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SLFD-logic

Stages:

Algebraic formalization of f-family and by hand for functional dependencies.

Firstly, we proposed a new Simplification Rule adequate to remove redundancy
in an automatic way.

Simplification Rule turned the heart of a novel logic : SLFD logic - Simplification
logic for FDs.

SLFD logic turned out to be the engine of automated methods: redundancy
removal, closure algorithm, minimal keys, etc.
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Simplification Logic

SLFD Logic: Elimination of data redundancy in knowledge representation, P.
Cordero et.al., LNAI, 2527, pp, 141-150, 2002

bAxiomc : `SFD X 7→Y , si Y ⊆ X

bFragc X 7→Y `SFD X 7→Y ′ if Y ′ ⊆ Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Fragmentation

bCompc X 7→Y , U 7→V `SFD XU 7→YV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Composition

bSimpc X 7→Y , U 7→V `SFD (U-Y ) 7→(V -Y ) . . . . . . . . . . . . . . . . . . . . . . . Simplification
if X ⊆ U, X ∩ Y = ∅

and the following derived rule:
brSimpc X 7→Y ,U 7→V `SFDS U 7→(V -Y ) . . . . . . . . . . . . . . . . . . . . . . . . . . r-Simplification
if X ⊆ UV ,X ∩ Y = ∅
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SLFD closure

Closure via functional dependence simplification, A. Mora et.al.,
IJCM, 89 (4), 2012

We present an automated method directly based on Simplification
Logic to calculate the closure of a set of attributes.
Fields of application goes from theoretical areas as algebra or
geometry to practical areas as Databases, Formal Concept
Analysis and Artificial Intelligence: data analysis, knowledge
structures, knowledge compilation, redundant constraint
elimination, query optimization, finding key problem,etc.
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SLFD closure

Theorem

Equivalency I: If U ⊆ W then {>7→W ,U 7→V} ≡SFD {>7→WV}
Equivalency II: If V ⊆ W then {>7→W ,U 7→V} ≡SFD {>7→W}
Equivalency III: If U ∩W 6= ∅ or V ∩W 6= ∅ then

{>7→W ,U 7→V} ≡SFD {>7→W ,U −W 7→V −W}

Automated Prover to obtain the closure

From Γ and X , calculate X + (the closure of X ):

Add >7→X

Apply systematically the three equivalences based on SLFD logic.

Result: >7→X +
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Keys and Functional Dependencies

Primary keys and Foreigns keys are dependencies
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Keys and Functional Dependencies

Normalization
To avoid inconsistencies and redundancy.
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Keys and Functional Dependencies
Normalization
Identity Card is the key.

• Automated reasoning to solve minimal key finding • Angel Mora 11 / 54



Olomouc, November 2012 • DAMOL, Palacky University

Minimal Keys: regarding to the FDs

Definition: Key
The functional dependency allows us to define the key of a relation R as
a subset of their attributes K ⊆ A such that the functional dependency
K7→A holds.

Definition: Key

K ⊆ A is a key iff K+ = A.

We may affirm that the set of all attributes in a relation constitutes
a key, since A+ = A.
A set of attributes K ⊆ A is a minimal key if it is a key and there
does not exists another key K′ ⊂ K.
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Minimal Keys: regarding to the tuples

Definition: Key
Let R be a relation and A a set of attributes in a relational scheme.
K ⊆ A is a key if for all two tuples t1, t2 of R, t1[K] 6= t2[K].

Really, this definition is based on the previous definition using FDs and
closures. Database books say: “no tuples must be repeated”.
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Minimal Keys: two approaches

Finding minimal keys from a set of FDs and a set of attributes
(scheme of a relation): Classical finding key problem.
Finding minimal keys from a table (a instance of a relation): Data
mining.
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Interest of keys
The notion of key is one of the mainstay in the Codd’s Relational
Model.
Tables need to have a primary key to fulfill Codd’s integrity rules:
First and Second Integrity Rules of the relational model are based
on the notion of Primary Key.

Applications of keys
Normalization (keys and 3NF).
Data query and management.
Data modeling.
Query optimization.
Indexing.
Anomaly detection.
Data integration

• Automated reasoning to solve minimal key finding • Angel Mora 15 / 54



Olomouc, November 2012 • DAMOL, Palacky University

First algorithms about keys

Delobel and Casey [Delobel, 1973] proposed the first algorithm for the finding
key problem.

Keys were studied within the framework of the implication matrix in
[Fadous,1975].

Bernstein in his Ph.D [Bernsteing, 1975] proposed probably the first usually cited
algorithm to find all keys.

Algorithm of Lucchesi and Osborn [Luchessi, Osborn, 1978] to find all the keys
in a relational scheme is considered the first deep study around this problem and
it is the most cited work up until now.

