Optimal covariant processing of quantum gates

Alessandro Bisio

Palacky University Olomouc July 3rd 2012

INVESTMENTS IN EDUCATION DEVELOPMENT

In collaboration with:

Pavia University, QUIT group

Giacomo Mauro D'Ariano

Paolo Perinotti

Tsinghua University

Giulio Chiribella

SAV Bratislava & Palacky University Olomouc

Michal Sedlák

Axiomatic approach to state transformations

Axiomatic approach to state transformations

Processing quantum transformations: Quantum Supermaps

Axiomatic approach to state transformations

Processing quantum transformations: Quantum Supermaps

Higher Order Quantum Computation

Axiomatic approach to state transformations

Processing quantum transformations: Quantum Supermaps

Higher Order Quantum Computation

Processing unitary transformations

Axiomatic approach to state transformations

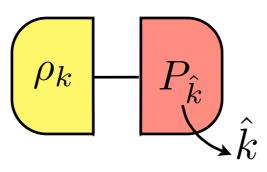
Processing quantum transformations: Quantum Supermaps

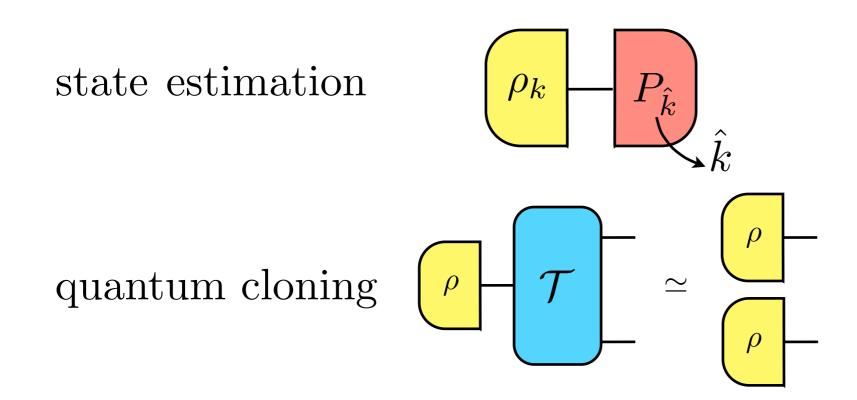
Higher Order Quantum Computation

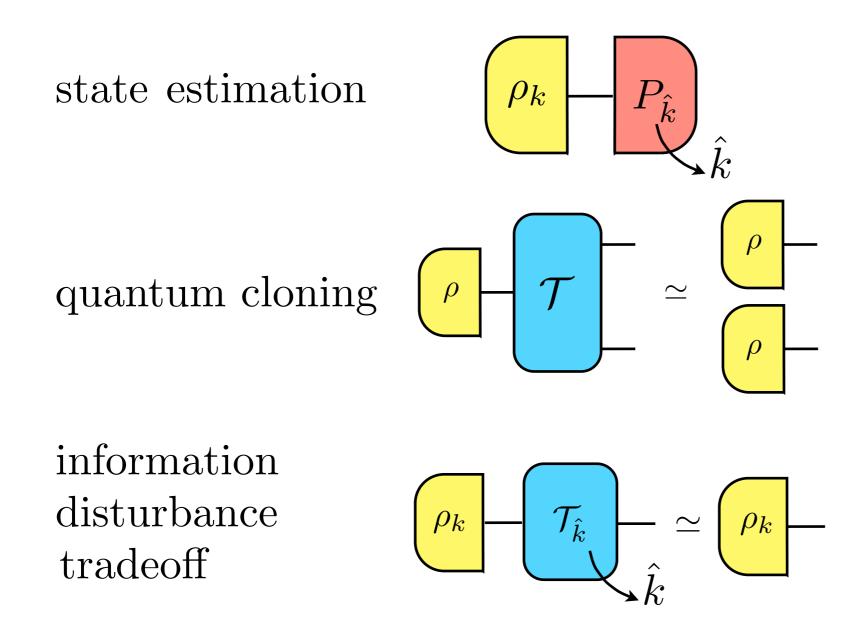
Processing unitary transformations

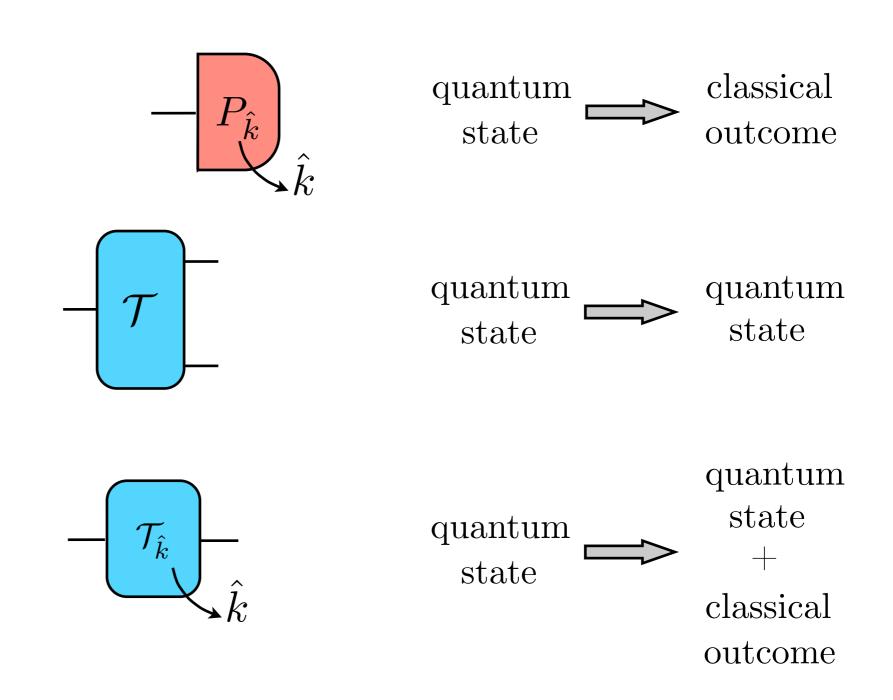
Future perspectives

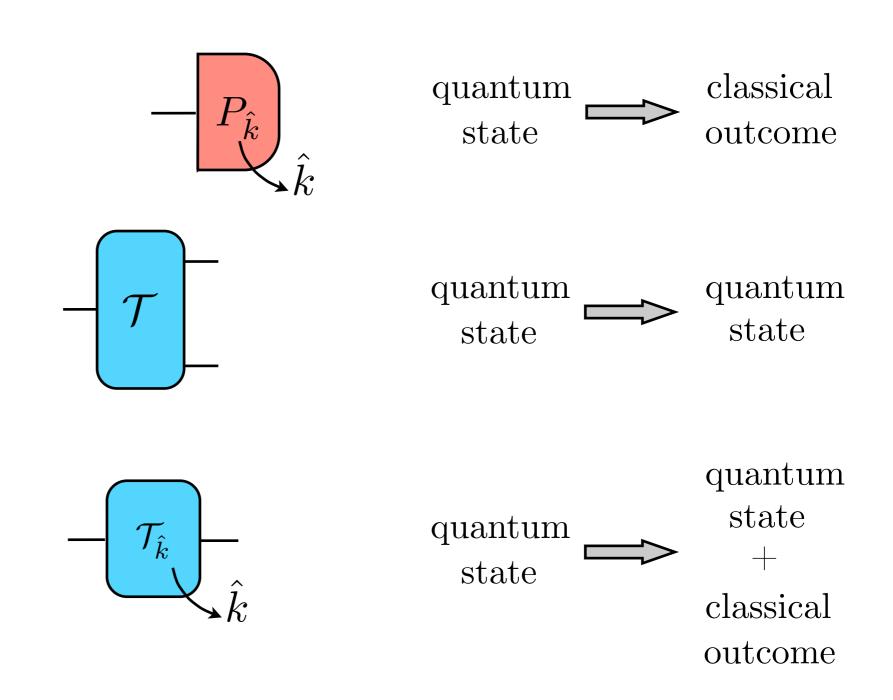
state estimation

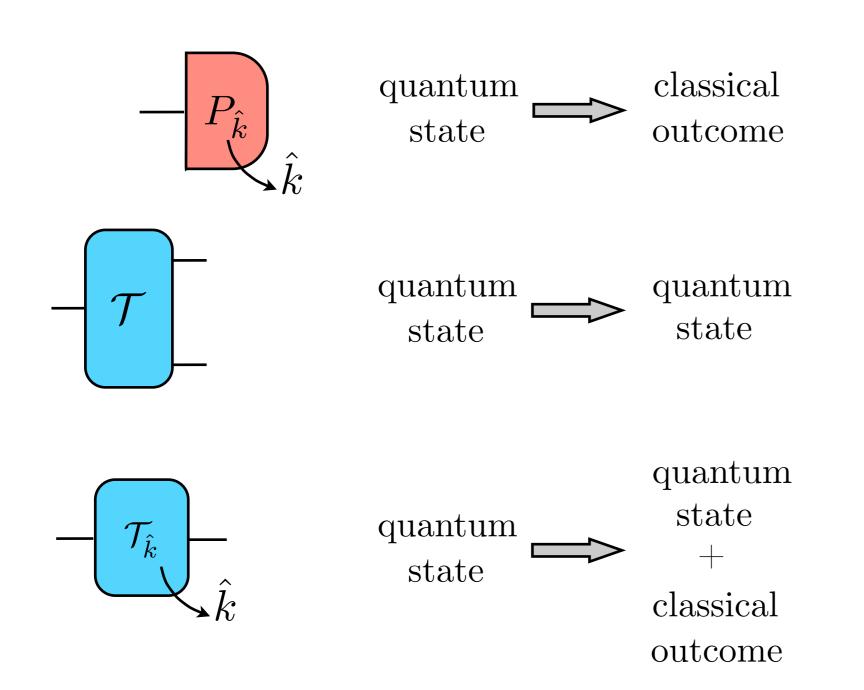












The most general state transformation?

linearity

linearity

complete positivity

$$ho_{
m in}$$
 = $ho_{
m out}$

linearity

$$\left(p \bigcap_{-} + (1-p) \bigcap_{-} - \right) - \left(\mathcal{T} - \right) =$$

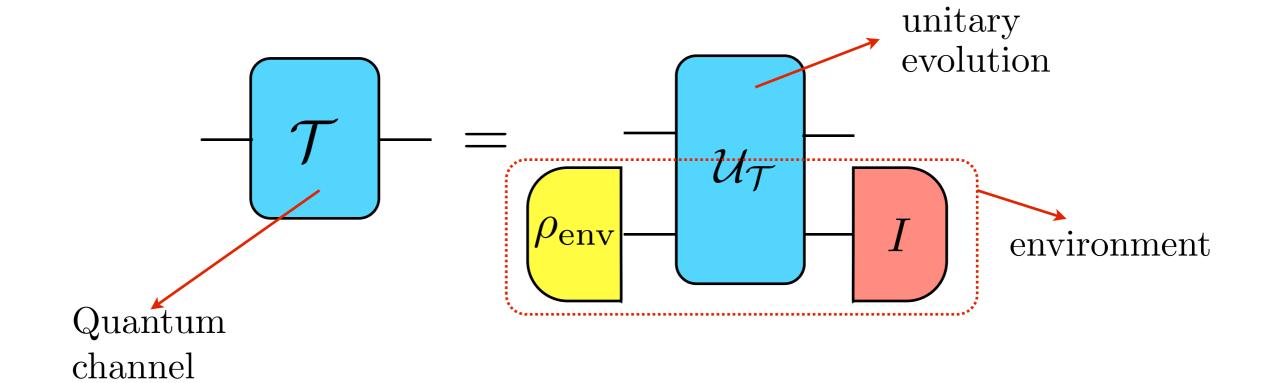
$$= p \bigcap_{-} - \left(\mathcal{T} - \right) -$$

