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Motivation: turning the worst enemy into the best friend

Purpose: generating nice non-classicality 

in a robust deterministic way

Outline:

1. Are losses always bad for non-

classicality?

2. What can nonlinear losses do?  

3. How can one produce these losses?

4. How can one avoid linear losses?
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What common linear loss is commonly doing?

AField mode

Any initial state just turns into the vacuum eventually ….

For usual unstructured “Markovian” reservoir

But what will happen if  we take two modes

coupled linearly to the same reservoir?
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Reservoir

Correlated (collective) loss

  ..chRbaVab  
An example of interaction Hamiltonian: 

   abab baL
dt

d
 Markovian master equation

  0ba

Decoherent-free subspace appears!

These states are not affected by dissipation:

G.M. Palma, K.-A. Suominen and A.K. Ekert. Quantum Computers 

and Dissipation. Proc. Roy. Soc. London Ser. A, 452:567, 1996.



Consequences of having correlated loss:

The initial state is projected on the decoherence-free subspace

One can preserve entanglement. One can create entanglement.
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Example for the initial single photon

(“dissipative beam-splitter”): 

Daniel A. Lidar, K. Birgitta Whaley, Decoherence-Free Subspaces and 

Subsystems, in “Irreversible Quantum Dynamics”

Lecture Notes in Physics Volume 622, 2003, pp 83-120
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baab t 01,0  Initial state:

Final state:   .0,00,0
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   abab baL
dt

d
 

  0ba



Paul G. Kwiat, Andrew J. Berglund, Joseph B. Altepeter, Andrew G. White,

“Experimental Verification of Decoherence-Free Subspaces”, Science 290, no. 

5491 pp. 498-501 (2000)

Correlated loss is not a theoretical fiction

Correlated  loss can indeed produce and preserve non-classical states. 

BUT …

• Non-correlated loss destroys effects of correlated loss.

• Interaction between quantum objects destroys effects 

of correlated loss.

• Even self-interaction of a quantum object can destroy effects of

correlated loss (for example, even Lamb shifts can do that eventually …)

Well, there are other kinds of useful losses …

Correlated loss is rather rather fragile tool …
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The general idea

Let us look for such Lindblad operators, A, that 0neededA

The general scheme

Start with the simpleStart with the simple--toto--prepare initial state and let loss prepare initial state and let loss 

drive it toward the required state.drive it toward the required state.

http://thesteamworks.blogspot.com/



Nonlinear loss can indeed drive deterministically a wide  class of 

initial states into a predefined stationary one.

R. R. Carvalho, P. Milman, R. L. de Matos Filho, and L. Davidovich, PRL 

86, 4988 (2001); 

Z. Kis, W. Vogel, and L. Davidovich, PRA 64, 033401 (2001); 

B. Kraus, H. P. Buchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller, PRA

78, 042307 (2008); 

R. Wu, A. Pechen, C. Brif, and H. Rabitz, J. Phys. A 40, 5681 (2007).

Let us demonstrate it with a single mode:    aa aaafL
dt

d
 ,

We want to generate the state such as   0, 

neededaaaf 

We create the initial state with 

sufficiently large number of photons 
    neededaaTrtaaTr    0

The way to proceed:

We switch on the loss.



Example: producing single photons from initial coherent states

   aa aaaL
dt

d
 1 

Time                                    Time 

D. Mogilevtsev, V. S. Shchesnovich, Opt. Lett. 35, 3375 (2010).

Decay is non-exponential.

Decay time does not depend on the initial state:

the larger it is, the faster it goes down … 

t t



Example: Nonlinear coherent loss

   aa aaafL
dt

d
 

 aaafF 

Eigenstates of  F are nonlinear coherent states. 

Any pure state non-orthogonal to an arbitrary Fock state can be exactly

represented as a nonlinear coherent state. Other states can be well

approximated by them.

R. L. de Matos Filho and W. Vogel, PRA 54, 4560 (1996).

Annihilation operator for f-deformed  harmonic oscillator

       aaafaaafaaFF   22 11,Commutation relations:

Nonlinear coherent loss can serve as a tool for producing Fock states.



Good example: Fock state generation from coherent states

  .,0,0)( 11 nnnfnf    ,aa aaafL
dt

d
 

A Mikhalychev, D Mogilevtsev and S Kilin, J. Phys. A: Math. Theor. 44

325307 (2011).

Notice: provided that f is 

non-negative,  its form is 

not of any importance for 

the stationary state



Good but exotic example: “combing” the state

...2,1,0,0)( 0  jnjNf

Just getting rid of unnecessary terms in the 

density matrix!

A Mikhalychev, D Mogilevtsev and S Kilin, J. Phys. A: Math. Theor. 44

325307 (2011).

mn
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n

“Combed” coherent 

state with N=3.

http://www.artworx19971.com/artists/Lin

da-Minkowski/Comb_Out.html



No so good example: generating finite superpositions of Fock states

   .
2

1
, 2121 nnnn 

    .,,0,0)( 2121 nnnnfnfnf 

One aims for

  9,4,, 2121  nnnnkl   17,10,, 2121  nnnnkl

Alas, one cannot generate pure superpositions this way ... 



Producing nonlinear loss: examples

1. Bose-Einstein condensates 2. Multi-core nonlinear fibers

3. Motional states of a trapped ion

4. Combination of high-order 

nonlinearities and multi-photon

absorption

V. S. Shchesnovich, D. S. Mogilevtsev, PRA 82, 043621 (2010);

D. Mogilevtsev, V. S. Shchesnovich,  Opt. Lett. 35, 3375 (2010); 

J. F. Poyatos, J. I. Cirac, and P. Zoller PRL 77, 4728 (1996);

Tao Hong,Michael W. Jack,and Makoto Yamashita, PRA 70, 

013814 (2004).



