Quantumness Witnesses

Saverío Pascazio

Dipartimento dí Fisica and INFN
Barí, Italy
based on work in collaboration with

P. Facchi, R. Fazio, K. Modí, V. Vedral and K. Yuasa

Olomouc, 12 April 2013

seminal idea

Set A of observables of a system.

 We do not know whether system is classical or quantumTheorem (Alicki, Van Ryn):
(i) \mathcal{A} is commutative. To wit, for any pair $X, Y \in \mathcal{A}$,

$$
[X, Y]:=X Y-Y X=0 .
$$

(ii) For any pair $X, Y \in \mathcal{A}$ with $X \geq 0$ and $Y \geq 0$,

$$
\{X, Y\}:=X Y+Y X \geq 0 .
$$

(i) \mathcal{A} is commutative. To wit, for any pair $X, Y \in \mathcal{A}$, $[X, Y]:=X Y-Y X=0$.
(ii) For any pair $X, Y \in \mathcal{A}$ with $X \geq 0$ and $Y \geq 0$, $\{X, Y\}:=X Y+Y X \geq 0$.

quantumness witness (QW)

$X, Y \in \mathcal{A}$
$X, Y \geq 0$
$Q_{\mathrm{AVR}}=\{X, Y\}$
if Q is not positive definite then Q is a $Q W$

- EXAMPLE
- is a photon quantum?
- check its anticommutator!

experiments (Turin)

G. Brida, I.P. Degiovanni, M. Genovese, V. Schettiní, and A. Migdall, Optics Express 16, 11750 (2008).
G. Brida, I.P. Degiovanni, M. Genovese, F. Píacentiní, N. Gisin, S.V. Polyakov, and A. Migdall, Phys. Rev. A

comments

- Alicki and Van Ryn, J. Phys. A: Math. Theor. 41, 062001 (2008)
Alickí, Piani and Van Ryn, J. Phys. A:
Math. Theor. 41, 495303 (2008)
- many definitions of classicality
- semiclassical limit
- Wigner, Sudarshan, Glauber...
- interesting? obvious?

interesting (related?) work

 Horodecki's 2008Kiesel, Vogel, Hage and Schnabel 2011 Chen and Deng 2009
Pianí and Adesso 2011
Filippov and Man'ko 2009
Andersson, Bergou, Jex 2005
Jamiolkowski 2012
Fiurasek 2012
Perina and Krepelka 2011
(Quantumness and Entanglement Witnesses)
Facchi, Pascazio, Vedral, Yuasa, J. Phys. A (2012)

QW vs EW

We say that an observable $Q \in \mathcal{A}$ is a quantumness witness (QW) if

- for any classical state ρ one gets $\rho(Q) \geq 0$
- there exists a (quantum) state σ such that $\sigma(Q)<0$.

Every EW is also a QW

idea:

(i) \mathcal{A} is commutative. To wit, for any pair $X, Y \in \mathcal{A}$, $[X, Y]:=X Y-Y X=0$.
(ii) For any pair $X, Y \in \mathcal{A}$ with $X \geq 0$ and $Y \geq 0$, $\{X, Y\}:=X Y+Y X \geq 0$.

- extend previous definition to states
- after all, states are densíty matrices
- therefore states are positive operators
- arXiv:1201.1212 [quant-ph]
"Measuring quantumness vía anticommutators"
Phil. Trans. R. Soc. A 370 (2012) 4810
"Classical to quantum in large number limit" Modí, Fazio, Pascazio, Vedral, Yuasa

$$
\begin{aligned}
& \quad \text { example } \quad \begin{array}{r}
\rho=\frac{1}{2}\left(1+p \sigma_{y}\right) \\
\rho^{\prime}=\frac{1}{2}\left(1+p \sigma_{z}\right) \\
\left\{\rho, \rho^{\prime}\right\} \geq 0 \leftrightarrow p \leq 1 / \sqrt{2} \\
\rho=\frac{1}{2}(1+x \cdot \sigma) \quad \text { in general } \\
\rho^{\prime}=\frac{1}{2}\left(1+x^{\prime} \cdot \sigma\right) \\
\left\{\rho, \rho^{\prime}\right\} \geq 0<x^{2}+x^{\prime 2}+x \cdot x^{\prime} \leq 1
\end{array}
\end{aligned}
$$