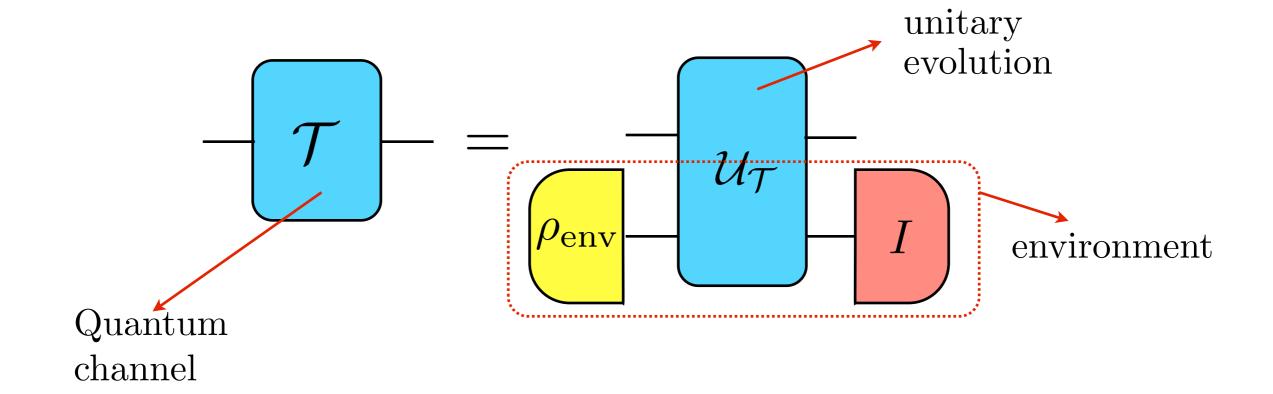
complete positivity

$$\rho_{\rm in}$$
 = $\rho_{\rm out}$

normalization

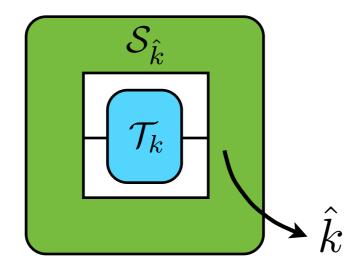
$$\rho$$
 I $= 1$



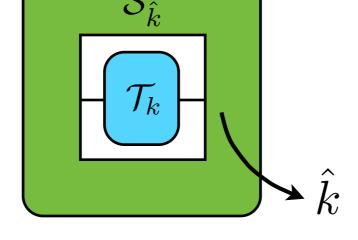


Deeper understanding of the probabilistic structure of Quantum Mechanics

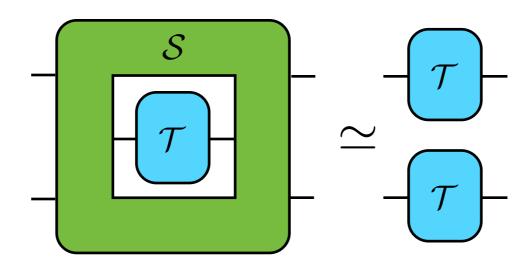
channel estimation

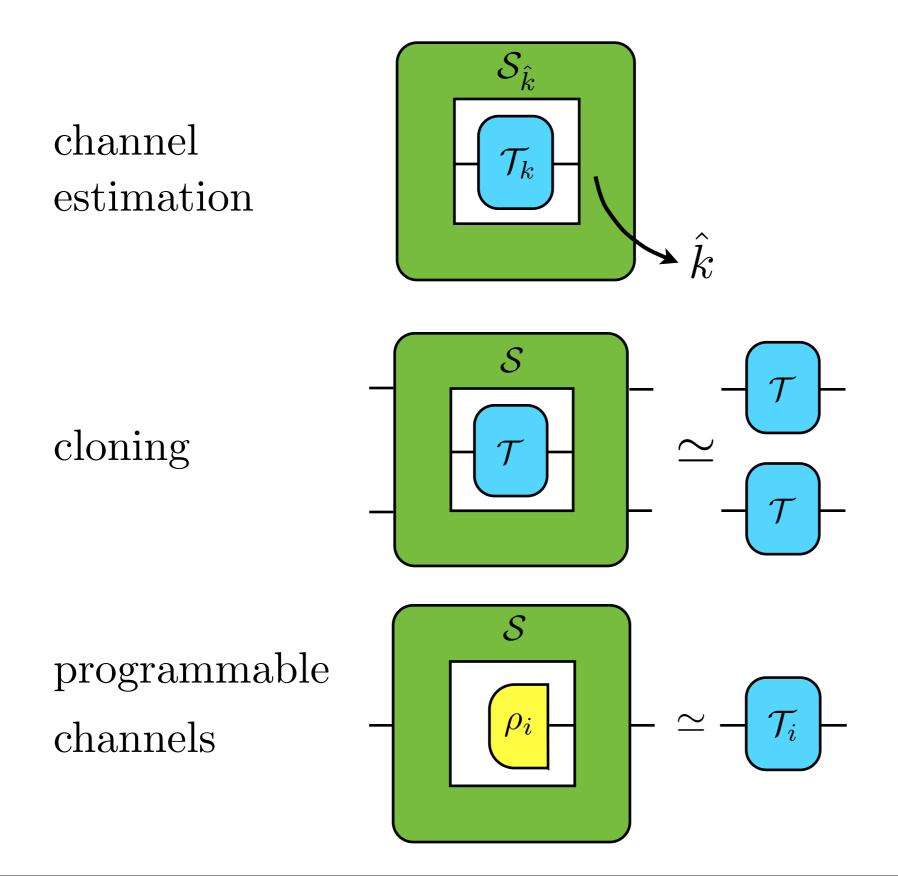


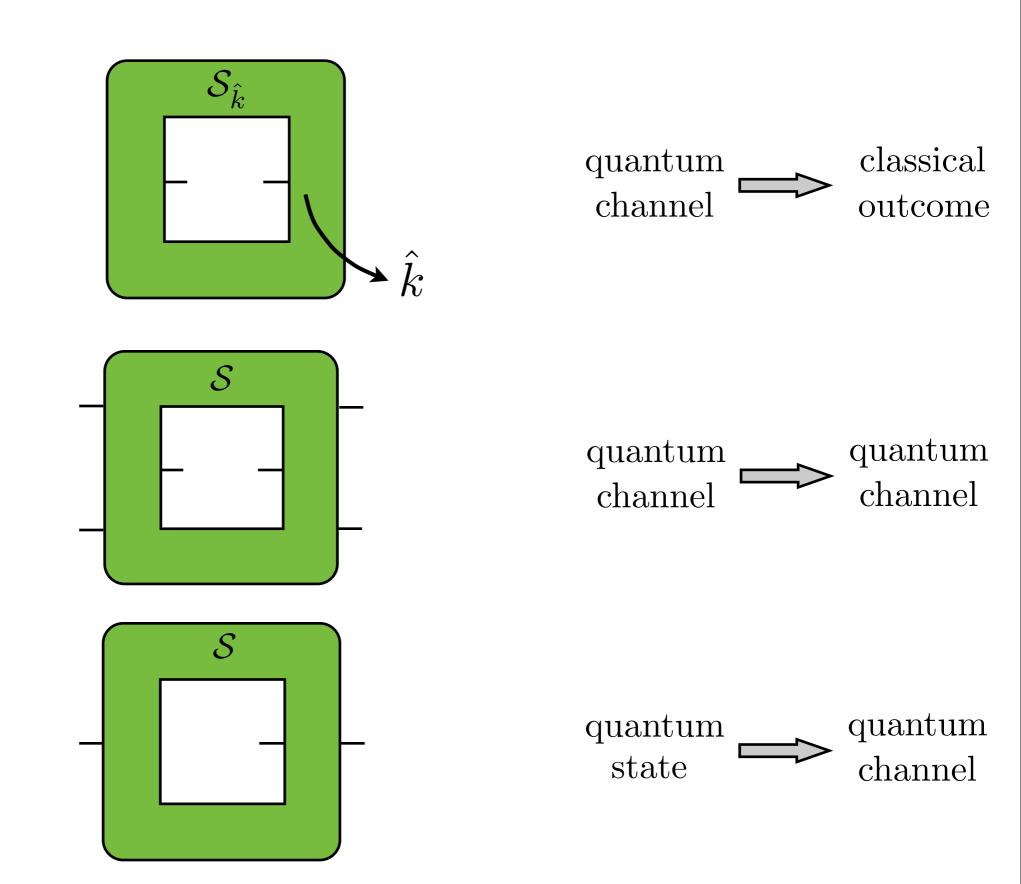
channel estimation

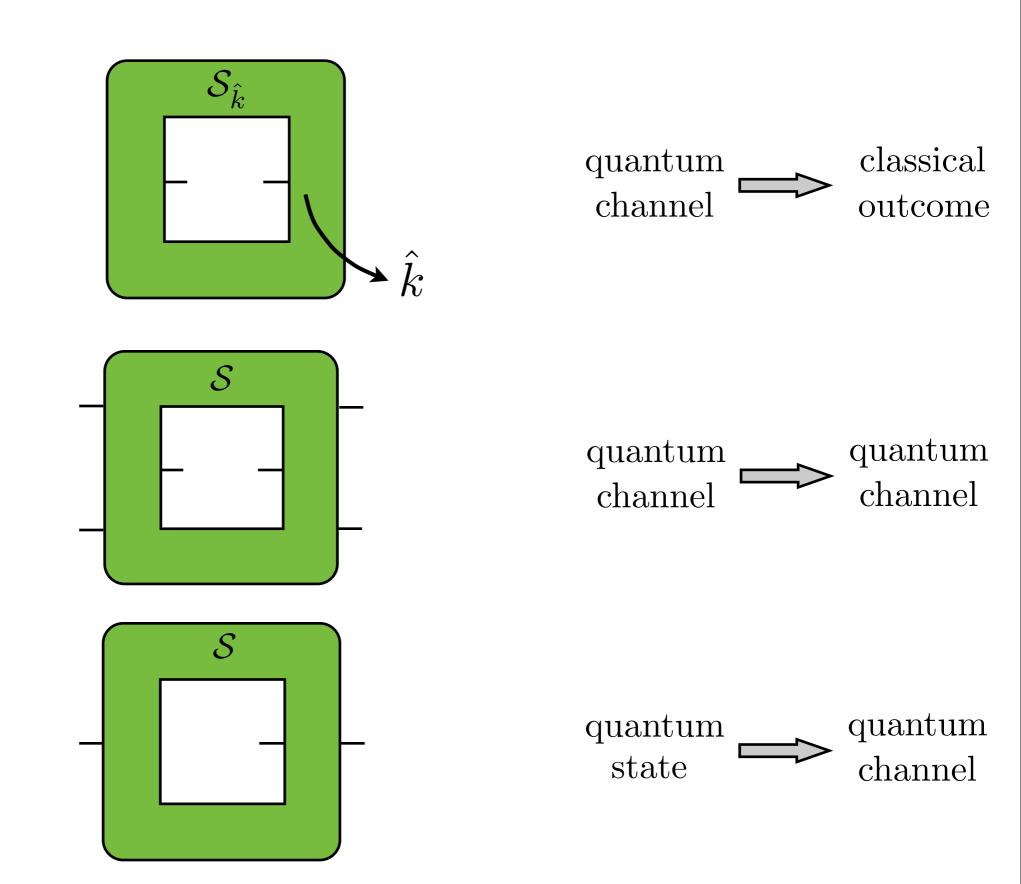


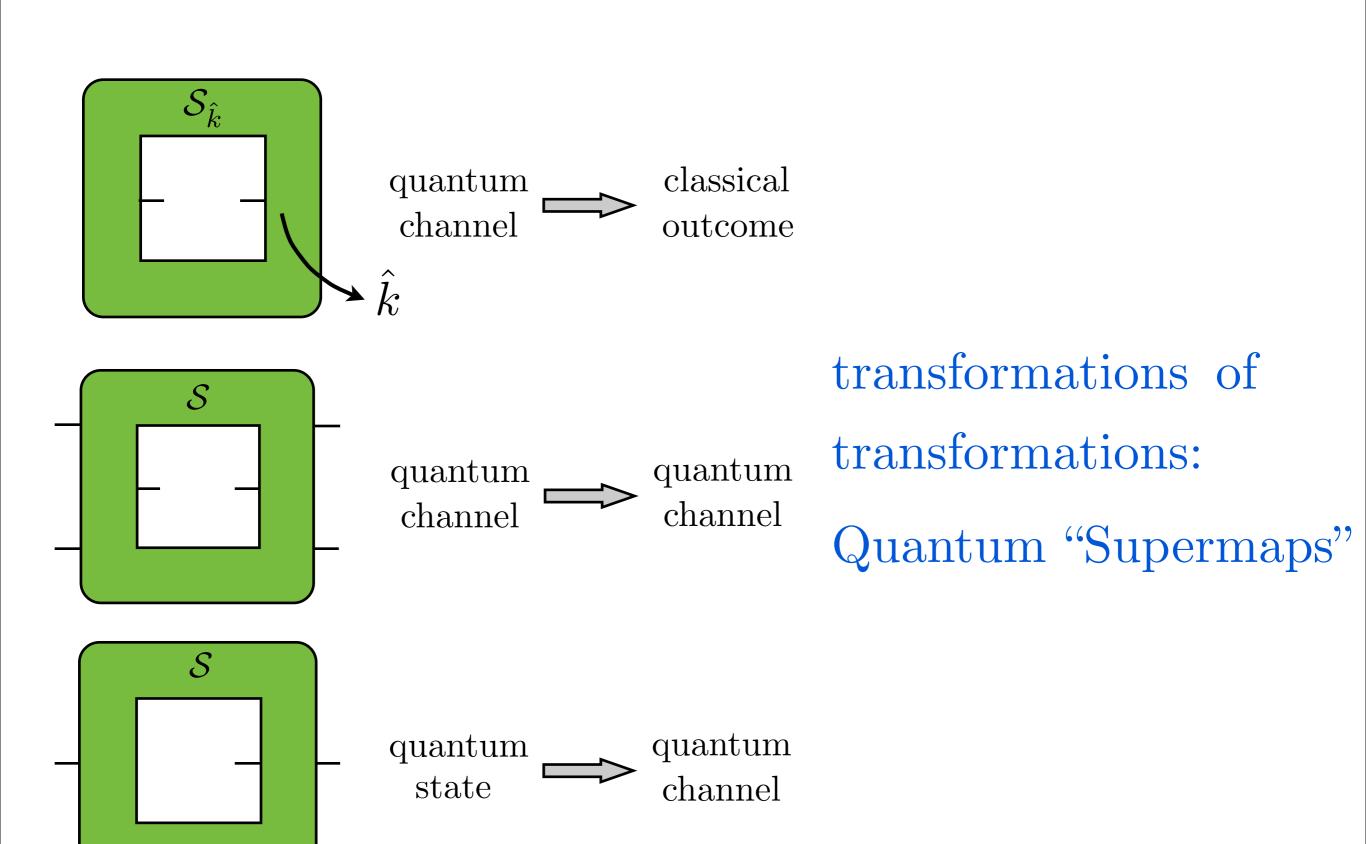
cloning











$$\left(p + \overline{\tau_1} + (1-p) + \overline{\tau_2} + \right) + \overline{\tau_2} + \overline{\tau_2} + \overline{\tau_2} + \overline{\tau_2} + \overline{\tau_2}$$

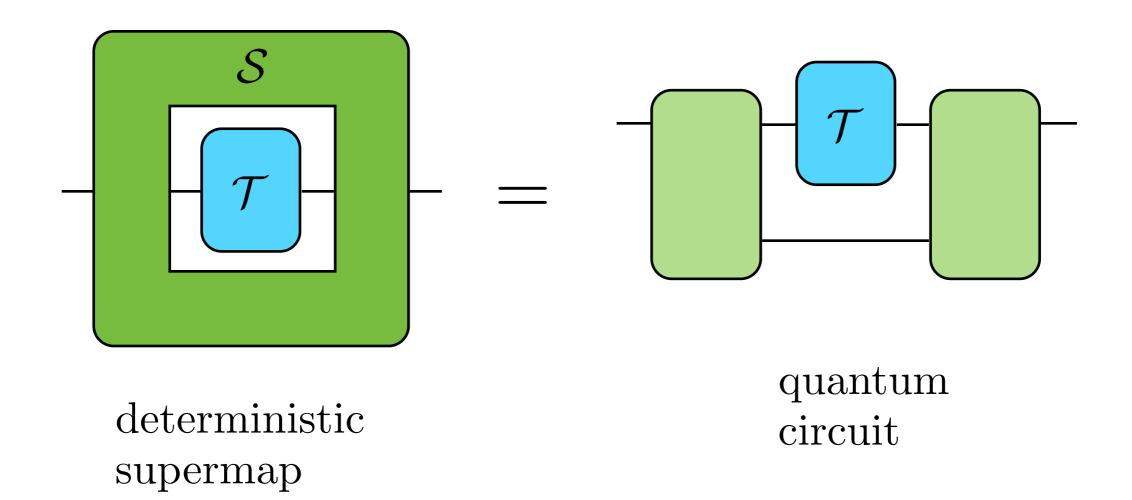
$$= p + \overline{\tau_1} + (1-p) + \overline{\tau_2} + \overline{\tau_2}$$

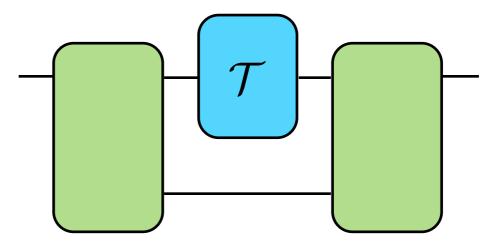
$$\begin{pmatrix}
p & + \overline{t_1} & + (1-p) & + \overline{t_2} \\
 & = p & + \overline{t_1} & + (1-p) & + \overline{t_2}
\end{pmatrix}$$
complete positivity
$$= p & + \overline{t_1} & + (1-p) & + \overline{t_2} & + \overline{t_2} & + \overline{t_3} & + \overline{t_4} & + \overline{t_5} &$$

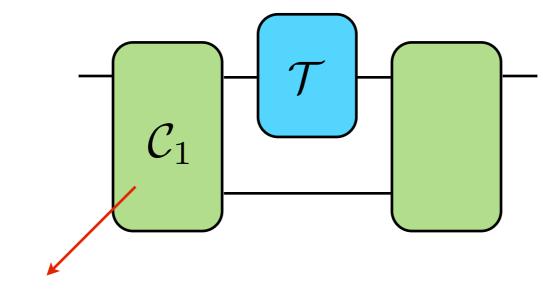
$$\begin{pmatrix}
p & -71 & + (1-p) & -72 &$$

