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Quantum limits to the detection of weak signals?  
 
Motivation: 
 
Deals with fundamental quantum concepts: quantum statistics, 
uncertainty relations, nonclassical light…. 
 
Has practical applications: accuracy or real experiments 
 
Easy to be introduced: basic quantum physics/optics 
 
Richer than it seems at first sight 



Task: detecting a weak signal  χ  over background noise  
 
Practical example: an alien send us a message……. 

Even if all technical noise is suppressed…. quantum noise will remain  

Detection if signal > noise 

signal 

quantum noise 



Since quantum noise cannot be removed, seemingly quantum fluctuations 
will impose a threshold to the minimum signal that can be detected  

In this talk we address the following points: 
 
P  Are there quantum limits to the detection of weak signals? 

P  How can they be reached? 

P  Might be eventualy beaten? 

χ ≥ χmin

Δχ ≥ Δχmin = χmin

or equivalently a minimum uncertainty. 



LIGO = Laser Interferometer Gravitational-Wave Observatory 

Interferometers with 4 km arms lenght to detect the pass of gravitaional waves. The 
task is to detect lenght changes of one-thounsand of the proton diameter (10-18 m), 
so quantum noise is a practical matter. 



LISA = Laser Interferometer Space Antenna 

Interfermeter made of three satellites separated 
5 million kilometers.  



Quantum Limits to Precision for Space Based Devices: Developing the Next  
Generation of Sensor, Detector and Gyroscope 
 
Our research and development focuses on exploring the limits of physical  
measurement in space based devices The quantum gravitational gradiometer  
based on an atom interferometer could potentially be used to discover unseen  
features such as caves below the surface of Mars, or lava tubes on the moon  
in a totally non-invasive fashion, without the need for drilling or impactors.  
Quantum limited interferometers for gravity wave sensing can operate at the  
same precision as LIGO but at dramatically reduced laser power.  



Very simple illustration: one-photon wave packet 
 
Measuring time/distances with a pulse of duration Δt made of frequencies in an 
spectral interval Δω 

Δt ≈ 1
Δω

ω=E

Δt 

ωΔ=Δ E Δt ≈ 
ΔE

Δω < ω ΔE < E Δt > 
E

If moreover 

Quantum domain, pulse of a single photon and Einstein relations 

Key ingredients to be repeated over an over again: 
 
� In general signals are encoded as time or phase 

� Quantum limits have to do with some uncertainty relation 

� Minimum uncertainty is inversely proportional to energy uncertainty 

� Maybe minimum uncertainty inversely proportional to mean energy. 

Time-energy uncertainty relation 



Universal signal detection scheme 

M → x

A probe is prepared in a known state experiencing a signal-dependent transformation. 
 
The state change is monitored measuring some observable M  
whose outputs x allow to estimate the value of the signal.  
 
The signal Χ takes a deterministic nonrandom value (but unknown) 
 
G = generator of the transformation 
Typically a time/phase change caused by free propagation 
G = n = number of photons = energy 



Practical implementation: Mach-Zehnder interferometer 

Signal = phase change   Χ=ωt 
 
 

G ≈ n = number of photons 
M = output intensities 

Probe = two-mode input state 

input  
beam splitter 

mirror 

mirror 

signal 

output  
beam splitter 



ΔM ≈ [M,G] χmin

M (χ ) = exp(−iχG)M exp(iχG) ≈ M + iχ[M,G]

Weak signal Χ<<1 

χmin ≈
ΔM
[M,G]

GΔ
=Δ=
2
1

minmin χχ
ΔMΔG ≥

1
2
[M,G]

!

The shift must be larger  
than the noise (uncertainty of M) 
 
Minimum signal that can be detected: 

 
 
 
 

Signal = shift of the measured observable M 

G,M[ ] χmin = M (χmin )−M (0) > ΔM



Quantum limit as consequence of uncertainty relations 
 
          Necessary condition [G,M]≠0 
 
Thus [M(X),M(0)]≠0,  unless 
 
ΔM(X)ΔM(0) > 0 and  Xmin = ΔXmin ≠ 0 

!

