
= 172 



Application 3 – Signalized isolated pedestrian crossing
40% of traffics signals in Finland are in pedestrian crossings,
for example near public buildings like schools.

Pedestrian aiming to cross the street pushes signal bottom.
Detectors embedded in driveways recognize the amount of
vehicles approaching the crosswalk, and caps between the
vehicles.

Based on this data and simple rules that a traffic policeman
would use, the task is automatically decide on vehicles’ signal.

A fuzzy decision system for that purpose, based on total fuzzy
similarity method, was introduced by Niittymäki and Turunen,
and is implemented in several pedestrian crossings in Finnish
cities.



 

Pedestrian aiming to cross the street pushes signal bottom. Detectors embedded in 
driveways recognize the amount of vehicles approaching the crosswalk, and caps 
between the vehicles. Based on this data and simple rules, the task is to automatically 
decide on vehicles’ signal. 

Layout of signalized pedestrian crossing 



The rule base to define signal phase
As long as there are no pedestrians, vehicles have green
signal. If a pedestrian pushes a button, and no cars are
approaching, the pedestrian will have immediately green signal.
In case there are vehicles approaching and pedestrians
waiting, then vehicles’s green depends on the following factors:
• how long time have pedestrians been waiting for [a short/
long/ too long time]
• how many vehicles are approaching [few/ some/ many]
• what is the shortes gap [sec] between approaching vehicles
[short/ large]
The decision is updated at intervals of one second. After a
change, the selected phase lasts a fixed interval, and then the
algorithm starts from beginning.

Experienced traffic engineers described the above fuzzy set as
follows
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Note 1: even if these membership 
functions are continuous, number of 
approaching vehicles is a natural 
number. 
Note 2: In Finland 5 cars is many, in 
France maybe not – however, the 
same rule base is universally 
applicable, but fuzzy sets vary.  



 

Sh
or

t g
ap

 b
et

w
ee

en
 

ap
pr

oa
ch

in
g 

be
tw

ee
en

 

Lo
ng

 g
ap

 b
et

w
ee

en
 

ap
pr

oa
ch

in
g 

ve
hi

cl
es
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Note: even if these membership 
functions are continuous, intervals 
are counted in seconds, thus they 
are natural numbers. 
  



There are 18 rules in the fuzzy IF-THEN rule base. This
corresponds to all possible combinations of the fuzzy sets thus,
the rule base is complete. Vehicles green extension is prefered
if there are several most similar rules to be fired.

An example of a rule given by traffic engineers:
IF pedestrians’ waiting time is short [weight = 1]
AND number of approaching vehicles is few [weight = 2]
AND shortest gab between approaching vehicles is short
[weight = 1]
THEN extend vehicles green signal.

The output is always a crisp action; a red or green signal for
vehicles. In a 1 – 1 situations it is green.



 



 

      Assume the input vector – a traffic situation -  is   (14 sec, 4, 2 sec) 

Which one of the three rules this input vector resembles the most? 
 



 

The degree of total similarity to the first rule and the input vector (14, 4, 2) is 0.375 



 

The degree of total similarity to the second rule and the input vector (14, 4, 2) is 0.5625 
 



 

The degree of total similarity to the third rule and the input vector (14, 4, 2) is 0.4 
 



 

 



                           Application 6  
          Real-Time Reservoir Operation 
 
 

·  Lake Päijänne is located in the Southern 
   part of Finland, its water runs to the Golf  
   of Finland via  River Kymijoki. 
 
·  Each year Päijänne is frozen several 
   months and  lots of snow is accumulated. 
 
·  In spring floods caused by melting 
   snow would be typical if  Päijänne  
   was not regulated; the water reference 
   level is a function of date given by a  
   law of Finnish parliament. 
 
· Based e.g. on snow water equivalent, 
   human experts are able to regulate  
   several dams such that water level  
   can be kept close to the reference level; 
   a challenge is to create a formal control   
   system to regulate water level  of Lake 
   Päijänne. 



A control system based on Total Fuzzy Similarity Algorithm was
created by Dudrovin, Jolma and Turunen.
The model consists of two real–time sub models; the first sub
model sets up a reference water level (WREF) for each time
step. Given this reference level, the observed water level (W),
and the observed water inflow (I), the second sub model makes
the decision on how much water should be released from the
reservoir during the next time step.
For the snowmelt season, WREF value is dependent on the
snow water equivalent (SWE) and can be inferred for each time
step with the rules:
IF SWE is smaller than average/average/larger than
average/much larger than average
THEN WREF is high/midle/low/very low.



In the second sub model, the rules have a form
IF observed water level is very low/low/objective/high/very high
AND
observed water inflow is very small/small/large/very large
THEN
water release is exceptionally small/very small/small/quite
small/quite large/large/very large/exceptionally large.

To calibrate the corresponding fuzzy set, a data of real control
actions collected during 1975–1985 was used.

The membership functions for observed water level, observed
water inflow and water release are presented on the next three
slides.



 
 
 

                                              Membership functions for observed water level W 
 
 



 
 

 
 
                               Membership functions for water inflow I 



 
 
 
 

                          Membership functions for water release (output) 



The model was tested using data from the years 1985–1996.
The Sugeno method – available in Matlab’s Fuzzy logic Toolbox
– was chosen for comparison against the Total Fuzzy Similarity
Algorithm. With both methods the system was kept the same
as much as possible. To apply the Sugeno method, the
defuzzification was performed using a weighted average.
The performances of the two methods were almost indistin-
guishable. With the total fuzzy similarity method the water level
targets during the summer were sometimes better fulfilled, but
the release tended to fluctuate more, and the limitation on
change in release was more relevant.
The model performance was generally good, but the first
version of the model did not capture expert thinking in the most
exceptional circumstances – later the model was completed by
an extra subsystem to do the job.



 

 
Water reference level, observed water level and water level obtained by Total Fuzzy 

Similarity Control 

 
 

 
 



 

    Observed water release and water release ruled by Total Fuzzy Similarity Control 

 

 