normalization

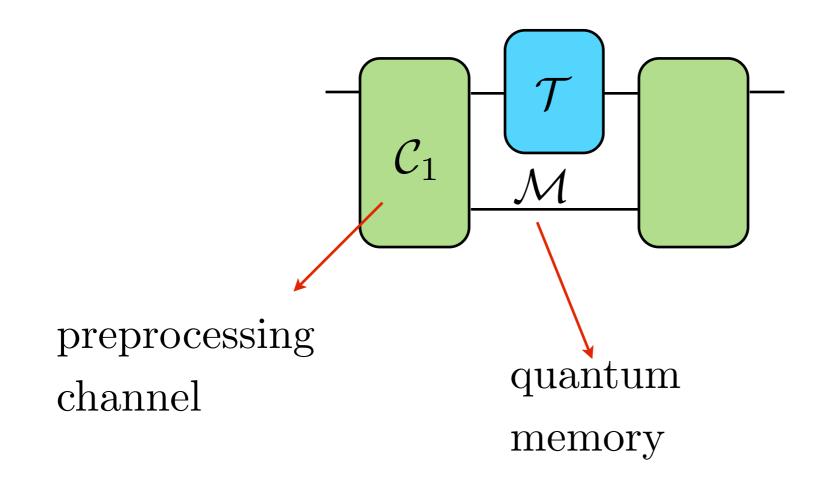
channels into channels

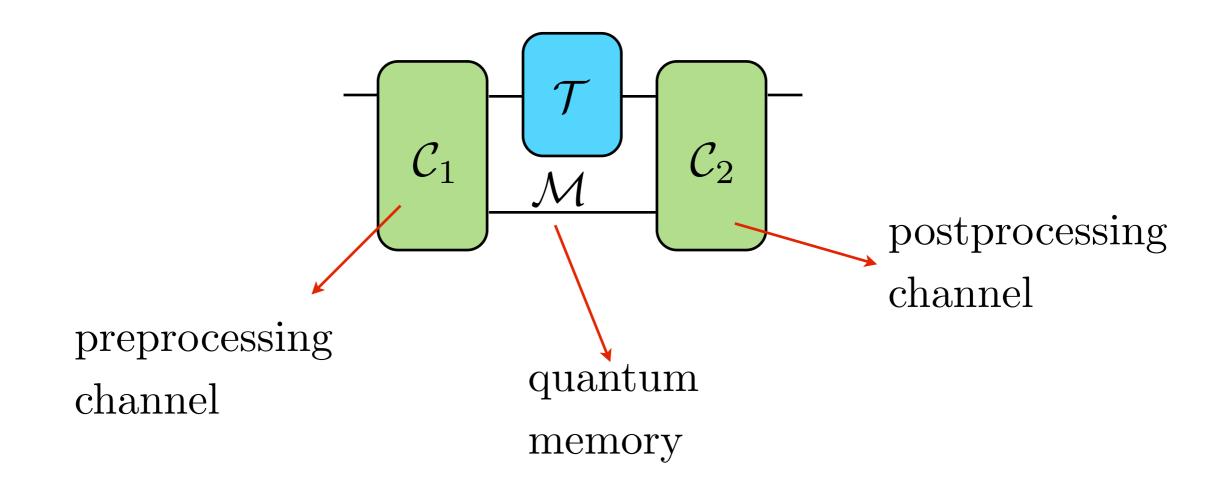


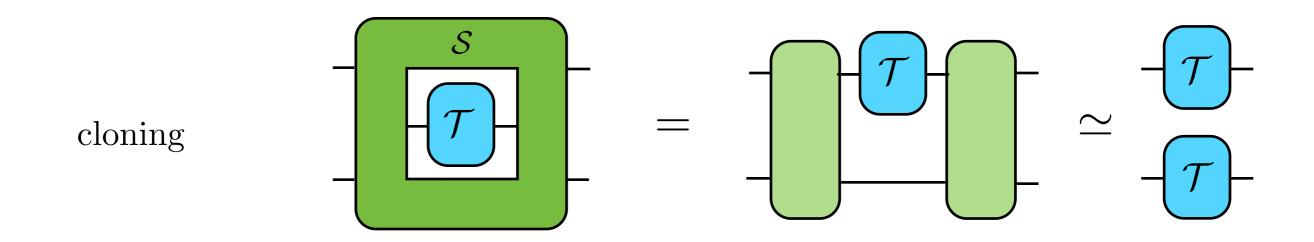




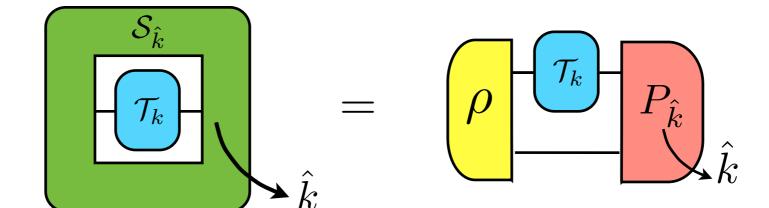
preprocessing channel



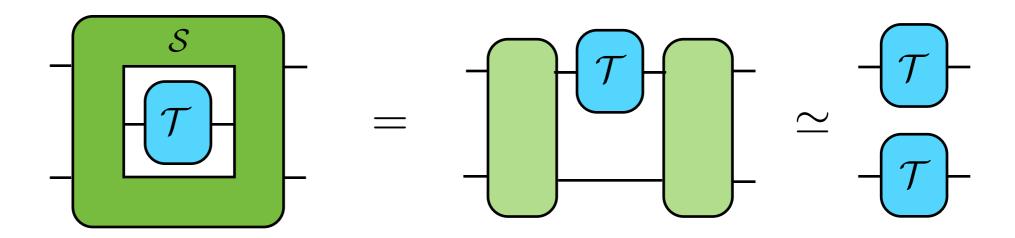




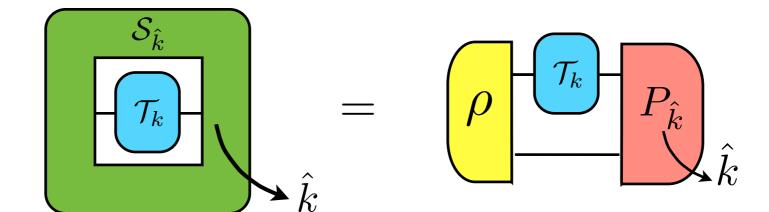
channel estimation



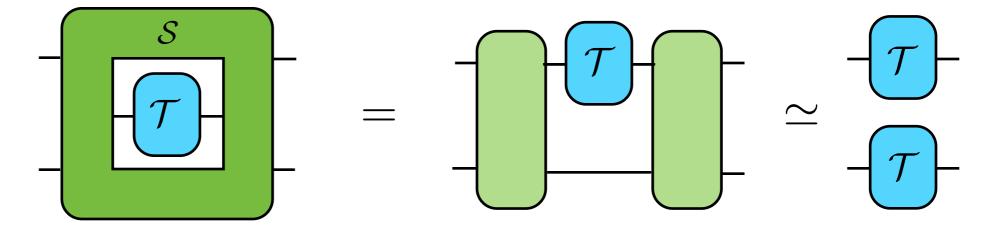
cloning



channel estimation



cloning



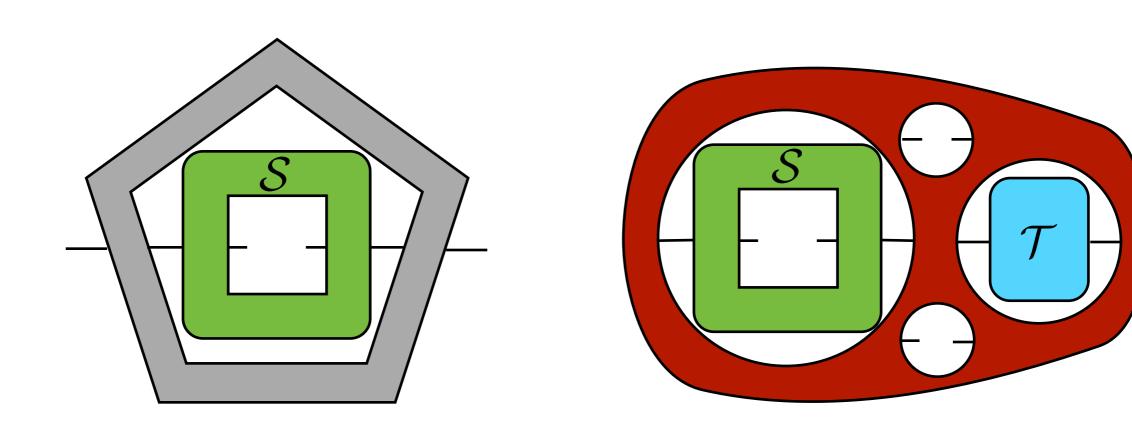
programmable channels

$$\sim$$
 \sim \sim \sim \sim

Transforming supermaps?

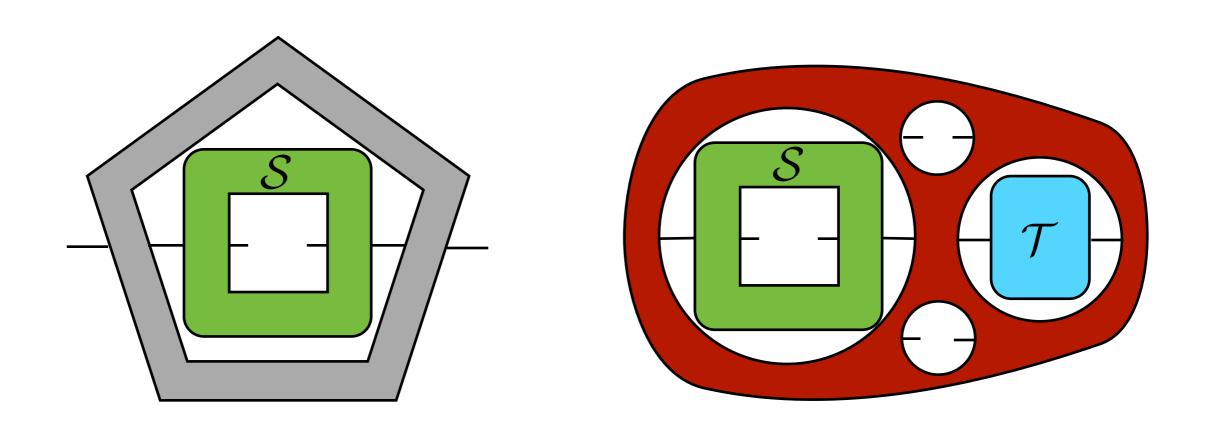
Transforming supermaps?

Higher Order Quantum Maps



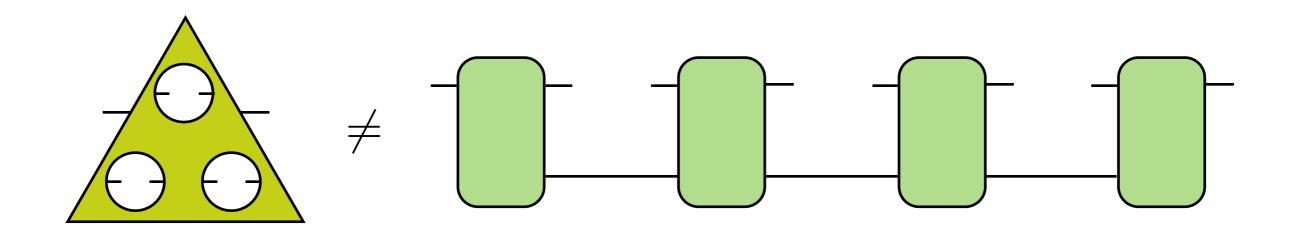
Transforming supermaps?

Higher Order Quantum Maps

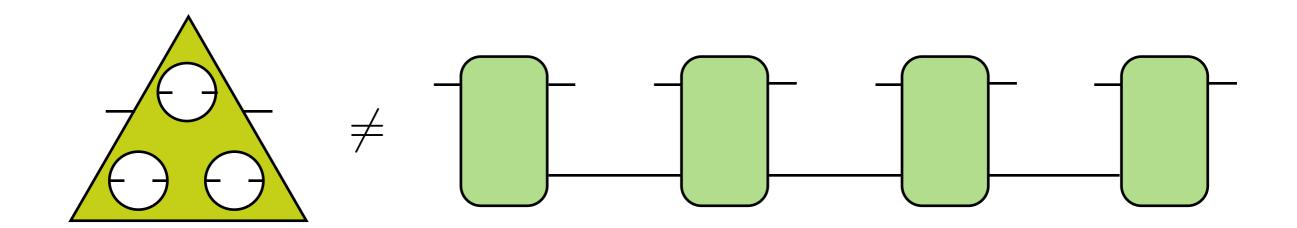


road to quantum lambda calculus...

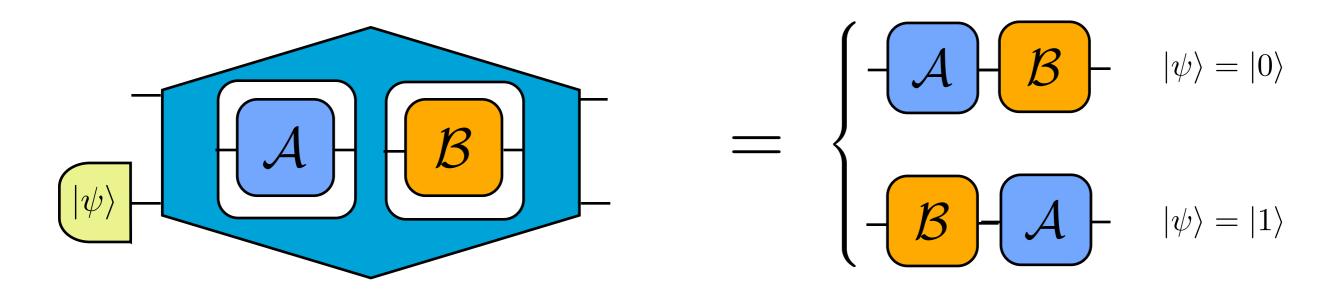
Not every higher order map is realizable as a quantum circuit

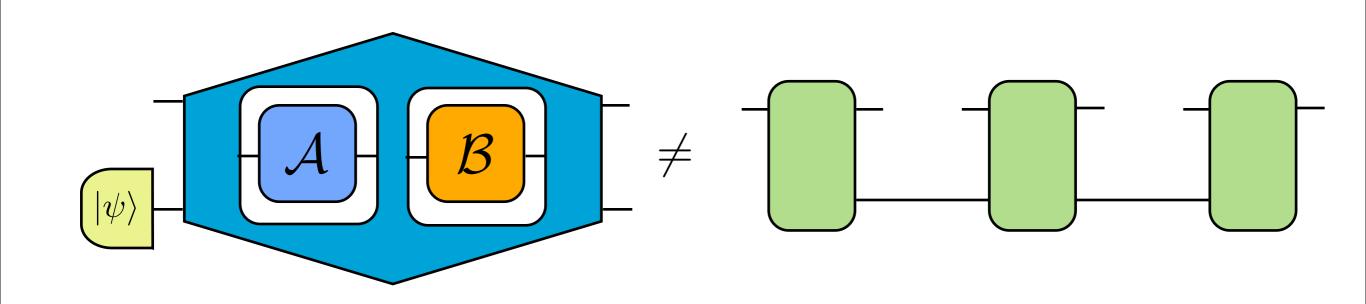


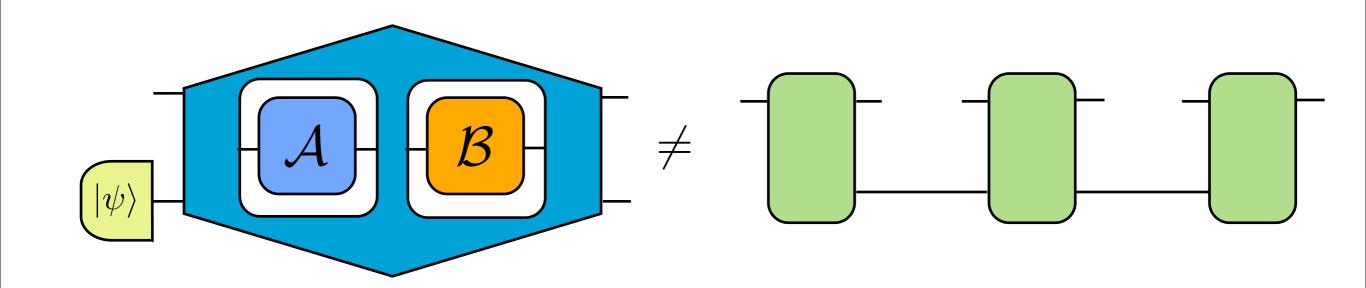
Not every higher order map is realizable as a quantum circuit

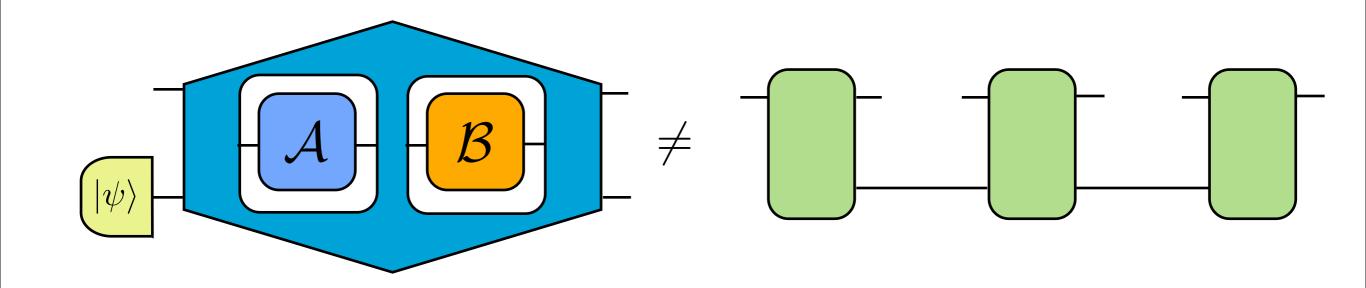


Example: Quantum Switch

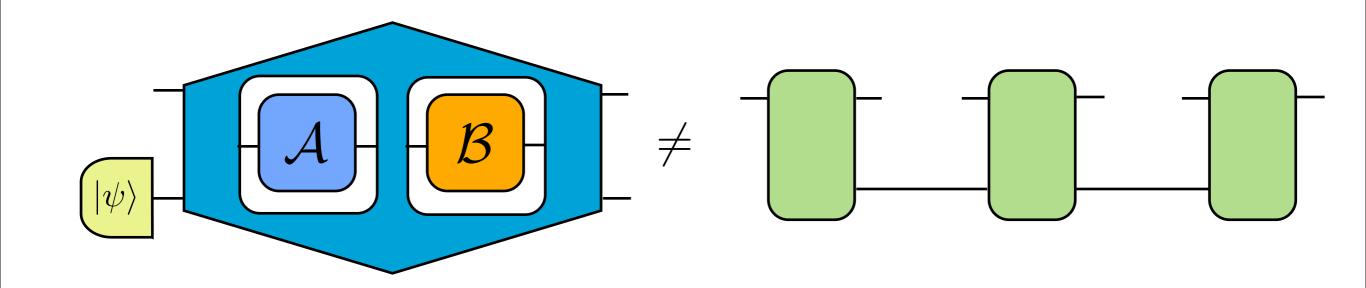








quantum circuit = probabilistic structure + causal order



Admissibility conditions \Rightarrow probabilistic structure Admissibility conditions \Rightarrow causal order

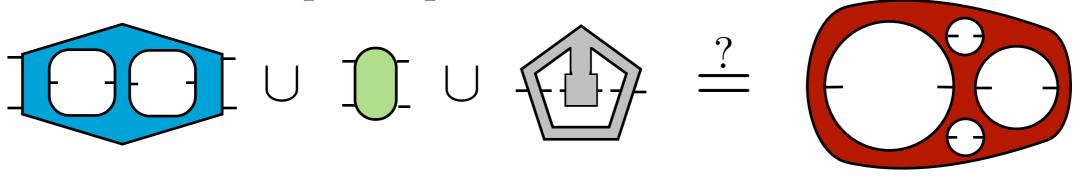
Application?