[G,M ]∝ I

M (χ ) ≈ M (0)+ iχ[M (0),G]

G,M[ ] χmin = M (χmin )−M (0) > ΔM



The measurement is repeated m times ( )mm xxx ,,1…


=

The total mean number of photons used N= m<n>   
<n> = mean number of photons of the probe 
 
Inference: estimating the signal and its uncertainty after the results obtained  
 
 
 
For example estimating the signal via maximum likelihood:      
     = the signal that maximizes the probability of the outcomes actually obtained 

χ
xm( )  

χ

A more rigorous approach: 
The final uncertainty ΔΧ depends on the data analysis 

Δ χ



Δχ
2 χ = χ

xm( )− χ#$ %&
2

xm

∑ P xm | χ( )

Typical estimation of uncertainty = mean squared error 
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for probes in pure states 

F= Fisher information     FQ = quantum Fisher information 

Bounded from below by the Cramér-Rao lower bound 
 
  For unbiased estimators  χ = χ

P xm | χ( ) probability of outcomes xm  
when the signal is X 

Δχ χ ≥
1

2 mΔG
The same result we obtained before 



Classical light: standard quantum limit 
  
Coherent state = Poissonian statistics 

Δn = n

Nonclassical light: Heisenberg limit  
 
Coherent superposition vacuum n=0 and number n=2<n> 

Δn = n >> n >>1

Δχ ≥
1

2 m n
<<

1
2 m n

ψ ∝ n = 0 + n = 2 n

n = 5

n = 5

n 

n 

G = n, Δχ ≥
1

2 mΔn
Typical case: 

probability 

probability 

Δχ ≥
1

2 m n



Δχmin ≈
1

2m n

Universally adopted as quantum limit, the best that can be done in any case 
 
Necessary conditions in typical approaches: 
 
i) All photons must be used in a single realization of the measurement m=1 
ii) The probe must be in a nonclassical state with Δn ~<n> 

Surprisingly without universally valid demonstration !!!???  

On what follows:  Discussion of four alternatives to the Heisenberg limit 

Minimum uncertainty given by the inverse of the total number of photons  
(or total energy) used in the detection process 

after  Δχ ≥ 1
2 mΔn



ALTERNATIVE TO HEISENBERG LIMIT NUMBER 1 
 
Typically uncertainty  Δ  is assessed via variance. But this is not the only possibility  
nor the better behaved one, specially for non Gaussian statistics (all the previous  
examples) 

Other estimators of uncertainty 
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pj = probability distribution   q = parameter (arbitrary) q→1 Shannon entropy

Generalized entropy as a measure of quantum uncertainty  
M Portesi, A Plastino, Physica A 225, 412 (1996) 

TSALLIS ENTROPIES EXPONENTIAL OF RENYI ENTROPIES 



AMBIGUITY! 

The same state can be of maximum  
or minimum uncertainty depending  
on the q value. 
 
In the figure q=0.5,1,2,3 

Effect of fluctuation measures on the uncertainty relations between two observables: 
Different measures lead to opposite conclusions 
A.  Luis, Phys. Rev. A 84, 034101 (2011) 

On the connection between complementarity and uncertainty principles in the Mach-
Zehnder interferometric setting 
G. M. Bosyk, M. Portesi, F. Holik, and A. Plastino Phys. Scr. 87, 065002 (2013) 

Contradictory entropic joint uncertainty relations for complementary observables in two-
level systems, Alfredo Luis  arXiv:1306.5211 

Rq(σx)Rq(σy) Joint uncertainty for two complementary observables for a qubit 



NO UNCERTAINTY RELATIONS ??!!! 

For q=2 there is no position-momentum uncertainty relation 

0)()( 22 →pRxR

Physica A  387, 4800 (2008)  

Quantum limits arise from uncertainty relations?  



Alternative measures of uncertainty in quantum metrology: Contradictions and limits 
Alfredo Luis and Alfonso Rodil,  Phys. Rev. A 87, 034101 (2013) 

Contradictions between different q values 
 
No minimum signal for q<1/2 and α≈1-q 

Same mean energy in all cases 

dx P(x − χ )[ ]q − P(x)[ ]q( )
1/q

−∞

∞

∫ > threshold↔ χ>χmin ⎟
⎠
⎞⎜

⎝
⎛−

Γ
= α

α
γ

αγ
α /2exp

)/1(2
2)(
/1

xxP

sub-Heisenberg ! 

An attempt of application of Renyi measures in metrology 
 
Comparing the observed statistics before and after the signal. 
Establishing a threshold we obtain a minimum detectable signal. 

