Mutually Unbiased Bases in Composite Dimensions

Dan McNulty

Department of Mathematics, University of York

March 21, 2013

- **▶** Introduction
- What we know about MU bases
- ► Analogous problems
- Results for dimension six
- ► MU product bases
- Summary and conclusions

What are MU bases?

particle on a line

▶ position basis $|q\rangle$, $q \in \mathbb{R}$; momentum basis $|p\rangle$, $p \in \mathbb{R}$

$$|\langle q|p\rangle|^2 = \frac{1}{2\pi\hbar}$$

qubit, or spin 1/2

• standard basis $|j_z\rangle$, j=0,1; x-eignebasis $|k_x\rangle$, k=0,1

$$|\langle j_z|k_x\rangle|^2=\frac{1}{2}$$

qudit in \mathbb{C}^d

lacktriangle and two orthonormal bases $|\psi_j
angle$ and $|\phi_k
angle$, $j,k=1,\ldots,d$

$$|\langle \psi_j | \psi_k \rangle|^2 = \frac{1}{d}$$

Complete sets of MU bases

- ▶ A set of d+1 orthogonal bases $\{\mathcal{B}_0, \mathcal{B}_1, \dots, \mathcal{B}_d\}$ is mutually unbiased if each pair of bases \mathcal{B}_i and \mathcal{B}_j is mutually unbiased
- ▶ Dimension d = 3

$$I_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad F_{3} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega \end{pmatrix}$$

$$H = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ \omega & \omega^{2} & 1 \\ \omega & 1 & \omega^{2} \end{pmatrix} \qquad H' = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ \omega^{2} & \omega & 1 \\ \omega^{2} & \omega & 1 \end{pmatrix}$$

where $\omega = e^{2\pi i/3}$ is a third root of unity

Why are MU bases interesting?

Applications

- ▶ Optimal state reconstruction [wkw&bdf]
- Quantum cryptography
- Quantum challenges: Mean King problem [LV et. al]
- ► Entanglement detection [CS et al.]
- Generalised Bell inequalities [S-WJ et al.]

Conceptually

Complementarity for composite systems

- ▶ Introduction
- What we know about MU bases
- ► Analogous problems
- Results for dimension six
- ► MU product bases
- Summary and conclusions

MU bases for qudits, $d \in \mathbb{N}$

General results

- lacktriangle There are at most (d+1) MU bases in \mathbb{C}^d [WKW&BDF]
- Triples of MU bases exist for all d
- ▶ d MU bases in \mathbb{C}^d gives rise to (d+1) MU bases [MW]
- ► The entanglement content of a complete set is fixed [MW et al.]

Complete MU sets are equivalent to ...

- ▶ Maximal sets of d complex MU Hadamard matrices of order d
- lacksquare Orthogonal decompositions of the Lie algebras $sl_d(\mathbb{C})$ [POB *et al.*]

MU bases in prime power dimensions

 $d = p^n$, p a prime, $n \in \mathbb{N}$

Construction of complete sets from:

- Generalised Pauli matrices
- Commuting subsets of a unitary error basis
- Orthogonal Latin squares
- Discrete Fourier analysis over Galois fields
- Discrete Wigner functions

MU bases in composite dimensions

$$d = p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$$
, with $p_1^{n_1} < p_2^{n_2} < \dots < p_k^{n_k}$

Positive

- $(p_1^{n_1} + 1)$ MU bases can be constructed
- $(p_1^{n_1} + 2)$ MU bases exist for specific dimensions (Latin squares imply six $(> 2^2 + 1)$ MU bases for $d = 2^2 \times 13^2)$ [PW&TB]
- ▶ Entanglement content for complete MU set in $\mathbb{C}^p \otimes \mathbb{C}^q$ $\mathcal{E} = pq(p+q)$ [MW et al.]

Negative

Plausible generalisations of constructions fail

Open questions for MU bases

Open problems

- ▶ Do complete sets of (d+1) MU bases exist in \mathbb{C}^d ?
- ▶ Does a complete set of seven MU bases exist in \mathbb{C}^6 ?
- ▶ Do four MU bases exist in C⁶?
- ▶ Does the MU constellation $\{6^3, 1\}$ exist in \mathbb{C}^6 ?

Conjecture

➤ Only three MU bases exist in C⁶ [GZ] (compatible with all known results)

- ► Introduction
- What we know about MU bases
- ► Analogous problems
- Results for dimension six
- ► MU product bases
- Summary and conclusions

Orthogonal decompositions of simple Lie algebras

Theorem [POB&VPR]

A set of μ MU bases $\mathcal{B}_1, \ldots, \mathcal{B}_{\mu}$ of \mathbb{C}^d exists if and only if a set of μ pairwise orthogonal Cartan subalgebras $\mathcal{H}_1, \ldots, \mathcal{H}_{\mu}$ of $sl_d(\mathbb{C})$, closed under the adjoint operation, exists.