Discrimination of no-signalling channels, non local games...

Application?

Discrimination of no-signalling channels, non local games...

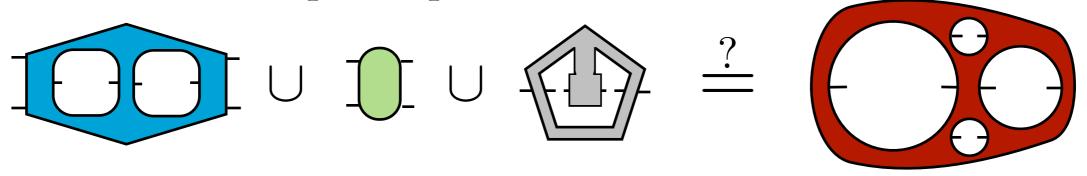
Universal set of supermaps?



Application?

Discrimination of no-signalling channels, non local games...

Universal set of supermaps?

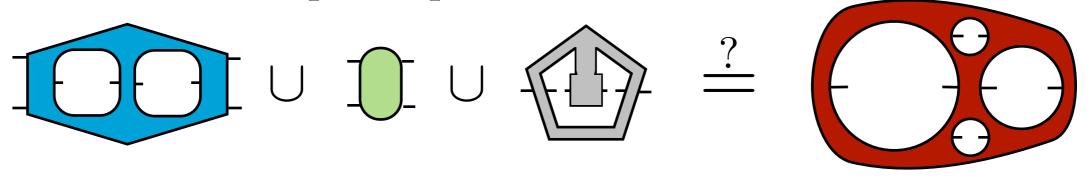


Equivalence of supermaps?

Application?

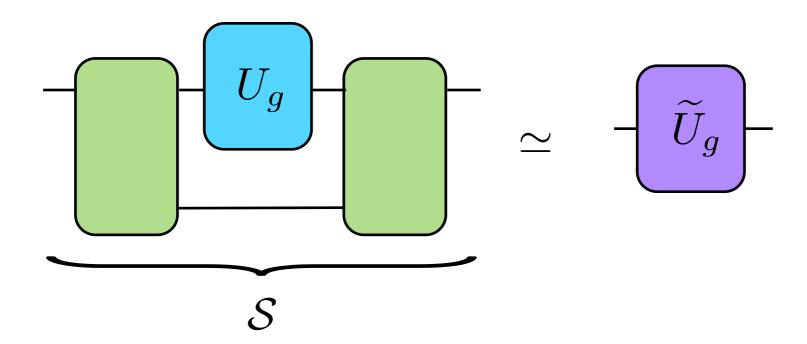
Discrimination of no-signalling channels, non local games...

Universal set of supermaps?

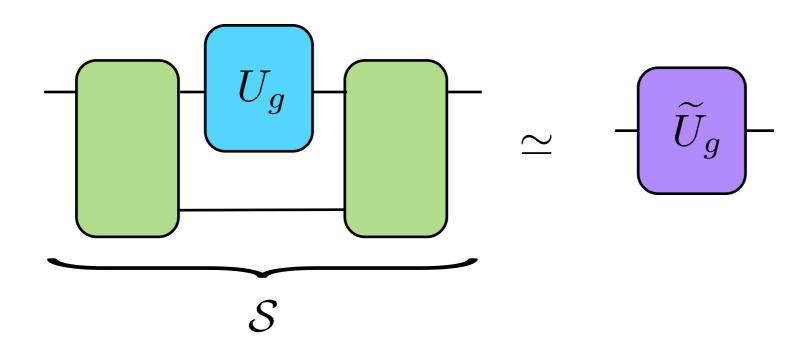


Equivalence of supermaps?

Physically realizable supermaps?

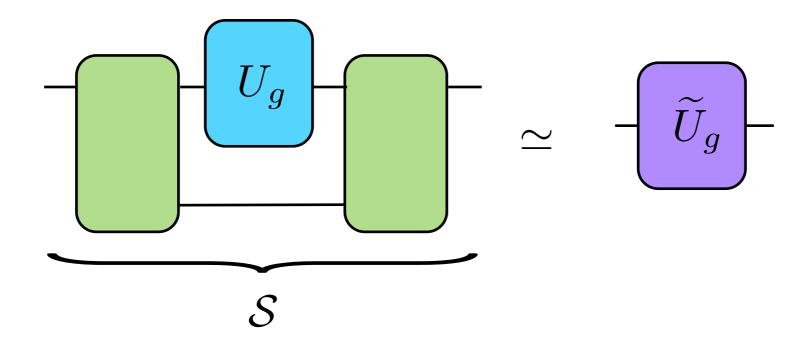


 U_g , U_g two different unitary representations of the group GWhich is the S that best achieves this task?



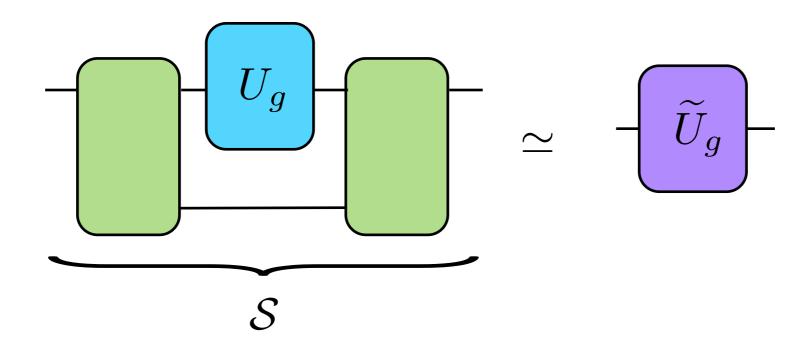
 U_g , \widetilde{U}_g two different unitary representations of the group G. Which is the S that best achieves this task?

criterion:
$$F = \int dg \, \mathcal{F}\left(\begin{array}{c} & & & \\$$



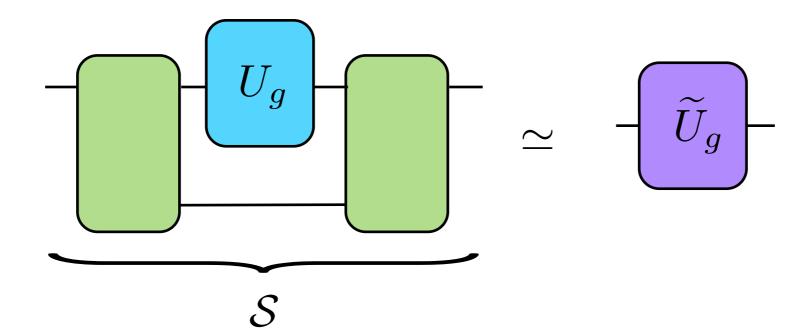
 U_g , U_g two different unitary representations of the group GWhich is the S that best achieves this task?

$$\mathcal{F}\left(- \mathcal{A} + \mathcal{B} - \mathcal{B} \right)$$



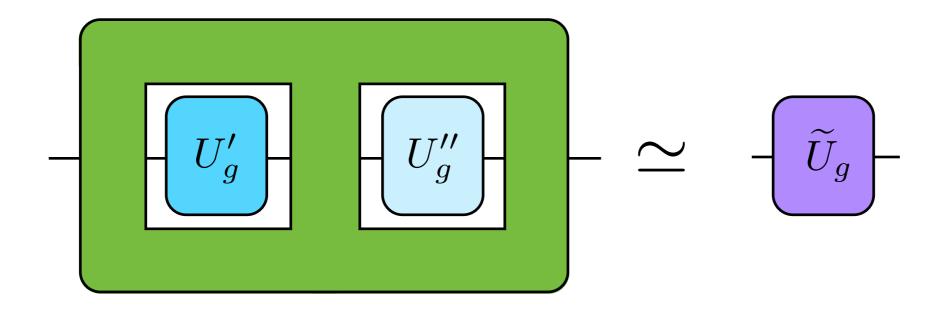
 U_g , U_g two different unitary representations of the group GWhich is the S that best achieves this task?

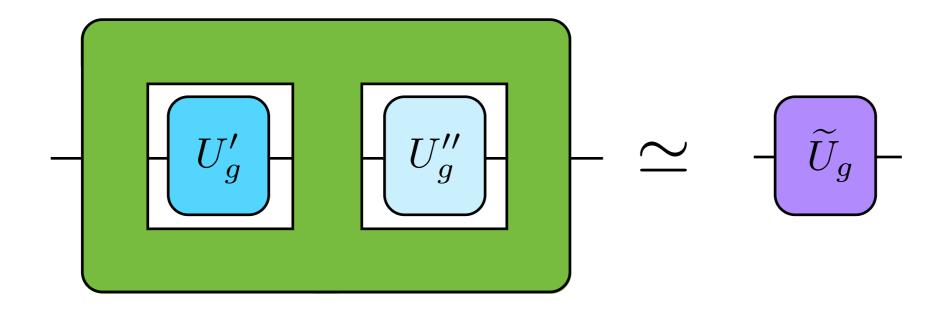
$$\mathcal{F}\left(\begin{array}{c} A \\ A \end{array}\right), \quad \mathcal{B} \longrightarrow \quad \mathcal{F}\left(\begin{array}{c} A \\ P \end{array}\right) \quad \mathcal{F}\left(\begin{array}{c} A \\ P \end{array}\right), \quad \mathcal{F}\left(\begin{array}{c} P \\ P \end{array}\right) \quad \text{is the state fidelity}$$



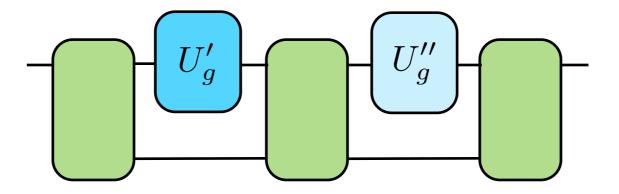
The task is very general, cloning is the case $U_g = U_g \otimes U_g$

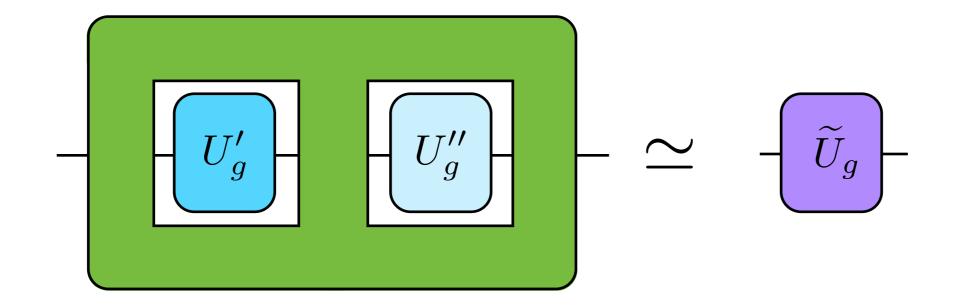
$$-\widetilde{U}_g$$
 U_g U_g



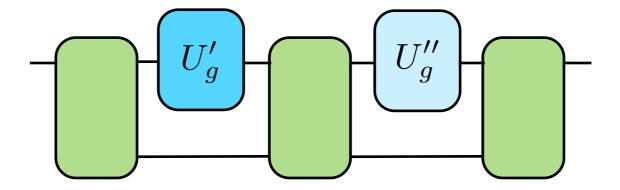


We should consider sequential strategies

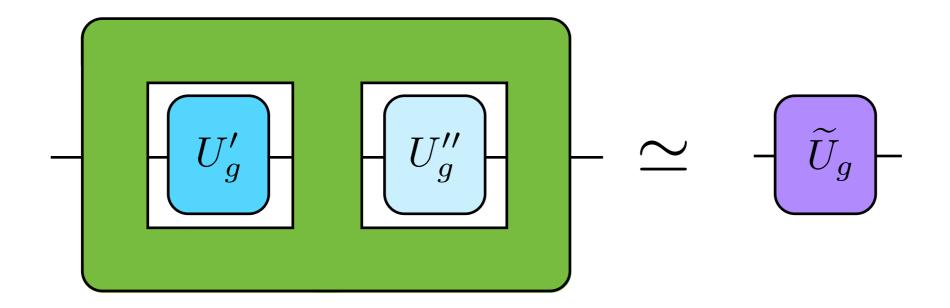




We should consider sequential strategies

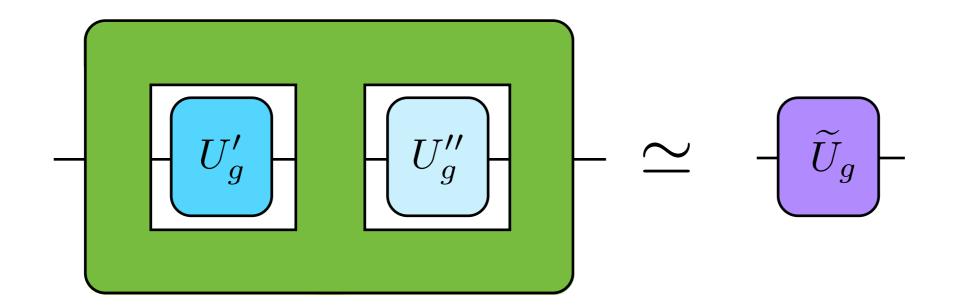


and even non circuital supermaps (e.g. switch).