Kundu [Kundu, 1985] proposed an algorithm for finding a single key.

Demetrovics and Thuan [Demetrovics, 1986] describe an algorithm to find all
keys which good results.

Elmasri and Navathe [Elmasri, 1994] showed also an algorithm for finding a key.
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First algorithms about keys

All the classical algorithms use the closure operator to check if a given subset of
attributes is a key with regard to a set of functional dependencies.

Other paradigms:

Saiedian and Spencer [Saiedian, 1996] propose an algorithm for computing the
candidates keys using attribute graphs when it is not strongly connected.

Wastl [Wastl, 1998] introduces a Hilbert style inference system, called K, for
deriving all keys. Wastl builds a tableaux which represents the search space to
find all the keys applying the inference system K.

Zhang [Zhang, 2009] use Karnaugh maps to calculate all the keys.

As far as we know, Wastl Algorithm is the first approach that use inference rules to
tackle the finding key problem.
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Complexity

The problem of finding all of the keys of a relation has been shown to be NP-complete
[Lucchesi, S. Osborne, 1978], [Jou and Fischer, 1982].

Osborn shows in her Ph.D. that ‘the number of minimal keys for a relational
system can be exponential in the number of attributes or factorial in the number
of dependencies and that both of these upper bounds are attainable’.

Yu and Johnson [Yu, 1976] stablished that the number of keys is limited by the
factorial of the number of dependencies, so, there does not exists a polynomial
algorithm for this problem.

K. Tichler establishes in [Tichler, 2004] a bound for the size of a Sperner system
representing a set of minimal keys.

• Automated reasoning to solve minimal key finding • Angel Mora 18 / 54



Olomouc, November 2012 • DAMOL, Palacky University

Usefulness of keys

A. Sali [Sali, 2004] studies keys in higher-order datamodels and introduces an
ordering between key sets, and investigates systems of minimal keys.

Hartmann et.al. [Hartmann, 2006] present polynomial-time algorithms to
determine non-redundant covers of sets of functional dependencies, and to
decide whether a given set of subattributes forms a superkey.

Hamrouni [Hamrouni, 2007] states that “minimal generators, aka minimal keys,
play an important role in many theoretical and practical problem settings
involving closure systems that originate in graph theory, relational database
design, data mining, etc”.

Katona et.al. [Katona, 2008] affirms “arguably, the most important database
constraint is the collection of functional dependencies that instances of a
relational schema satisfy, in particular the key dependencies”.
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Wastl Method
R. Wastl builds a tableaux using a Hilbert style inference system,
called K.
This axiomatic system is not complete and it is only designed to
build a tableaux as a tool to infer all minimal keys.

The rules of the K inference system
Rules of inference:

K1 :
X 7→a Ya 7→b

XY 7→b

K2 :
X 7→a Y 7→b

XY 7→b

Wastl’s algorithm relies on the fact that (X1 . . .Xn)+ = A, i.e. X1 . . .Xn
is a key, and additionally, for all K minimal key of R we have that
K ⊆ X1 . . .Xn
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Wastl Method

The tableaux represents the search space to find all the keys.
Each step in the tableaux construction is guided by the application
of the inference system K.

Tableaux
Root is a functional dependency X1 . . .Xn 7→an derived from
Γ = {X1 7→a1,X2 7→a2, . . .Xn 7→an} (K2 rule).
Each step in the tableaux construction is guided by the application
of (K1 rule).
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Wastl Method

Tableaux
[Step1] Root is a functional dependency X1 . . .Xn 7→an derived
from Γ = {X1 7→a1,X2 7→a2, . . .Xn 7→an} (K2 rule).

X1...Xn  --> an

X1 -> a1
X2 -> a2

...
Xn -> an
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Wastl Method

Tableaux: each step applying of (K1 rule)
[Step2] Let X1 . . .Xn 7→b be any node in T , for each Xi 7→ai ∈ Γ
such that ai ∈ X1 . . .Xn, (X1 . . .Xn − ai)Xi 7→b is generated as a
successor node and the edge between X1 . . .Xn 7→b and this new
child will be labeled with ai .

X1...Xn  --> an

X1 -> a1
X2 -> a2

...
Xn -> an

(X1..Xn-a1)X_1 --> an

a1

x1-> a1   
selected

X1 -> a1
X2 -> a2

...
Xn -> an
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Wastl Method
Tableaux: Applying K1 rule

[Step2] To avoid superfluous branches which determine a cycle,
Wastl only considers in the edges those FDs Xi 7→ai which satisfy
Xi ∩ L = ∅ (where L is the union of the edge labels on the

(unique) path from the root to the node Z 7→b).