P(x), statistics 
α, γ = parameters 

q=1/2 

q=1/4 

Χmin 
q=2 



G∝n2→ΔG∝2 n Δn Δχ ∝
1

2 mΔG
∝

1
4 n mΔn

Δn = n

Δχ ∝
1

4 n m n
<<

1
2m n

if  n >>m

For example, if classical probe 

ALTERNATIVE TO HEISENBERG LIMIT NUMBER 2 
 
NONLINEAR OPTICS 

Classical light can do much better than the Heisenberg limit 

Nonlinear transformations and the Heisenberg limit  
A. Luis, Phys. Lett. A 329, 8 (2004)  



Experimental confirmation ICFO: 



http://sociedad.elpais.com/sociedad/2011/03/25/actualidad/1301007607_850215.html 

Press release:  
 
Heisenberg uncertainty principle is avoided…. 
….. without being denied  

Trick?  We still have                         for different G. But what matters Δχ ≥
1

2 mΔG
Δχ <<

1
2m n



More striking features of nonlinear detection schemes: 
 
Mixed classical probes can do much better than classical pure probes  
with the same <n> 
 
Mixed states have larger uncertainty than pure states? 
 
 
 
 
Precision Quantum Metrology and Nonclassicality in Linear and  
Nonlinear Detection Schemes  
Angel Rivas and Alfredo, Luis Phys. Rev. Lett. 105, 010403 (2010)  



ALTERNATIVE TO HEISENBERG LIMIT NUMBER 3 
 
Generator different from energy beyond nonlinear optics 
 
Signal not encoded as phase shift, but momentum shift of a free particle  
                                           p à p + χ

Generator = position operator 

 if p = 0, Δχ ≈ Δp ≈ energy
The lesser the energy the lesser the uncertainty  

Exactly the opposite of the Heisenberg limit 

pMpxG =∝≠= ,energy 2

Note that [M(X),M(0)]=0 since [G,M(0)]~I   Quantum Non-demolition detection 

Signal detection without finite-energy limits to quantum resolution 
A. Luis, Ann. Phys. 331, 1-8 (2013) 



Δχ ≥
1

2 mΔn
Uncertainty depends on Δn, not on <n> 

ψ = 1−ε n = 0 + ε n = n /ε

We can have Δn -->∞ with finite <n> 
  

Δn = n 1−ε
ε

→∞ si ε→ 0

Paradoxical?  
 
When ε→0 the probe tends to be the vacuum  insensitive to phase shifts 
 
Nonlinearity of variance amplifies the small probability of large numbers 

ALTERNATIVE TO HEISENBERG LIMIT NUMBER 4 

Same <n> for all ε  

n  
 
<n>/ε 

ε 

probability 

Back to the usual case of signal= phase and G = n 

While Heisenberg limit 
goes as 1/<n> 



Importance of unlikely events in social sciences 

http://www.fooledbyrandomness.com/ 

The case Δn -->∞ with finite <n> 
might be called black swan strategy 



Many repetitions are necessary to find a black swan 
but this does not spoil subHeisenberg uncertainty 

Numerical demonstration of the beating of the strong form of 
 Heisenberg limit via black swan strategy for zero signal 

Heisenberg limit 

black swan strategy 

Sub-Heisenberg estimation of non-random phase shifts 
A. Rivas and A. Luis, New Journal of Physics 14, 093052 (2012) 



Simple extreme demonstration that the Heisenberg limit can be violated 
 
Vanishing signal  χ = 0 and probe prepared in an eigenstate of M 
 
  ΔM = 0   and  Δχ = 0  for all <n> 

No Heisenberg limit at all 
 
But only works for definite known values of the signal 

Δ χKey point:             depends on the signal value  χ



Mean square error depends on the unknown value of the signal Χ 

The most popular strategy averages the uncertainty over some prior range  

Δ2 χ = dχP(χ )∫ Δχ
2 χ

Generator = number n 
The average obeys a true strong-form Heisenberg limit  Δ χ ≥ 1

2m n

P(X) = some prior distribution for the signal value 

V. Giovannetti, L. Maccone, Phys. Rev. Lett. 108,  210404 (2012) 
M. Tsang, Phys. Rev. Lett. 108,  230401 (2012) 
V. Giovannetti, S. Lloyd, L. Maccone, Phys. Rev. Lett. 108,  260405 (2012) 
M. Hall, D. W. Berry, M. Zwierz, H. M. Wiseman, Phys. Rev. A 85,  041802 (2012) 
M. J. W. Hall, H. M. Wiseman, New J. Phys. 14, 033040  (2012) 
R. Nair, arXiv:1204.3761 [quant-ph]. 