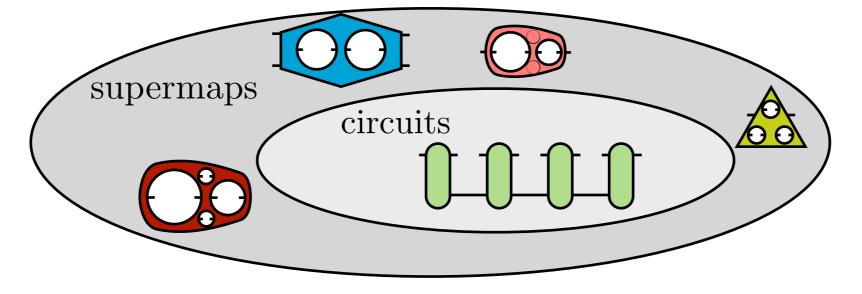


We should consider sequential strategies

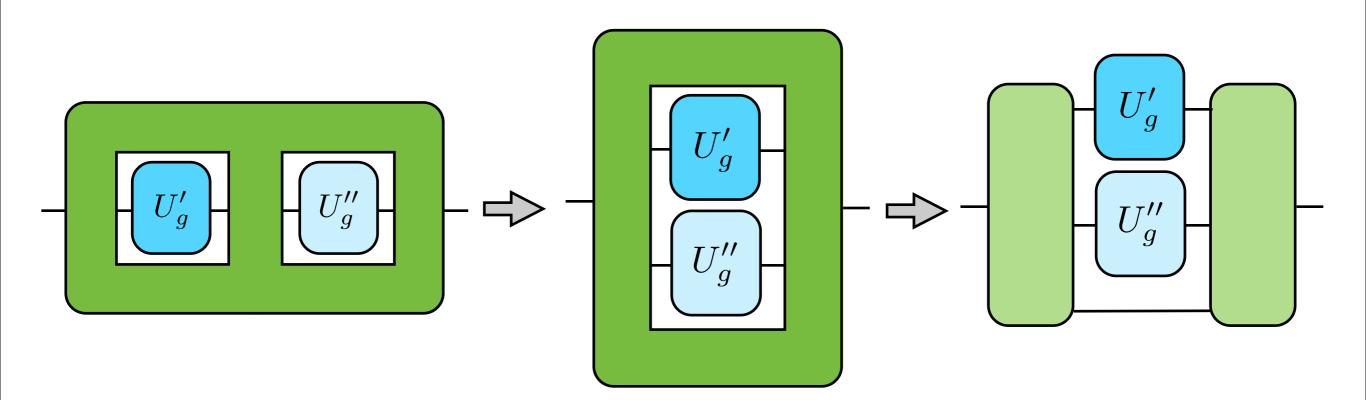
and even non circuital supermaps (e.g. switch).

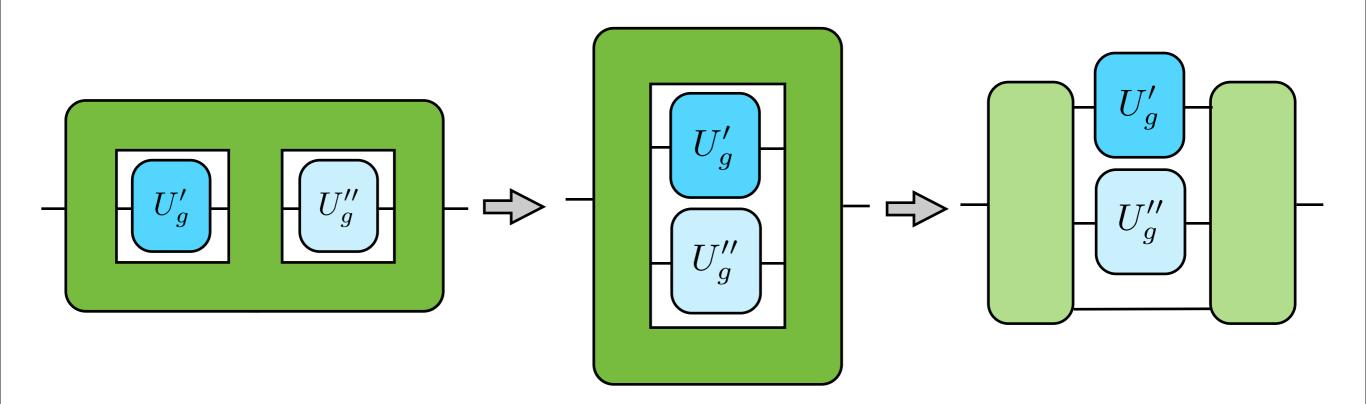


We should consider sequential strategies and even non circuital supermaps (e.g. switch).



Where do we find the optimal supermap?

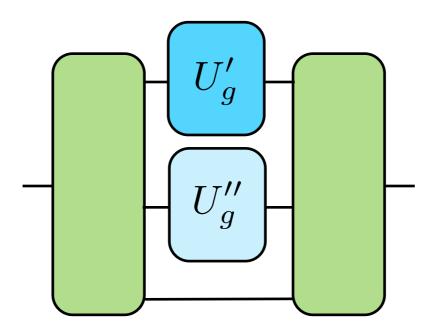




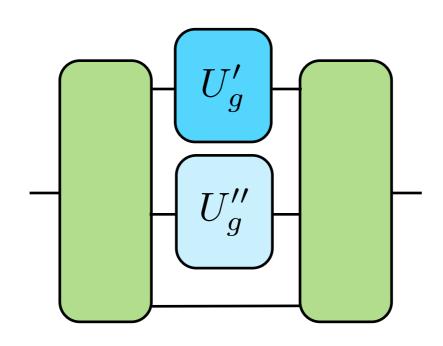
The optimal supermap is realizable as a quantum circuit

The optimal supermap is realizable as a quantum circuit

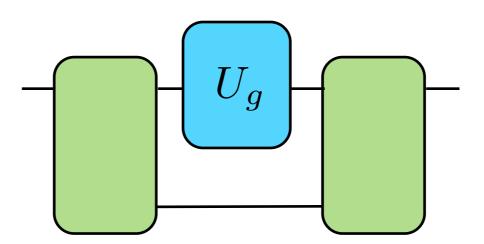
The optimal supermap is realizable as a quantum circuit

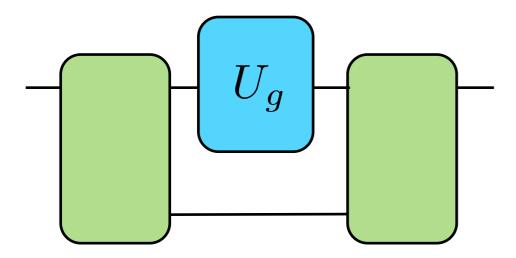


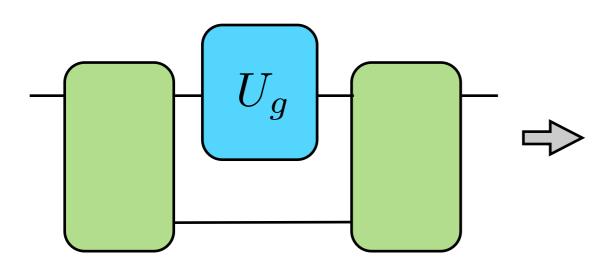
The optimal supermap is realizable as a quantum circuit By setting $U_g = U_g' \otimes U_g''$ we go back to the single use case



The optimal supermap is realizable as a quantum circuit By setting $U_g = U_g' \otimes U_g''$ we go back to the single use case







we can reduce the problem to a set of equations:

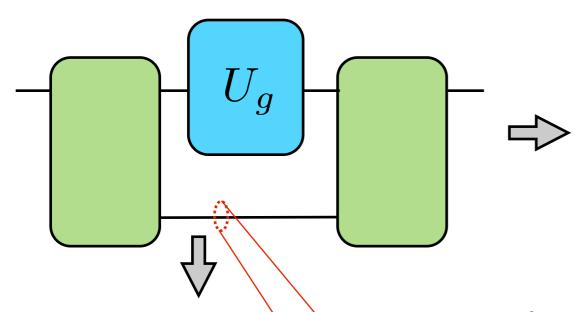
$$F = \max_{P_{K,a}} \sum_{K} \left(\sum_{a} \sqrt{Q_{K,a} P_{K,a}} \right)^{2} \sum_{K} P_{K,a} = 1$$

where:

$$Q_{K,a} = \frac{m_a d_a}{d_K} \sum_j m_K^{j,a} d_j$$

$$U_g = \bigoplus_j U_g^{(j)} \qquad \widetilde{U}_g = \bigoplus_a U_g^{(a)} \otimes I_{m_a}$$

$$U_g^{(j)} \otimes U_g^{(a)} = \bigoplus_j U_g^{(K)} \otimes I_{m_K^{j,a}}$$



we can upper bound the amount of quantum memory:

we can reduce the problem to a set of equations:

$$F = \max_{P_{K,a}} \sum_{K} \left(\sum_{a} \sqrt{Q_{K,a} P_{K,a}} \right)^{2} \sum_{K} P_{K,a} = 1$$

where:

$$Q_{K,a} = \frac{m_a d_a}{d_K} \sum_j m_K^{j,a} d_j$$

$$U_g = \bigoplus_j U_g^{(j)} \qquad \widetilde{U}_g = \bigoplus_a U_g^{(a)} \otimes I_{m_a}$$

$$U_g^{(j)} \otimes U_g^{(a)} = \bigoplus_j U_g^{(K)} \otimes I_{m_K^{j,a}}$$

$$\dim \mathcal{M}_q \leq \max_K m_k$$
where: $m_K = \sum_{a,j} m_K^{j,a} m_a$

$$\mathcal{M}_q$$
Classical memory
$$\mathcal{M}_q$$
Quantum memory

We cannot provide an explicit solution that works for any U_g and U_g

We cannot provide an explicit solution that works for any U_g and U_g However, once U_g and \widetilde{U}_g are fixed, one can work out the solution

We cannot provide an explicit solution that works for any U_g and U_g However, once U_g and \widetilde{U}_g are fixed, one can work out the solution

Cloning of a phase gate:

$$U_g|0\rangle = |0\rangle$$
 $U_g|1\rangle = e^{ig}|1\rangle$ $0 \le g < 2\pi$

$$U_g$$

$$U_g$$

$$U_g$$

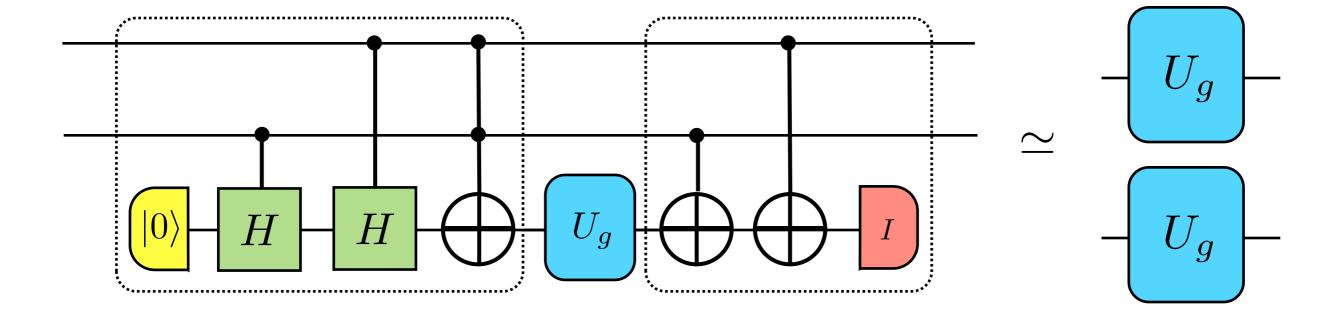
$$U_g$$

$$U_g$$

We cannot provide an explicit solution that works for any U_g and U_g . However, once U_g and \widetilde{U}_g are fixed, one can work out the solution

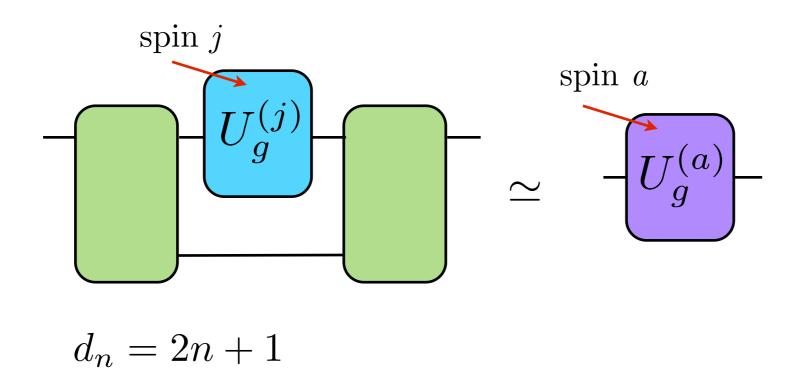
Cloning of a phase gate:

$$U_g|0\rangle = |0\rangle$$
 $U_g|1\rangle = e^{ig}|1\rangle$ $0 \le g < 2\pi$



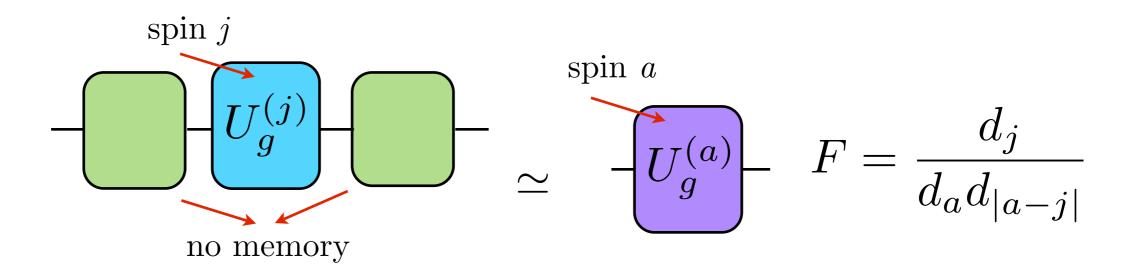
We cannot provide an explicit solution that works for any U_g and U_g . However, once U_g and \widetilde{U}_g are fixed, one can work out the solution

U_g, U_g are SU(2) irreducible representations



We cannot provide an explicit solution that works for any U_g and U_g However, once U_q and \widetilde{U}_q are fixed, one can work out the solution

