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We should consider sequential strategies
and even non circuital supermaps (e.g. switch).

Where do we find the optimal supermap?

supermaps
circuits
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We cannot provide an explicit solution that works for any Ug
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A different scenario

Another possible way to achieve the mapping eUgUg

is provided by the following scheme:
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In the s&r scenario we cannot process the input state
before using the unknown unitary

The input state and the use of the unitary are not 
available at the same time

More restrictive causal structure

Lower performances
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eUĝ



Optimal storing and retrieving

Measure and prepare

Optimal storing and retrieving Optimal estimation

no need of storing
in a quantum memory
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Ug eUgand are “far apart” very vague statement

Let us consider a more specific context:

N to M cloning of unitaries

U⌦N
g U⌦M

g

conjecture: when M ! +1 optimal cloning of unitaries is
measure and prepare (scaling?).

Can we apply what we learned from states?



Thank you


