

Univerzita Palackého
Přírodovědecká fakulta
Katedra optiky
27 February 2013
Olomouc

INVESTMENTS IN EDUCATION DEVELOPMENT

Simultaneous IR Spectroscopy and IR Tomography in Flames and Hot Gas Flows

Vadim Evseev, Sønnik Clausen, Alexander Fateev, Valery Sizikov*, Karsten L. Nielsen

DTU Kemiteknik
Institut for Kemiteknik

Danmarks Tekniske Universitet

^{*} National Research University of Information Technologies, Mechanics and Optics (University ITMO) (St Petersburg, Russia)

Motivation

■ Studying combustion phenomena

- ☐ It is important to know essential combustion parameters such as
 - gas temperature
 - species concentrations
 - resolved temporarily and spatially and simultaneously for every point

□ Objective of this work

- Tomographic reconstruction of
 - gas temperatures
 - in flames and hot gas flows

Outline

- Tomographic Reconstruction of a Lab Flame Temperature Profile
 - Measurement Schemes
 - Results on the Lab Flame
- Equipment Suitable for Tomographic Measurements of Gas Temperatures
 - Development
 - Application on a Large Diesel Engine
- **☐** Towards Species Concentrations Measurements
 - Line-by-line Modeling of Gas Spectra
 - Comparison to Experimental Data from the Hot Gas Cell

Problem Statement

- Given is an axisymmetric stable flame produced by a small lab-scale burner*
- The temperature profiles at a number of heights above the burner plate are known*
- ☐ **The task** is to reconstruct the temperature profile at a chosen height above the burner

 from several optical line-of-sight spectral emission/transmission measurements

Problem Statement: Details

■ Why optical techniques?

They are advantageous

- over thermocouples due to
 - non-intrusiveness
 - high temporal resolution
- over laser-based techniques due to
 - low cost
 - wide spectral range

■ Why IR spectral range?

 The major combustion species CO₂ and H₂O have strong fundamental rotational-vibrational bands in the near IR range

Equipment: Flat Flame Burner

A flat flame burner* producing a laminar pre-mixed CH₄/air flame with known axisymmetric temperature profile* was used for the FTIR tomographic measurements

Equipment: Flat Flame Burner

The system supplying the CH₄/air mixture to the burner

BRONKHORST HIGH-TECH E-5700 Series Economical Power Supply / Readout System

Equipment: Flat Flame Burner

The burner plate is equipped with a single water cooling loop which effectively conducts away the heat transferred to the burner plate from the flame.*

In our setup, the cooling water was supplied to the loop by a Koolance Exos-2.5 Liquid Cooling System.

The temperature of the water "leaving" the loop did not exceed 60 °C.

Koolance Exos-2.5 Liquid Cooling System

Burner Operation Parameters

Inner		Outer	
CH ₄	Air	CH ₄	Air
1.03	9.84	1.19	11.37

at $\varphi = 0.8$ (lean	combustion)
--------------------------	-------------

Inner		Outer	
CH ₄	Air	CH ₄	Air
1.03	12.30	1.19	14.20

Flame Fluctuations

- Although the flow rates were kept constant by flow controllers some fluctuations in the emission signal from the flame were observed.
- ☐ The emission signal from the flame instead of being constant resembles
 - a sine wave with
 - the amplitude of about 5 % of the mean value and
 - a frequency of about **10 Hz**.
- These fluctuations are essential consequence of the phenomena related to the flame propagation dynamics taking into account buoyancy effects and convection.

Equipment: FTIR Spectrometer

Bomem/ABB model MB155 FTIR spectrometer

Equipment: FTIR Spectrometer

The spectrometer as well as the other parts of the optical setup is **purged with pressurized air** generated by BALSTON® 75-45 FT-IR Purge Gas Generator

Equipment: Fiber Optical Adaptor

- ☐ The fiber optical adaptor is used to focus the light onto the one end of the IR optical fiber (chalcogenide IR-glass fiber).
- ☐ The other end of the fiber is connected to the FTIR spectrometer.
- ☐ The field of view provided by the adaptor lies within a cylinder having the diameter of about 6 mm.