U_g, \tilde{U}_g are SU(2) irreducible representations

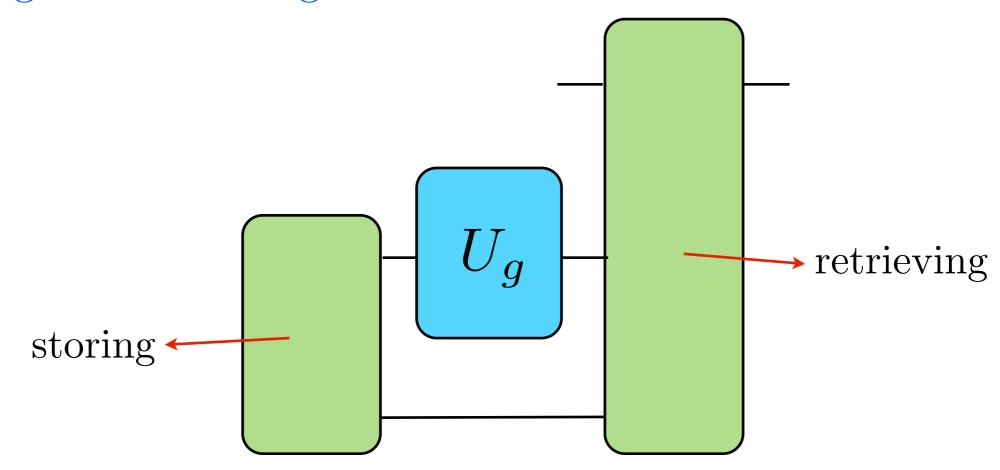


$$d_n = 2n + 1$$

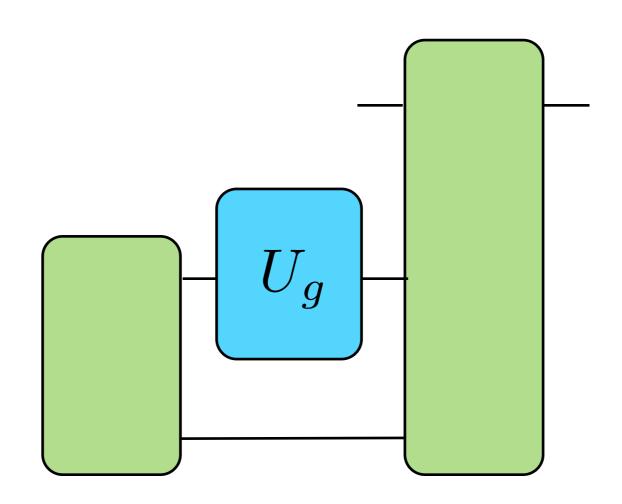
A different scenario

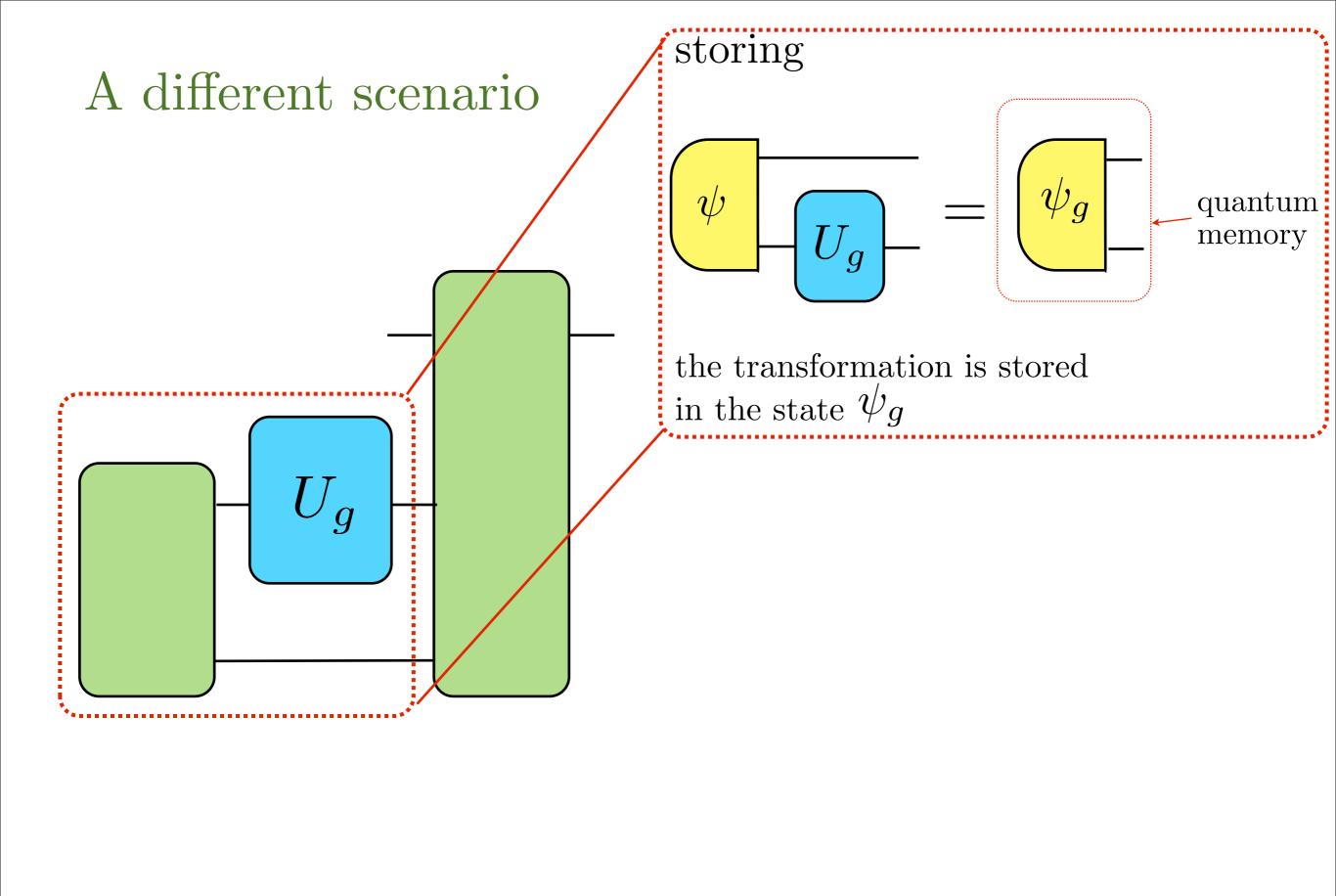
Another possible way to achieve the mapping $-U_g$ - \longrightarrow - \widetilde{U}_g is provided by the following scheme:

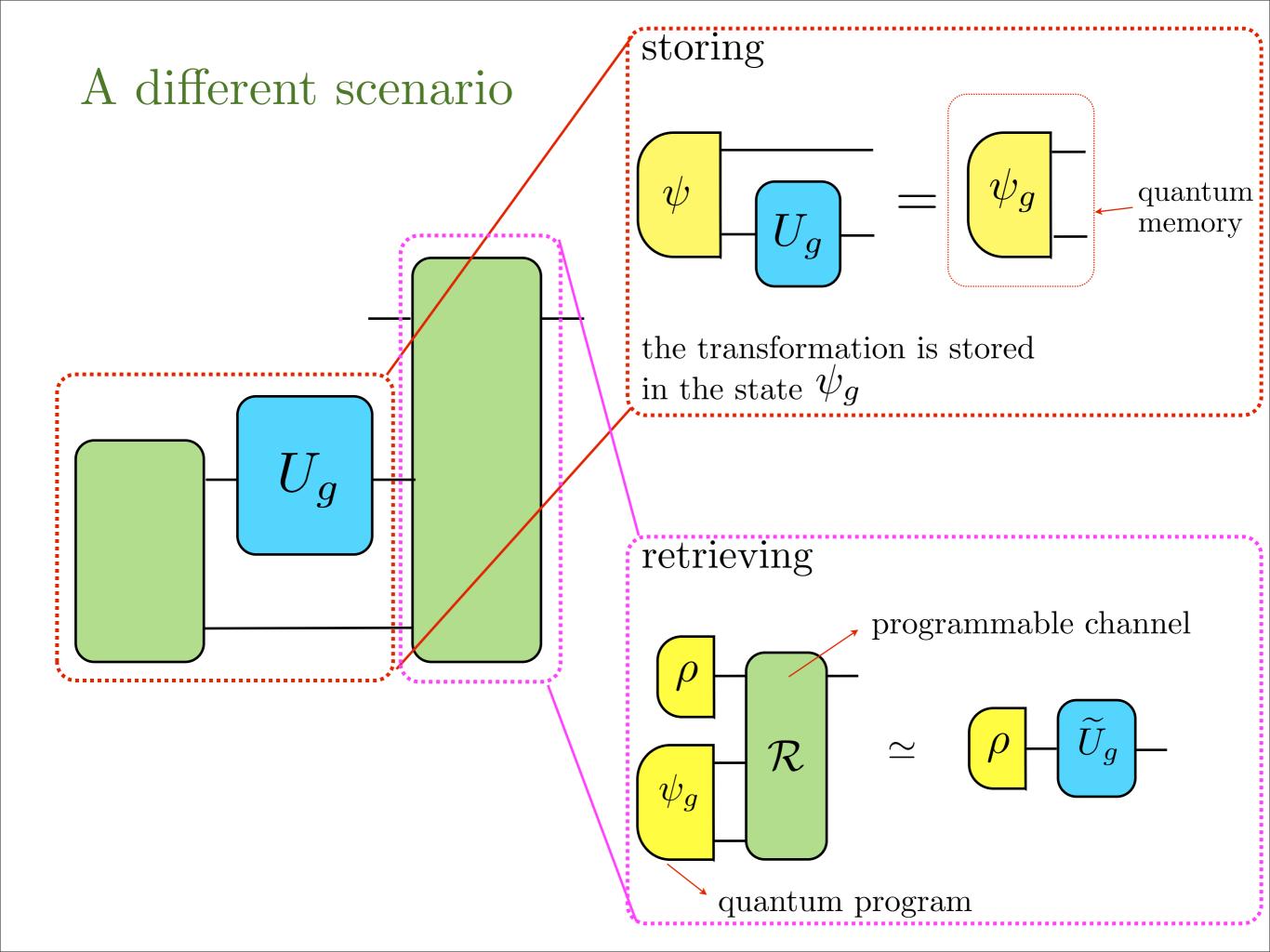
Storing and retrieving



A different scenario

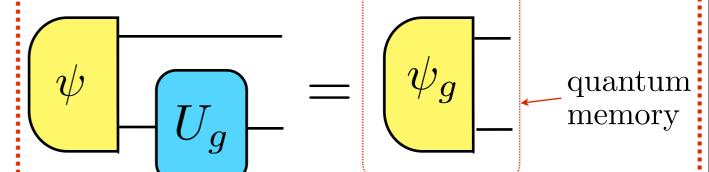




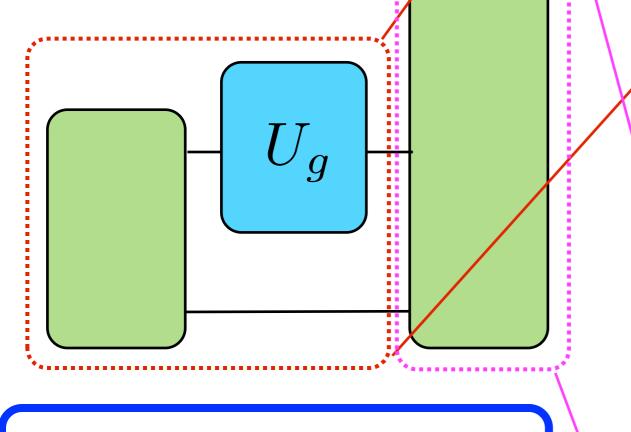


A different scenario

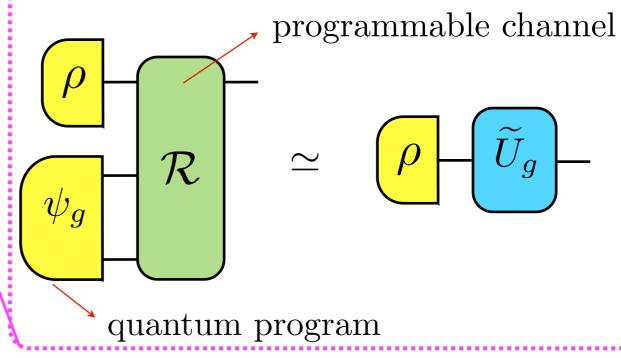
storing



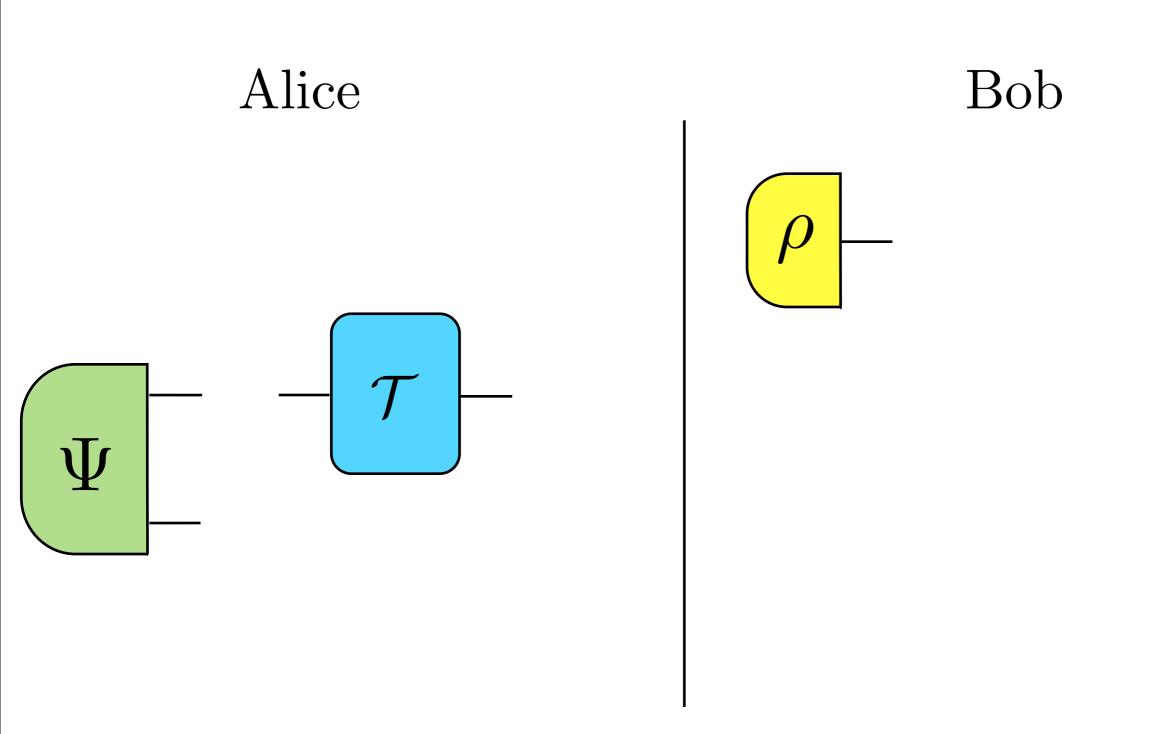
the transformation is stored in the state ψ_g