X1...Xn  --> an

X1 -> a1
X2 -> a2

...
Xn -> an

(X1..Xn-a1)X_1 --> an

a1

x1-> a1   
selected

X1 -> a1
X2 -> a2

...
Xn -> an

L={ a1 } Prune FDs such as  Xi in L 
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Wastl Method

Example: Step 1

Let A = {a,b, c} and Γ = {c 7→a,a 7→b,b 7→a}. We build the root of the
Wastl tree (abc 7→a) by applying the K2 rule.

abc --> a

c -> a
 a -> b
  b -> a
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Wastl Method

Example: Step 2
And applying K1 we build the tableaux.

abc --> a

c -> a
 a -> b
  b -> a

(abc-a)c --> a

a

c-> a   
selected

a ->b 
b-> a

L={ a }
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Wastl Method

Example: Step 3
Pruning the dependencies.

abc --> a

c -> a
 a -> b
  b -> a

bc --> a

a

c-> a   
selected

 b-> a

L={ a }
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Wastl Method

Example: Step 2, Step 3
Applying K1 for other FD of the root, etc.

abc --> a

c -> a
 a -> b
  b -> a

bc --> a

a

a-> b   
selected

 b-> a

L={ b }

ac--> a

 c-> a

b
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Wastl Method

Example: Step 2, Step 3
Applying K1 for other FD of the root, etc.

abc --> a

c -> a
 a -> b
  b -> a

bc --> a

a

b-> a   
selected

 b-> a

L={ a }

ac--> a

 c-> a

b

bc--> a

 c-> a

a
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Wastl Method

Example: Step 2, Step 3
Finally, the tableaux is:

abc --> a

c -> a
 a -> b
  b -> a

bc --> a

a

c-> a   
selected

 b-> a

L={ ab }

ac--> a

 c-> a

b

bc--> a

 c-> a

a

c--> a

 
a
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Wastl Method
Example: Step 2, Step 3
All the keys appears at least once in one tableaux leaf. Here, the leaves
are bc and c. We apply the

⊎
union to obtain {c} as the set of all

minimal keys in < A, Γ >.
All the minimal keys algorithms introduced in the literature

consider this operation as its last step.

abc --> a

c -> a
 a -> b
  b -> a

bc --> a

a

 b-> a

ac--> a

 c-> a

b

bc--> a

 c-> a

a

c--> a

 
a
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Pruning the search space for keys

Ideal non-deterministic operators as a formal framework to reduce the key finding
problem, A. Mora et. al., IJCM, 88 (9), 2011

We have presented a formal method in the framework of the lattice theory to prune the
problem of finding all the minimal keys.

With lineal cost, this prune method provides a longer reduction than the rest of techniques
(The %-reduction in an experiment was the 70,52 %).

We define %a : A→ (a] with %a(x) = x ∧ a

( (a] ,≤) defines a Boole Algebra

π : L→ L/≡a is the homomorphism that
assigns to x its equivalence class {a(x)

Ψ: L/≡a → (a] is the isomorphism
defined as Ψ({a(x)) = %a(x)

L/≡a

?�
�
�
�
�
�3

L
%a

Ψ : {a(x)→ %a(x)π : x → {a(x)

(a]-
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Prunning the scheme

Algorithm: core and the body of R
Let R =< A, Γ > be a relational schema.
1. Dnt(Γ) =

⋃
X 7→Y∈Γ X

2. Dte(Γ) =
⋃

X 7→Y∈Γ Y
3. core = A− Dte(Γ)
4. body = (Dnt(Γ) ∩ (A− core+))

Theorem
Let R =< A, Γ > be a scheme. Let K be a minimal key of R, then we
have that coreF ⊆ K ⊆ (coreF ∪ bodyF ).

• Automated reasoning to solve minimal key finding • Angel Mora 35 / 54



Olomouc, November 2012 • DAMOL, Palacky University

Prunning the scheme

Example

Let A = {a,b, c,d ,e, f ,g} and Γ = {adf 7→g, c 7→def ,eg 7→bcdf}.
1. Dnt(Γ) =

⋃
X 7→Y∈Γ X = {a, c,d ,e, f ,g}

2. Dte(Γ) =
⋃

X 7→Y∈Γ Y = {b, c,d ,e, f ,g}
3. core = A− Dte(Γ) = {a}
4. body = (Dnt(Γ) ∩ (A− core+)) = {c,d ,e, f ,g}

So, we reduce the problem considering

A′ = {c,d ,e, f ,g} and Γ′ = {df 7→g, c 7→def ,eg 7→cdf}.
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SLFD-Key Algorithm

Automated reasoning to infer all minimal keys, P. Cordero et.al., Submitted.

We define Ψ operator directly based on SLFD-logic. We construct the
tableaux in a similar way.