Conjecture

▶ The simple Lie algebra $sl_d(\mathbb{C})$ admits an orthogonal decomposition only if d is a prime power

Implication for MU bases

 Existence of orthogonal decomposition iff a complete set of MU bases exist

Complex Hadamard matrices

Definition

► A square matrix *H* of order *d* is a Hadamard matrix if it is unitary and all its elements have equal modulus

Open problem

- ► In dimension **six** a complete classification of Hadamard matrices is unknown
- ► Thus, a complete classification of pairs of MU bases remains unknown

Affine planes

Definition

An affine plane of order d is collection of d^2 points and d(d+1) lines which satisfy the following

- ▶ Any two points lie on just one line
- ▶ Given any line ℓ and any point p not lying on ℓ , there exists exactly one line through p that is parallel (disjoint) to ℓ
- ▶ There exists three noncollinear points

Results on affine planes

- ▶ Affine planes of order $d = p^n$ exist for p prime, $n \in \mathbb{N}$
- No affine plane of order six exists.

Conjecture

▶ The non-existence of an affine plane of order d implies there exist less than d+1 MU bases [MS et al.]

- ► Introduction
- What we know about MU bases
- ► Analogous problems
- Results for dimension six
- ► MU product bases
- Summary and conclusions

Computer-aided results in dimension six

Numerical evidence

▶ No evidence for the existence of **four** MU bases [PB&WH],[SB&SW]

Exact numerics

(discretize phase space and use rigorous estimates)

▶ Pair $\{I, F_6(a, b)\}$: not part of a quadruple of MU bases – numerical calculation with rigorous error bounds [PJ et al.]

Computer-algebraic efforts

- ▶ Pair {*I*, *F*₆}: not part of a quadruple of MU bases [MG]
- ▶ Pair $\{I, S_6\}$: not part of a triple of MU bases [SB&SW]

Analytic results in dimension six

Existence results specific to d = 6

- ► There exists a three parameter family of complex Hadamard matrices of order six [BRK]
- Continuous families of MU triples exist

Limitations specific to d = 6

- ➤ Various construction methods yield at most three MU bases, e.g. monomial bases, nice error bases and Latin squares (affine planes) [POB et al.] [MA et al.]
- ► If a complete set contains three MU product bases, the remaining four bases contain entangled states only [MW et al.]
- ► No pair of real Hadamard matrices can be part of a complete set of MU bases [MM et al.]

- ▶ Introduction
- What we know about MU bases
- ► Analogous problems
- Results for dimension six
- ► MU product bases
- Summary and conclusions

All MU product bases of \mathbb{C}^6

Distinguish between two types of product bases

direct product bases, e.g.

$$B_2 \otimes B_3 \equiv \{|j_z, J_z\rangle\}, \quad j_z = 0, 1 \quad J_z = 0, 1, 2$$

indirect product bases, e.g.

$$\{|0_z,J_z\rangle,|1_z,J_x\rangle\},\quad J_z,J_x=0,1,2$$

Classify all sets of MU product bases for d = 6

- ▶ All pairs: four families $\mathcal{P}_0, \mathcal{P}_1, \mathcal{P}_2$ and \mathcal{P}_3
- All triples:

$$\mathcal{T}_0 = \{ |j_z, J_z\rangle; |j_x, J_x\rangle; |j_y, J_y\rangle \}$$

$$\mathcal{T}_1 = \{ |j_z, J_z\rangle; |j_x, J_x\rangle; |0_y, J_y\rangle, |1_y, J_w\rangle \}$$

The limited role of MU product bases

Complete list of triples \mathcal{T}_0 and $\mathcal{T}_1 \implies$

Analytic results

No complete set contains three product bases $\{6^3\}_6^{\otimes}$ (no state is MU to either \mathcal{T}_0 or $\mathcal{T}_1)$ No complete set contains the product constellation $\{6^2,4\}_6^{\otimes}$

Complete list of pairs $\mathcal{P}_0, \mathcal{P}_1, \mathcal{P}_2$ and $\mathcal{P}_3 \implies$

► Analytic result ∪ computer-aided results A complete set contains at most one product basis (all MU pairs contain {I, F₆(a, b)} or {I, S₆} which do not extend to complete MU sets)

- ► Introduction
- What we know about MU bases
- ► Analogous problems
- Results for dimension six
- ► MU product bases
- Summary and conclusions

Summary and conclusions

Current status in dimension six

- Strong evidence for non-existence of complete MU sets
- ▶ {6³,1} has never been observed
- Some MU pairs and triples are unextendible
- ► A complete MU set contains at most one product basis

Lessons?

- Existence of a complete MU set is surprising
- Sensitivity of quantum theory to factors of d

Thank you