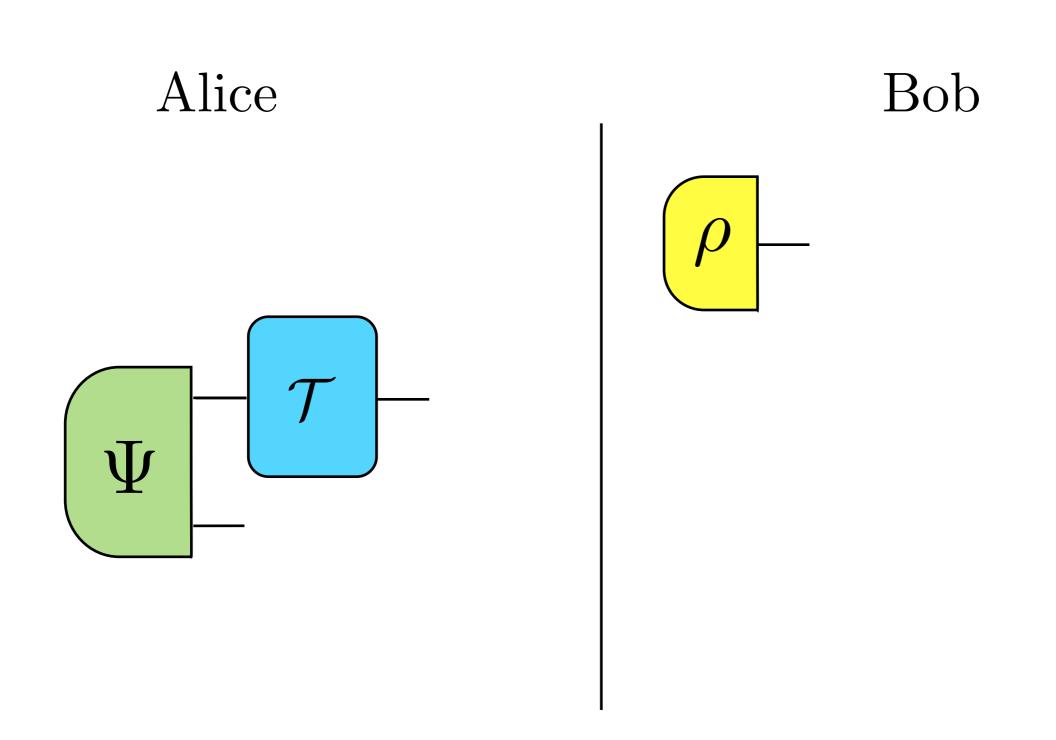


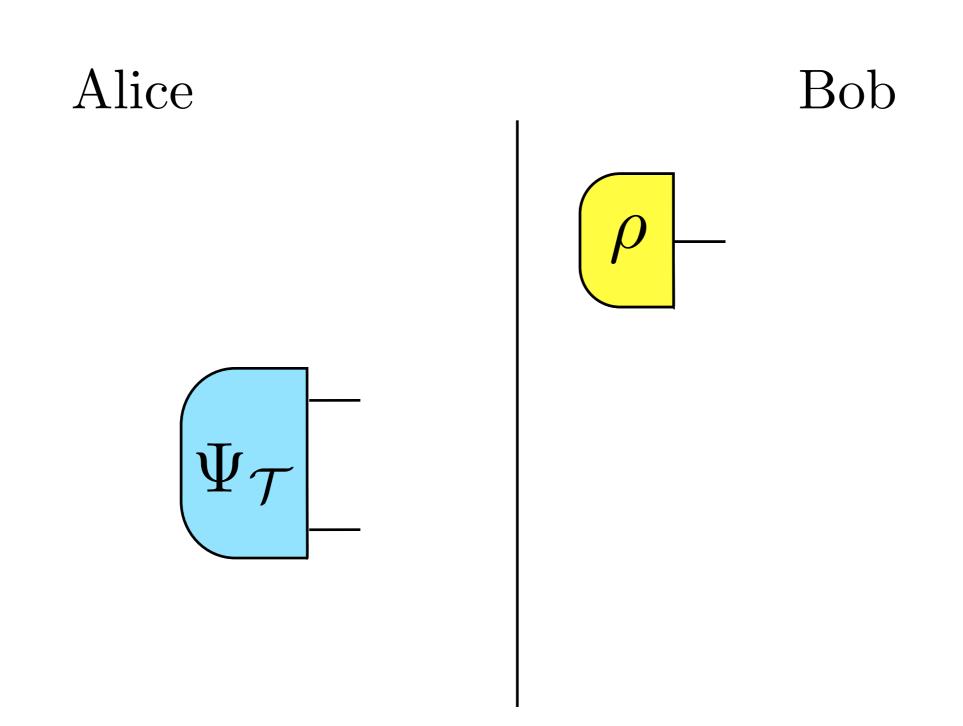
retrieving



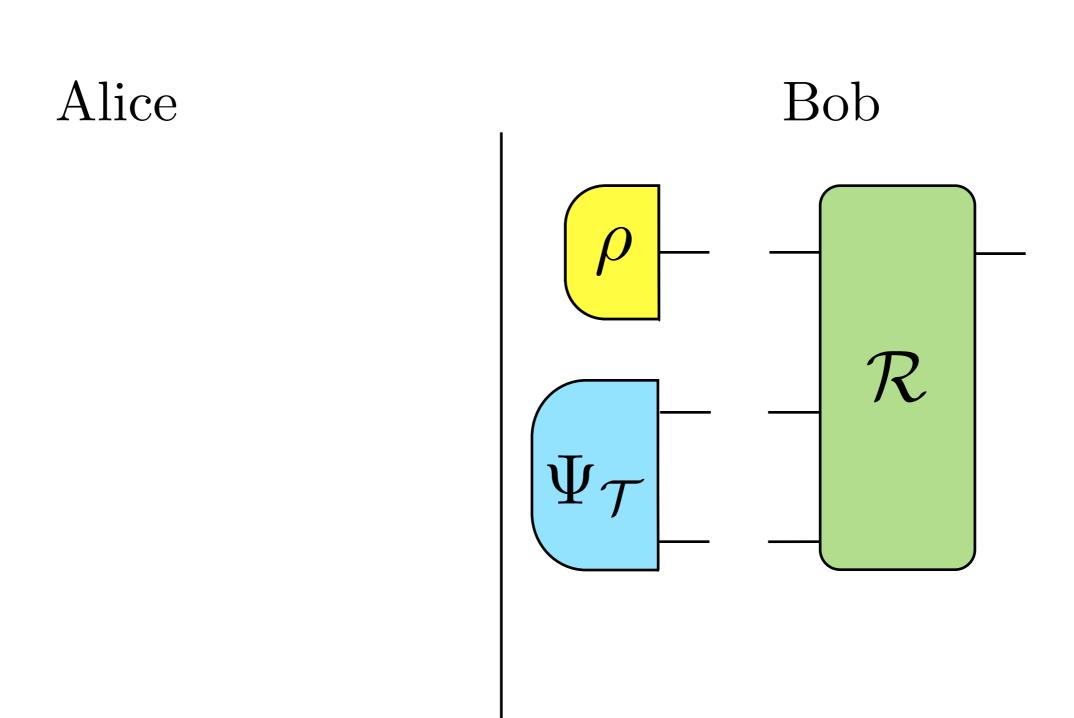
The case $-\widetilde{U}_g$ = $-U_g$ is not trivial (no programming)



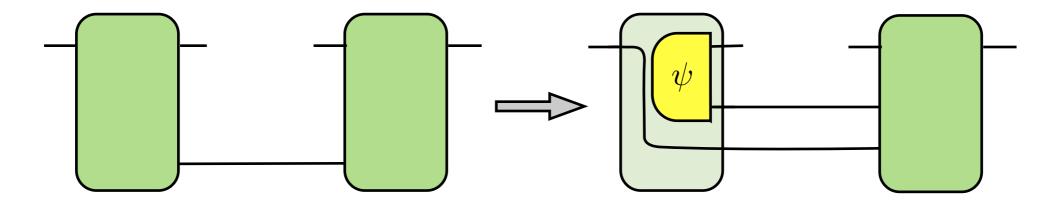


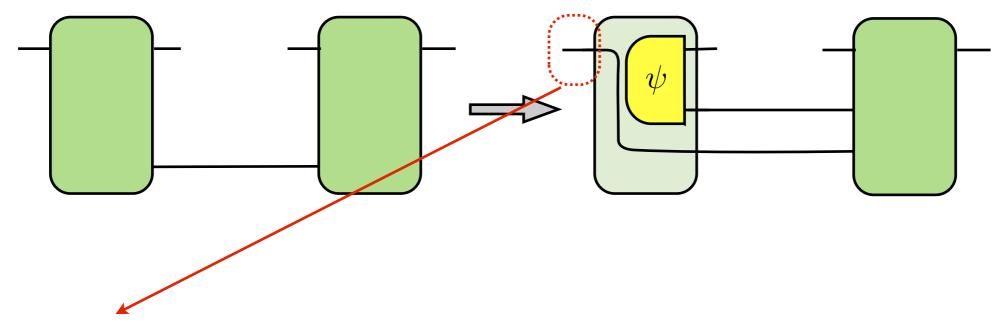


Alice Bob

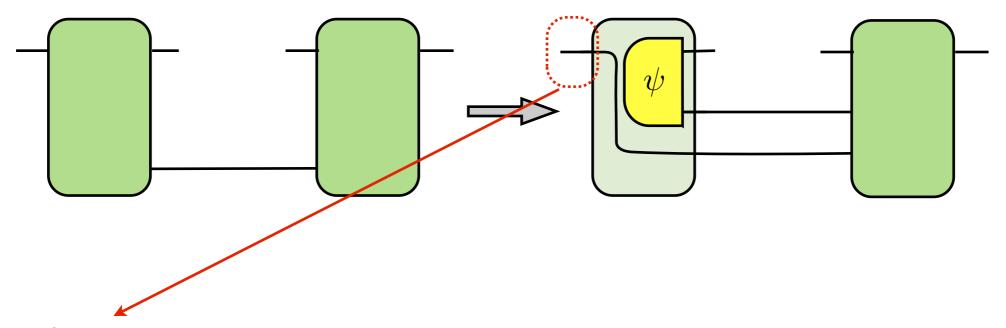


Alice Bob $\mathcal{T}(\rho)$



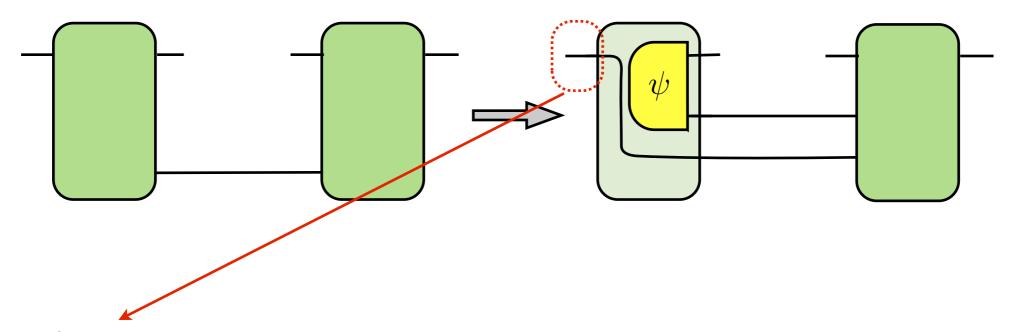


In the s&r scenario we cannot process the input state before using the unknown unitary



In the s&r scenario we cannot process the input state before using the unknown unitary

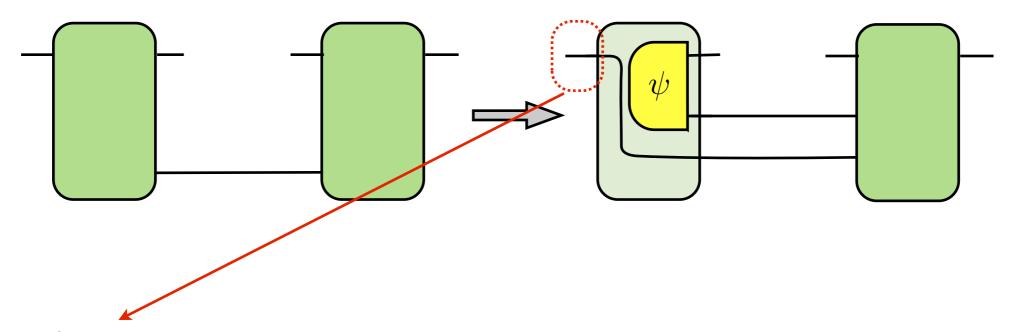
The input state and the use of the unitary are not available at the same time



In the s&r scenario we cannot process the input state before using the unknown unitary

The input state and the use of the unitary are not available at the same time

More restrictive causal structure



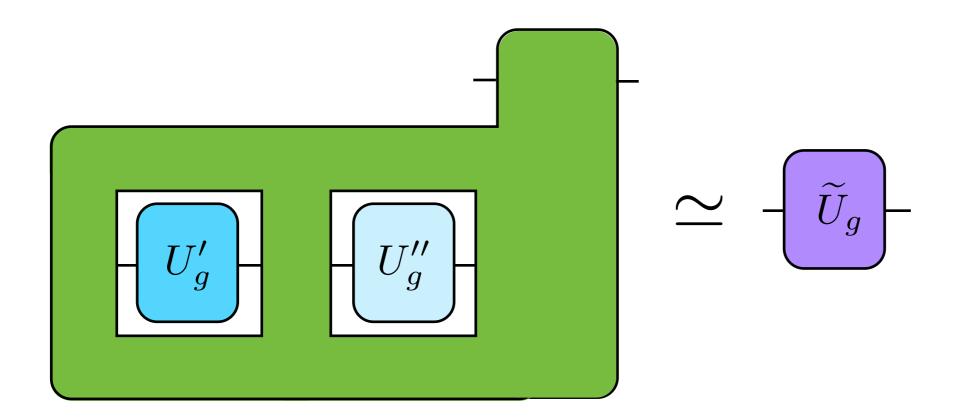
In the s&r scenario we cannot process the input state before using the unknown unitary

The input state and the use of the unitary are not available at the same time

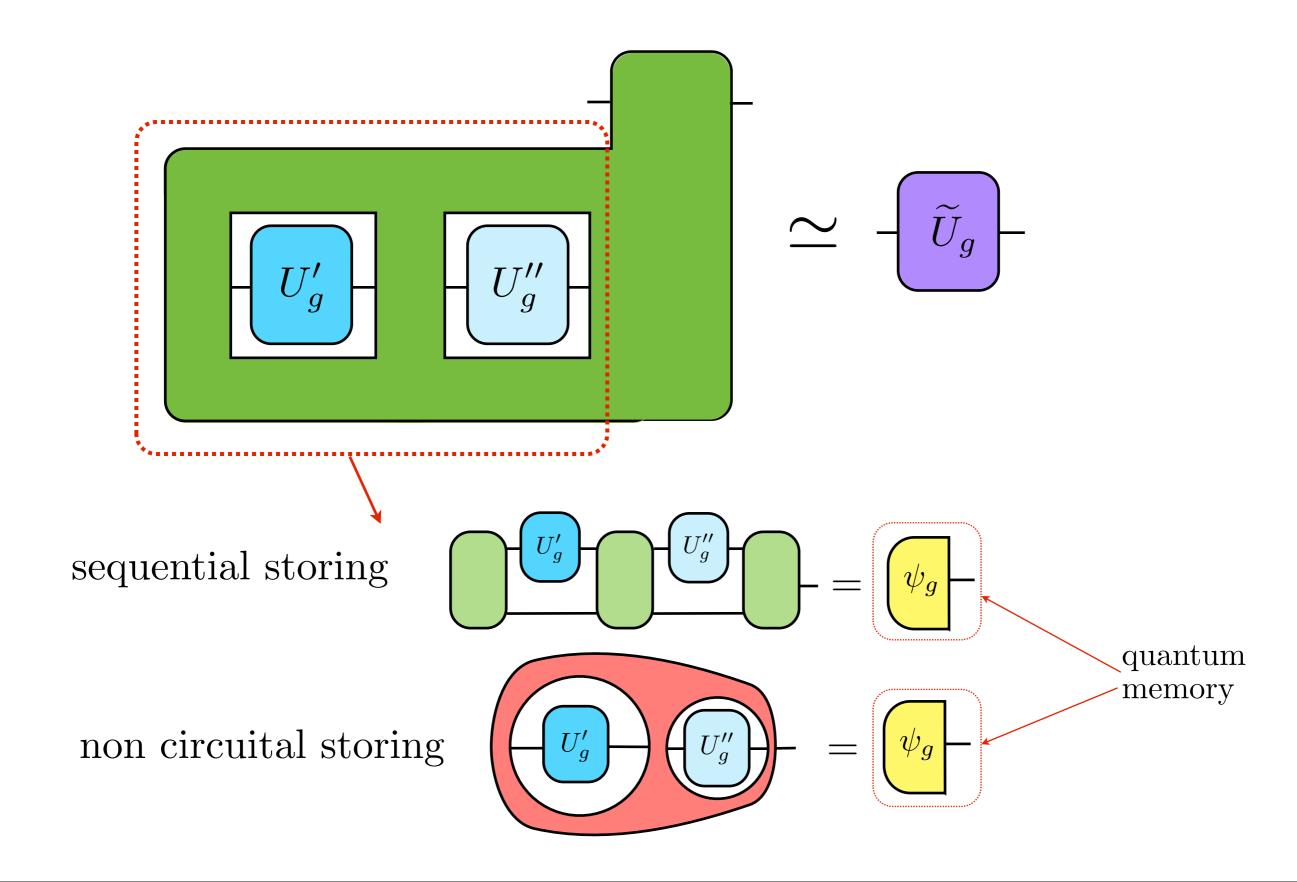
More restrictive causal structure

Lower performances

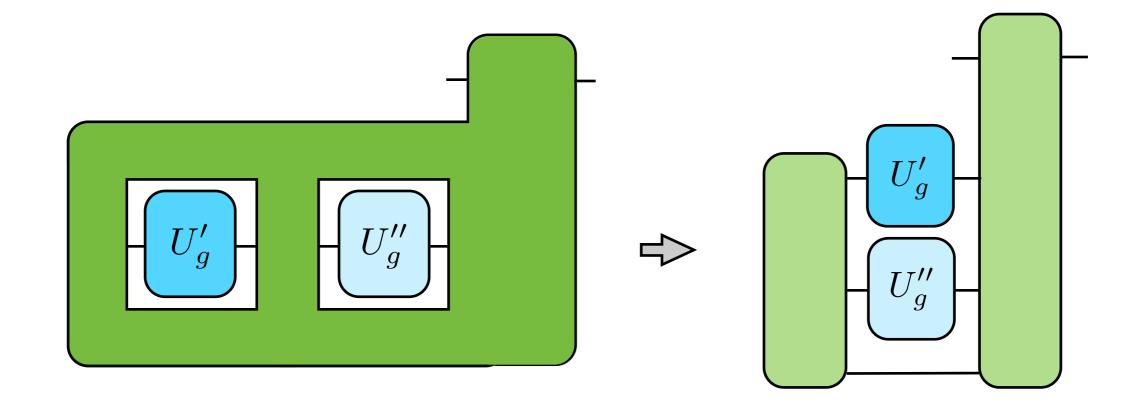
Many uses:



Many uses:

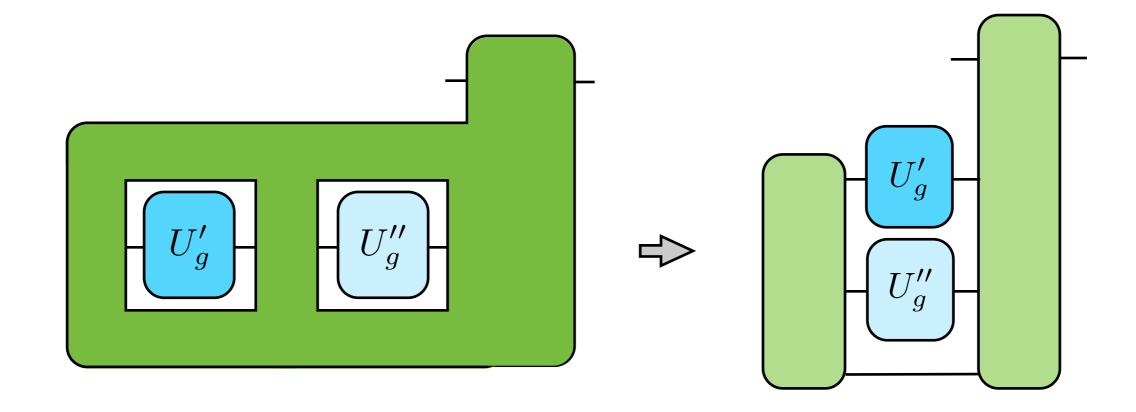


Optimal storing



The optimal storing is parallel

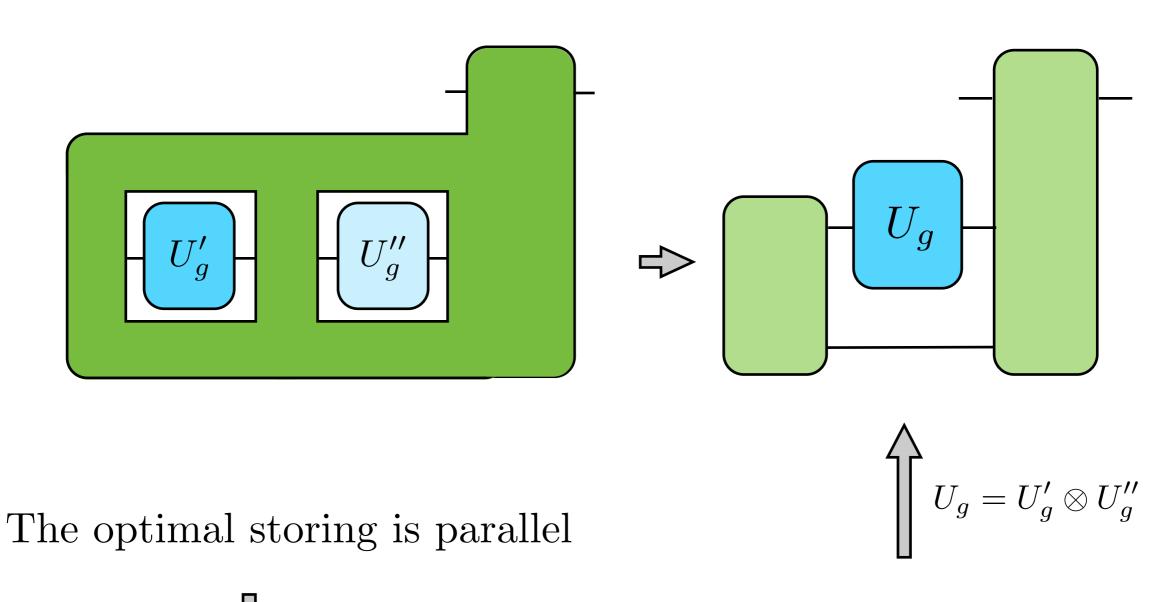
Optimal storing



The optimal storing is parallel

it is a quantum circuit

Optimal storing

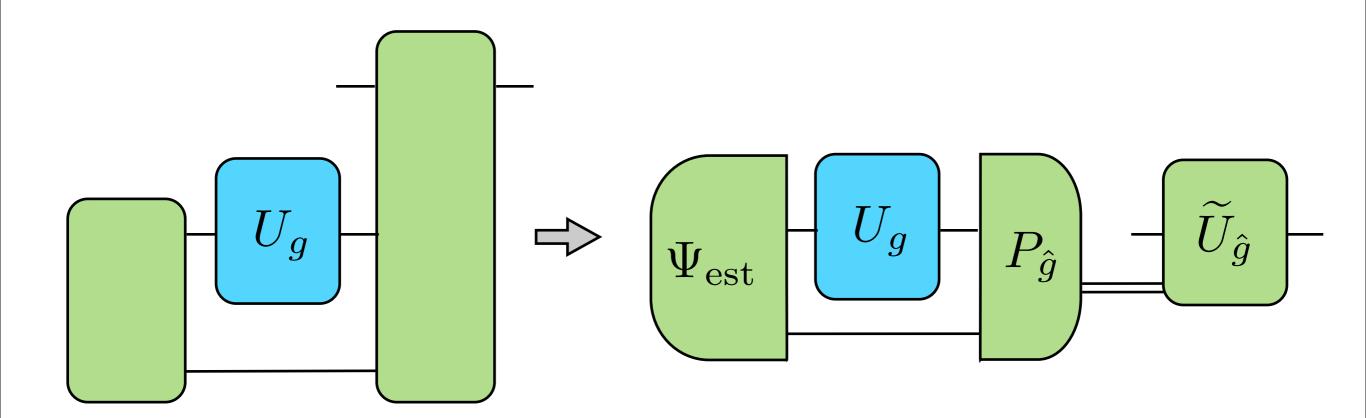


single use case

it is a quantum circuit

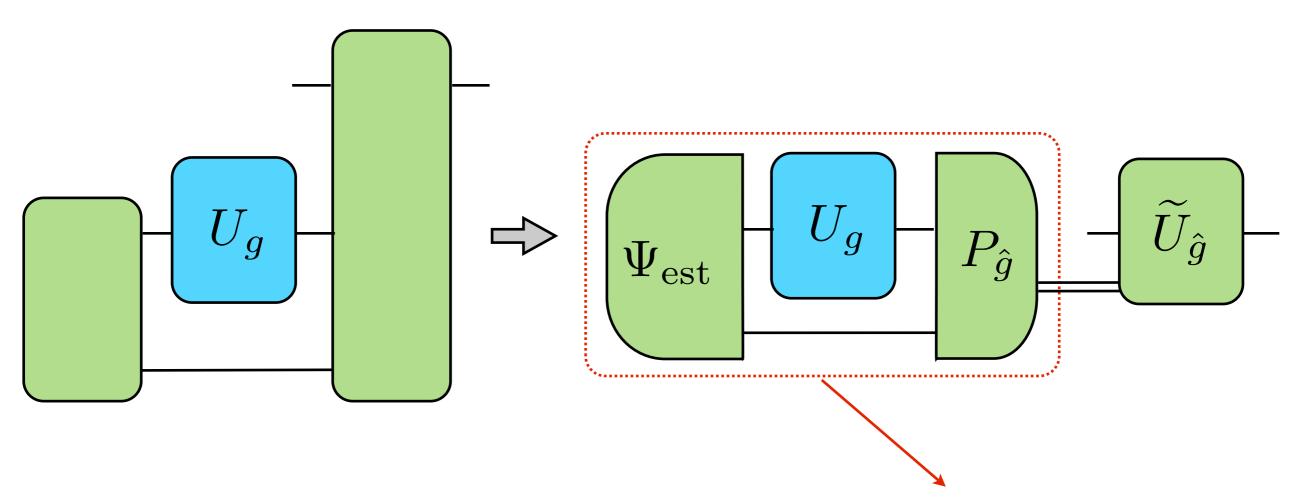
Optimal storing and retrieving

Measure and prepare



Optimal storing and retrieving

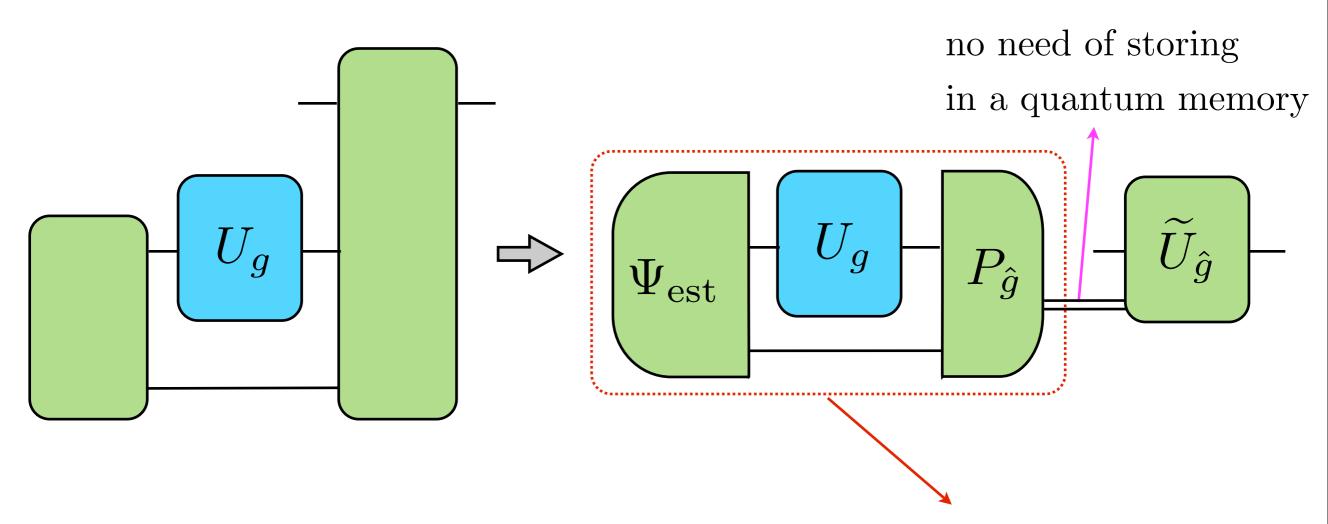
Measure and prepare



Optimal storing and retrieving \iff Optimal estimation

Optimal storing and retrieving

Measure and prepare

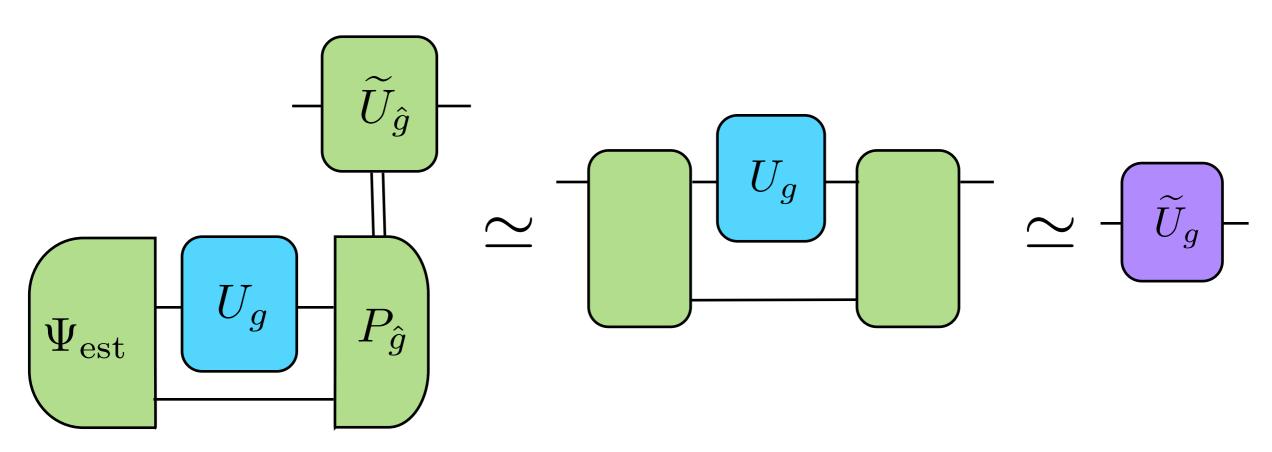


Optimal storing and retrieving \iff Optimal estimation

Comparing the two scenarios

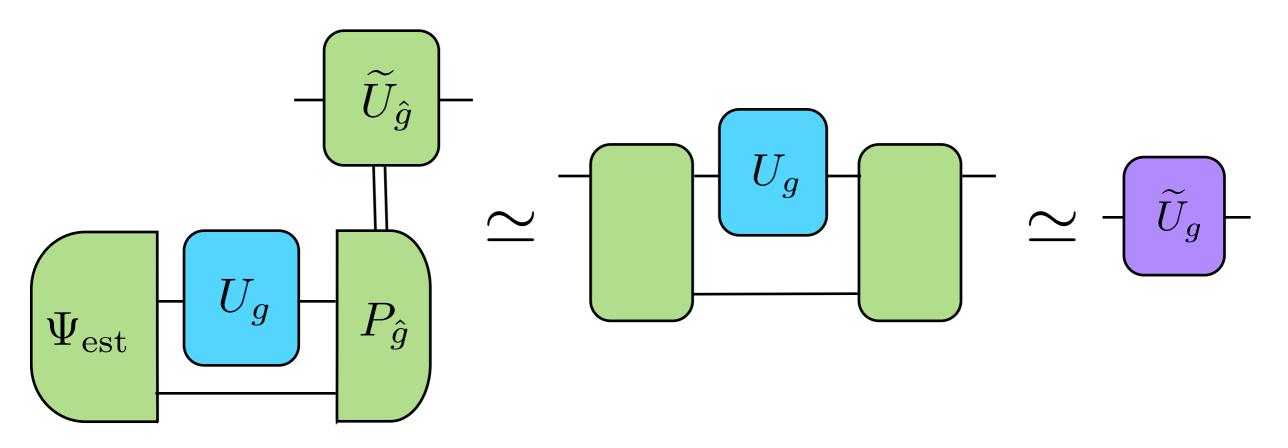
Comparing the two scenarios

When are the performances of the optimal measure and prepare close to the performances of the optimal pre- and postprocessing?



Comparing the two scenarios

When are the performances of the optimal measure and prepare close to the performances of the optimal pre- and postprocessing?



Intuitive answer: when U_g and U_g are "far apart"

 U_g and \widetilde{U}_g are "far apart"

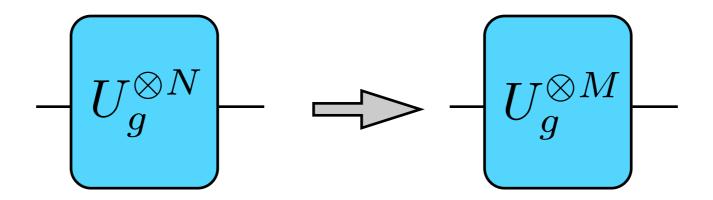
 U_g and \widetilde{U}_g are "far apart"

very vague statement

Let us consider a more specific context:

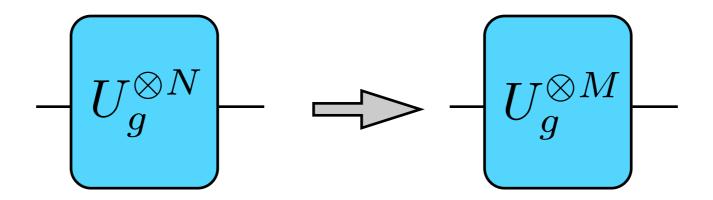
Let us consider a more specific context:

N to M cloning of unitaries



Let us consider a more specific context:

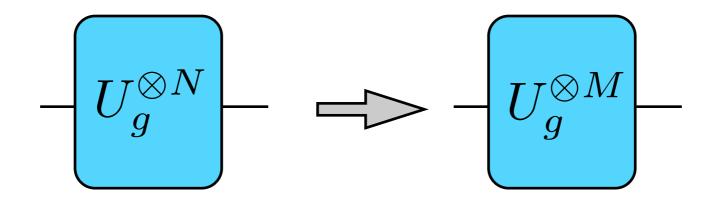
N to M cloning of unitaries



conjecture: when $M \to +\infty$ optimal cloning of unitaries is measure and prepare (scaling?).

Let us consider a more specific context:

N to M cloning of unitaries



conjecture: when $M \to +\infty$ optimal cloning of unitaries is measure and prepare (scaling?).

Can we apply what we learned from states?

Thank you