Equipment: Blackbody

- A blackbody radiation source with a cavity temperature of 894.4 °C (1167.6 K) was used for transmission measurements
- \blacksquare It is important to purge the hot cavity to remove the hot CO₂ and H₂O present inside the cavity from the ambient air

Equipment: Cold Cavity

■ **Emission measurements** were performed using a cavity having ambient temperature

Equipment

The whole setup used for the FTIR tomographic measurements on the lab burner

- \square Examples of the **blackbody radiation** (the Planck radiation law at $T_0 = 894.4$ °C (1167.6 K)), **emission** and **transmission** spectra for the
 - central line-of-sight (x = 0 mm),
 - height above the burner plate of 12 mm,
 - stoichiometric combustion (equivalence ratio $\phi = 1$).

Gas temperature $T_g(x,y) = ?$

■ The spectral irradiance I(x,y) by a beam of monochromatic radiation at a wavenumber v varies according to*

$$\frac{dI(x,y) = -k(T_g) \ I(x,y) dy}{\text{Lambert's Law}} + \frac{k(T_g) I_{Planck}(T_g) dy}{\text{Kirchhoff's Law}}$$

- $T_g = T_g(x,y)$ gas temperature
- $k(T_g) = k(T_g(x,y)) =$ = k(x,y) – the absorption coefficient
- $I_{Planck}(T_g)$ the Planck function at T_g

The monochromatic radiative transfer equation without scattering

- ☐ The radiative transfer equation is a **differential equation** with respect to I(x,y)
- ☐ It's solution is a complex integral equation with respect to $T_a(x,y)$ and k(x,y):

Transmission measurement

$$I_R(x)$$

$$= I_{S}(T_{0}) \exp\left(-\int_{y_{1}(x)}^{y_{2}(x)} k(x, y) dy\right) +$$

$$+ \int_{y_{1}(x)}^{y_{2}(x)} k(x, y) I_{Planck}(T_{g}(x, y)) \exp\left(-\int_{y}^{y_{2}(x)} k(x, y') dy'\right) dy \qquad I_{g}(x)$$
Emission
measurement

$$I_T(x) = I_R(x) - I_g(x)$$
 $\downarrow \qquad k(x,y)$ $\downarrow \qquad T_g(x,y)$

Sweeping Scanning Spectrometer Ref. source Advantage

- More practicable with respect to the real conditions of an industrial scale
 - The idea is to use several synchronized spectrometers with the sweeping scanning
 - The walls of a boiler can be used as a reference source

Equations

The same as in the parallel case but just converted to polar coordinates

Tomography Results at $\phi = 1$

■ **Burner temperature profile** as a function of the distance from the center of the burner plate, r [mm] (r = 30 mm is the edge of the burner plate), corresponding to the height above the burner plate 12 mm.

Tomography Results at $\phi = 1$

■ Some remarkable consistency between the temperature profiles obtained in the different measurement sessions in this project can be observed.

Tomography Results at $\varphi = 0.8$

 \Box for **parallel scanning** in comparison with the results at $\phi = 1$:

Tomography Results at $\varphi = 0.8$

 \Box for **sweeping scanning** in comparison with the results at $\phi = 1$:

Tomography Results: Discussion

- The difference between the profiles for $\phi=1$ and $\phi=0.8$ is about 70-167 K at r<10 mm for both parallel and sweeping scanning (i.e. independent) measurements performed in this project
- whereas the corresponding difference between the reference profiles for $\phi = 1$ and $\phi = 0.8$ is about 335 K. *
- □ Fig. below shows the residuals between the respective temperature profiles for $\phi = 1$ and $\phi = 0.8$ (e.g. the olive curve is the profile for $\phi = 1$ minus the profile for $\phi = 0.8$ both obtained from the parallel scanning measurements in this project).

Towards the Equipment for Tomography

Objective

 It is essential for tomography to have simultaneous spectral measurements from several lines of sight

Approach

Several optical fibers + grating spectrometer + IR camera

480 Pixels

- a) IR spectra obtained as profiles along the horizontal dimension of the IR image (shown in panel (b)) averaged within the marked horizontal lines;
- □ **b)** IR image;
- **c)** profile along the marked vertical line on the IR image.