Δχ
2 χ = χ

xm( )− χ#$ %&
2

xm

∑ P xm | χ( )



Δ χ ≥ 1
2m n

This average reveals that sub-Heisenberg for some X implies  
super-Heisenberg for other X .  
 
Typically transition from sub to super holds for X = Heisenberg limit 

Sub-Heisenberg would require sub-Heisenberg prior knowledge 

black swan = ugly duck? 



 
They may provide better experimental bounds for quantities with strong  
theoretical support, such as the photon mass? 
 
Currently  
 
New Experimental Limit on the Photon Rest Mass with a Rotating Torsion Balance 
J. Luo, L.-Ch. Tu, Z.-K. Hu, and E.-J. Luan, Phys. Rev. Lett. 90, 081801 (2003)  
 
  

m <1.2×10−54 kg

Nevertheless, black swan strategies might still be useful? 



Two forms of Heisenberg limits depending on m 
 

Δ χ ∝ 1
m n

nm
1~ ∝Δχ

Weak form 

Heisenberg limit only reached for nonclassical states, small photon numbers  
say <n> ≈ 10  
 
Therefore practical detection requires high m and thus far from the strong limit. 
 
 
First results suggest that black swans might allow to reach the strong limit  
for large m!!! 

Strong form 

Repetitions are statistically independent 

Theoretical limit 

Coincide only for m = 1 (all photons used in a single realization of the experiment) 



Biased estimators can do better than unbiased ones 
 
Rethinking Biased Estimation  
Steven Kay and Yonina C. Eldar  
[lecture NOTES] IEEE SIGNAL PROCESSING MAGAZINE  [133] MAY 2008  
  
Rethinking Biased Estimation: Improving Maximum Likelihood and the Cramér–Rao 
Bound   
Yonina C. Eldar 
Foundations and Trends in Signal Processing 
Vol. 1, No. 4 (2007) 305–449 2008 DOI: 10.1561/2000000008  

Sub-Heisenberg = bias 
 
On sub-Heisenberg phase uncertainties 
Luca Pezzé, Phys. Rev. A. 88, 060101 (2014) 

Previous results assume unbiased estimators  χ = χ



Averaging over signal values that will never arise?  
we are assuming deterministic non-random signal  

Δ2 χ = dχP(χ )∫ Δχ
2 χ ≥ 1

4m2 n 2

P(X) = prior distribution for the signal value 
This suggest addressing a Bayesian picture  

Bayesian alternative. Probability = degree of belief  

P χ | xm( )∝P
xm | χ( )P χ( )

P χ | xm( ) =  probability a posteriori for χ  given the outcomes xm

P xm | χ( ) =  probability of outcomes  xm  when the signal is χ

P χ( ) =  what we know about χ  before measurement
Bayes theorem: 



P χ | χ( )∝ P χ | xm( )P
xm | χ( )

xm

∑

Averaging over all possible outcomes gives a posterior distribution  

Quantum Phase in Interferometry 
Z. Hradil, R. Myška, J. Peřina, M. Zawisky, Y. Hasegawa, and H. Rauch 
Phys. Rev. Lett. 76, 4295 (1996) 
 
Estimation of counted quantum phase 
Zdeněk Hradil 
Phys. Rev. A 51, 1870 (1995) 
 
Entropy of phase measurement: Quantum phase via quadrature measurement 
Zdeněk Hradil, Robert Myška, Tomáš Opatrný, and Jiří Bajer 
Phys. Rev. A 53, 3738 (1996) 

( )χχ |~PUncertainty = width of ≠ mean square error  

χ
xm( )  (there is no estimator               at work) Δχ

2 χ = χ
xm( )− χ#$ %&

2

xm

∑ P xm | χ( )



Summarizing: Potential open questions regarding quantum limits 
 
Uncertainty measures different from variance 
 
Transformations different from phase/time shifts 
 
Breaking weak Heisenberg for multiple repetitions 
 
Biased estimators 
 
Bayesian picture 



To give an accurate description of what has never occurred 
is not merely the proper occupation of the historian, but the 
inalienable privilege of any man of parts and culture. 
 
Oscar Wilde, The Critic as Artist 

….for there are some who weary themselves out in learning  
and proving things that, after they are known and proved, 
are not worth a farthing to the understanding or memory… 
 
 Miguel de Cervantes, Don Quixote Chapter XXII 