Definition: Ψ-Operator

ΨX 7→Y (U 7→V ) =

{
U 7→V-Y, if U ∩ Y = ∅
(UX)-Y 7→V-(XY) otherwise

ΨX 7→Y (Γ) = {ΨX 7→Y (U 7→V ) | U 7→V ∈ Γ}
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SLFD-Key Algorithm

SLFD-Key Algorithm follows the Hilbert style of Wastl’s Algorithm but an
important improvement has been achieved.

Improvements with respect to Wastl’s Algorithm
We work with general non-trivial functional dependency, which
avoids the growth in the cardinal of Γ.
Prunning method of the scheme render an important reduction of
the set of attributes and the set of FDs.
The new operator Ψ derived from our simplification SLFD rules
which reduces the set of FDs in each edge and provides an
improvement in the performance of the method.
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SLFD-Key Algorithm

Example: Pruning the scheme
Let A = {a, b, c, d , e, f , g} and Γ = {adf 7→g, c 7→def , eg 7→bcdf}.

We have that coreF = {a} and body
F

= {c, d , e, f , g}.

As we have shown, we reduce the problem considering

A′ = {c, d , e, f , g} and Γ′ = {df 7→g, c 7→def , eg 7→cdf}.
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SLFD-Key Algorithm

Example: Building the root
Considering A′ = {c, d , e, f , g} and Γ′ = {df 7→g, c 7→def , eg 7→cdf}.

cdefg

df ↗ g

eg↗ cdf
c ↗ def

1
2
3
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SLFD-Key Algorithm
Example: Ψ− operator ΨX 7→Y (U 7→V ) =

{
U 7→V-Y, if U ∩ Y = ∅
(UX)-Y 7→V-(XY) otherwise

Simplifying the root cdefg using df 7→g.

Simplifying the FDs: Ψdf 7→g(c 7→def ) = c 7→def

Simplifying the FDs: Ψdf 7→g(eg 7→cdf ) = (dfeg)− g 7→cdf − dfg = dfe 7→c

cdefg

cdef

df ↗ g

eg↗ cdf
c ↗ def

def↗ c
c ↗ def

1
2
3

1

1
2

• Automated reasoning to solve minimal key finding • Angel Mora 42 / 54



Olomouc, November 2012 • DAMOL, Palacky University

SLFD-Key Algorithm
Example: Ψ− operator ΨX 7→Y (U 7→V ) =

{
U 7→V-Y, if U ∩ Y = ∅
(UX)-Y 7→V-(XY) otherwise

Simplifying the node cdef using c 7→def .

Simplifying the FDs: Ψc 7→def (def 7→c) = (dfec)− def 7→c − cdef = c 7→∅

cdefg

cdef

df ↗ g

eg↗ cdf
c ↗ def

⦰

def↗ c
c ↗ def

c
↗

1
2
3

1

1
2

1

c
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SLFD-Key Algorithm
Example: Ψ− operator ΨX 7→Y (U 7→V ) =

{
U 7→V-Y, if U ∩ Y = ∅
(UX)-Y 7→V-(XY) otherwise

Simplifying the node cdef using def 7→c.

Simplifying the FDs: Ψdef 7→c(c 7→def ) = (cdef )− c 7→def − defc = def 7→∅

cdefg

cdef

df ↗ g

eg↗ cdf
c ↗ def

⦰

def↗ c
c ↗ def

c
↗

def

⦰def↗

1
2
3

1

1
2

1 2

c
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SLFD-Key Algorithm

Example: Ψ− operator ΨX 7→Y (U 7→V ) =

{
U 7→V-Y, if U ∩ Y = ∅
(UX)-Y 7→V-(XY) otherwise

cdefg

cdef

df ↗ g

eg↗ cdf
c ↗ def

egcg
ceg↗

c

⦰

def↗ c
c ↗ def

c
↗

def
⦰def↗

⦰c↗ g
⦰

eg ↗ ⦰def↗ ⦰
1
2
3

32
1

1
2

1 2

1

1

c
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Execution

Results:
Keys in our tableaux are {c,def ,eg}
core = {a}
Thus the set of all the minimal keys is {ac,adef ,aeg}.
Our tableaux has 7 nodes and 3 levels of depth, while this same
example in Wastl’s method produces a tableaux of 56 nodes and 5
levels of depth.
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Comparison: SLFD-Keys versus Wastl
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Conclusions

Our method improves the one proposed by Wastl as follows:
Our method deals with general non-trivial FDs.
Our pruning method reduces the original problem into an
equivalent and simpler one by using some algebraic theoretical
result about keys.
The use of powerful operator based on simplification rules
provides a great pruning of the tableaux with a great reduction in
the execution of the method.

Our next step will be to make a deeper comparison of our method
with other classical method which appear in the literature.
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Thanks
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