rephrase in terms of unambiguous state discrimination and probabilistic cloning (Bergou, Buzek, Hillary, Herzog)
ρ_{1}

states

ρ_{2}
$\left[\rho_{1}, \rho_{2}\right]=? \quad\left[\rho_{1}, \rho_{2}\right] \neq 0$
$\left\{\rho_{1}, \rho_{2}\right\}$ assume it can be measured
as well as...
$\left\{\rho_{1}, \rho_{2}\right\},\left\{\rho_{1}, \rho_{1}\right\},\left\{\rho_{2}, \rho_{2}\right\},\left\{\left\{\rho_{1}, \rho_{2}\right\}, \rho_{1}\right\}, \ldots$
what does it mean to measure an anticommutator? interference!

interesting ideas by:
Carteret, PRL 94, 040502 (2005)
Sjoqvist, Patí, Ekert, Anandan, Ericsson, Oí, Vedral, PRL 85, 2845 (2000)
Adamson, Shalm, Steínberg PRA 75, 012104 (2007)
Bechmann-Pasquinuccí, Huttner, Gísin, PLA 242, 198 (1998)
Nakazato, Tanaka, Yuasa, Florio, Pascazio, PRA 85, 042316 (2012): measure purity

(remínder)

ρ_{1}
 states
 ρ_{2}

$\left[\rho_{1}, \rho_{2}\right]=?$
$\left[\rho_{1}, \rho_{2}\right] \neq 0$

discord

$D(A \mid B)=0 \quad \Longleftrightarrow \quad\left[\rho_{B \mid i}, \rho_{B \mid j}\right]=0, \quad \forall i, j$ where $\rho_{B \mid i}=\operatorname{Tr}_{A}\left[\Lambda_{A}^{i} \otimes \mathcal{I}_{B}\left(\rho_{A B}\right)\right]$
(operational meaning)

first observation

 ρ_{1} pure $\left[\rho_{1}, \rho_{2}\right] \neq 0$ $\left\{\rho_{1}, \rho_{2}\right\}$ not positive definite second observation $\rho=\sum_{i} \lambda_{i}|i\rangle\langle i| \square \frac{\rho^{n}}{t r \rho^{n}} \rightarrow|0\rangle\langle 0|$ max eigenvalue not degenerate

therefore

but:
$\left\{\rho_{1}^{m}, \rho_{2}^{n}\right\}$ non-positive means quantum
we are ready to state our final result

precept (Stephen Hawking)

Someone told me that each equation I included in the book would halve the sales. I therefore resolved not to have any equations at all. In the end, however,
I did put in one equation, Einstein's famous equation, $E=m c^{\wedge} 2$. I hope that this will not scare off half of my potential readers.
true for physics audience: replace equation \square theorem

mixed states ρ_{1}, ρ_{2}
ϵ-close to pure states

$$
\rho_{i}=\left(1-\epsilon_{i}\right)\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|+\epsilon_{i} \sigma_{i} \quad\left(\sigma_{i}\left|\psi_{i}\right\rangle=0\right)
$$

$$
f=\left\langle\psi_{1} \mid \psi_{2}\right\rangle
$$

$\epsilon_{1} g_{1}+\epsilon_{2} g_{2}<\left(1-|f|^{2}\right) / 2$
$g_{1}=\left\langle\psi_{2}\right| \sigma_{1}\left|\psi_{2}\right\rangle$
$g_{1}=\left\langle\psi_{2}\right| \sigma_{1}\left|\psi_{2}\right\rangle$
$\left\{\rho_{1}, \rho_{2}\right\} \nsupseteq 0$

reminder

- bring to light quantumness by measuring anticommutators
- in fact: only anticommutators
- but in general one pays a price: high-order interference necessary
- for some states, it can be difficult to bring quantumness to light