Number of Fibers Coupled onto the Entrance Slit and Time Resolution

Calibration of the x-axis (wavelength axis)

Calibration of the x-axis (wavelength axis)

Instrument Line Shape Function (ILS), Spectral Resolution (R) and Entrance Slit Width (W)

36

Instrument Line Shape Function (ILS) and Spectral Resolution (R) Absorbance of the 4.7 µm band of CO (100 %) Experimental at room temperature (296 K) Calculated 0.35 0.3 0.25 Absorbance 0.2 0.15 Calculation performed 0.1 using the HITRAN-2008 database and applying the triangular ILS 0.05 with $R = 9 \text{ nm } (3.9 \text{ cm}^{-1})$ 4.5 4.68 4.66 4.64 4.62 4.6 4.58 4.56 4.54 4.52 Wavelength (µm)

The relative error δT [%] of the blackbody temperature measurement as a function of the temperature drift of the IR camera housing [%]

Large Diesel Engine

A two-stroke test marine Diesel engine

MAN Diesel & Turbo

Copenhagen R&D Department

The exhaust duct of a cylinder

- □ The system was successfully tested under real conditions
- The objective was to measure gas temperature simultaneously in the three optical ports
 - measurements were synchronized with the encoder of the main shaft

Gas Temperature vs Time

Top
Middle
Bottom

☐ Temporal resolution 119 Hz (64 points per stroke)

Gas Temperature vs Time

- ☐ Gas temperature is not homogeneous
 - It is increasing from bottom to top

Gaseous Species Concentrations

- Calculations are based on Line-By-Line modeling of spectra*
 - which uses spectroscopic databases HITRAN, HITEMP, CDSD

Measured

•Gas temperature [K] T_g •Total pressure [atm] p•Absorption path length [cm] L•Mole fraction of the species [%] c•Instrument Line Shape Function $ILS(v,v_c)$ •Measured transmittance $\tau_m(v)$

Database parameters for the *i*th **transition***

•Spectral line transition frequency [cm ⁻¹]	v_0	
•Air-broadened pressure shift [cm ⁻¹ /atm]	δ	
•Air-broadened HWHM [cm ⁻¹ /atm]	Y_{air}	
•Self-broadened HWHM [cm ⁻¹ /atm]	Y_{self}	
•Coefficient of temperature dependence of $\gamma_{\rm air}$ and $\gamma_{\rm self}$	n	
•Spectral line intensity [cm ⁻¹ /(molecule cm ⁻²)]	S_0	
•Lower state energy of the transition [cm ⁻¹]		

Calculated*

- •Pressure-shift correction of line position [cm $^{-1}$] V_0^* (p)
 •Temperature and pressure correction of line HWHM [cm $^{-1}$] Y (p, T_g)
 •Lorentz profile [1/cm $^{-1}$] f (v, T_g , p)
 •Temperature correction of line intensity [cm $^{-1}$ /(molecule cm $^{-2}$)] S (T_g)
 •Monochromatic absorption coefficient [1/(molecule cm $^{-2}$)] K_i (v, T_g , p)
 •Calculated transmittance T_{clc} (v)
- ☐ The idea is to compare measured and calculated transmittances
- The mole fraction can then be obtained from the best match between the transmittances

Line-By-Line Modeling

Evseev et al. J. Quant. Spectrosc. Radiat. Transfer 113 (17) (Nov.2012) 2222-33

□ CO₂ Transmittance

 Measured in the high-temperature flow gas cell developed at DTU Chemical Engineering (before 1 January 2012 Risø DTU, Optical Diagnostics Group)

Vs

Calculated using the HITEMP 2010 database

Summary

■ Tomographic reconstruction of gas temperatures

- Axisymmetric case
 - Parallel scanning
 - Sweeping scanning

■ Tomography equipment

- Multichannel spectrometer
 - Optical fibres + grating spectrometer + IR camera
 - Successfully applied on the large Diesel engine
 - Simultaneous temperature measurements in the three optical ports of the exhaust duct

Concentration calculations

- Measurements in the hot gas cell are compared with the line-by-line modeling results
 - Excellent agreement in a wide spectral range

Thank you for your attention!