The way to make nonlinear loss, stage I: creating correlated loss

Correlated loss

B

A C
Reservoir

If one can adiabatically eliminate C, then

A

B

Reservoir



Three linearly interacting 

modes with self-Kerr 

nonlinearity 

AA C B

Reservoir
Nonlinearity
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abcabcbaabc cLchbbaaUcbgagi
dt

d
  

bag ,For one eliminates C adiabatically.
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Example: creating correlated loss in a three-mode system

=



Nonlinearity + correlated loss can give rise to nonlinear loss!
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Nonlinear loss!!

V. S. Shchesnovich, D. S. Mogilevtsev,  PRA 82, 043621 (2010);

D. Mogilevtsev, V. S. Shchesnovich, Opt. Lett. 35, 3375 (2010). 

The way to make nonlinear loss, stage II



So, we have seen that nonlinear loss is good.

One puts in a coherent state, switches the interaction on and gets 

identical  non-classical output states deterministically.

Nevertheless, the main enemy is very much alive: linear loss can 

easily destroy the result of nonlinear loss. 

0aAIndeed, the condition               means than near the desired state an 

influence of nonlinear loss is very weak. So, linear loss is always 

dominating there. 

So, what can one do to save the day?

The answer: be brief and have a strong drive!



      .13 aa aLaaaL
dt

d
  

Example: linear loss breaking down effects of nonlinear loss

for single-photon generation from the coherent state

Linear loss term

Dynamics of single-photon component for the 

linear loss rate Г = 0.01 γ3 , 0.1 γ3 , γ3 (solid, 

dashed, and dash-dotted lines)

γ3 t

V. S. Shchesnovich, D. S. Mogilevtsev,  PRA 84, 013805 (2011)

Dynamics of Mandel 

parameter for the linear loss 

rate Г = 0.01 γ3 , 0.1 γ3 , γ3

(solid, dashed, and dash-

dotted lines)

A hint: should 

we aim for 

sufficiently 

small interaction 

times?



Overcoming linear loss, the way number 1:  let’s outrun them!

Let us demonstrate a possibility to generate an arbitrary state from 

the initial coherent state. 

.1,  kaA kLindblad operator:

Result: 

Target state Initial coherent state

     
,,1

21 




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Time-scale:   ., 
kk

eff aa 

So, taking sufficiently intensive initial coherent state, one can 

generate the target state until the linear loss takes any effect. 

D. Mogilevtsev, A. Mikhalychev, V. S. Shchesnovich, and N. Korolkova, 

PRA 87, 063847 (2013).



Example: generation of two-photon state

22 aA  Linear loss rate Г = 5 γ

Г Г tt

Solid, dotted, dashed, and dash-dotted 

lines correspond to α = 2,3,4,5.

Notice: to have a non-classical state for small times, one needs not 

constructing complicated loss schemes.

 1 aaaA  Linear loss rate Г = 5 γ

Solid, dotted, dashed, and dash-dotted 

lines correspond to α = 2,4,6,8.

D. Mogilevtsev, A. Mikhalychev, V. S. Shchesnovich, and N. Korolkova, 

PRA 87, 063847 (2013).



Overcoming linear loss, the way number 2:  let’s drive them out!

        ., 3 aaa aLALaai
dt

d
  

http://www.supercoloring.com

/pages/kicking-out-the-princess/

www.sodahead.com

Let us add coherent driving and 

see what happens next …



Notice #1: Alas, it is not possible to get pure stationary non-classical  

state by driving.

Notice #2: Fortunately, it is possible to get mixed strongly non-

classical stationary state by driving.

B. Kraus, H. P. Buchler, S. Diehl, A. Kantian, A. Micheli, and

P. Zoller, Phys. Rev. A 78, 042307 (2008);

D. Mogilevtsev, A. Mikhalychev, V. S. Shchesnovich, and N. Korolkova, 

PRA 87, 063847 (2013).

Moreover: driving non-linear loss, it is possible to 

make a stationary non-classical state 

INDEPENDENTINDEPENDENT of the linear loss rate! 



Driving the nonlinear coherent loss coherently

 aaafA  

  22

2
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
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Lindblad operator:

Analytic estimation for 

strong driving:

It is sub-

Poissonian. 

Always.

Maximum of the photon-number 

distribution
   22

0

2

0 nfn

Just by increasing the driving amplitude, one 

can always get the photon number-distribution 

practically independent of an arbitrarily large 

linear loss rate.

  0

2 nf

D. Mogilevtsev, A. Mikhalychev, V. S. Shchesnovich, and N. Korolkova, 

PRA 87, 063847 (2013).



Example: nonlinear coherent loss + coherent driving

 1 aaaA 

Exact solutions for Mandel parameter: solid,

dash-dotted, and dashed curves correspond to

the linear loss rate Г= γ , 5γ, 10γ . Inset shows

photon-number distribution of the stationary

state for the driving amplitude α = 150; light-

gray, gray, and black bars correspond to Г= γ,

5γ, 10γ .

The exact solution (dashed line) and the

approximate solution (red solid line) for

Г=10γ. Inset shows photon-number

distributions for the solution of the exact

(gray bars) and of the approximate (black

bars) equations.

D. Mogilevtsev, A. Mikhalychev, V. S. Shchesnovich, and N. Korolkova, 

PRA 87, 063847 (2013).



Well, nice coherent driving produces nice non-classical results. 

What happens if our system is noised thermally?

Answer: it will create nonAnswer: it will create non--classicality!classicality!

http://www.research-live.com/magazine/order-from-

chaos/4004808.article

Chaotic driving will produce sub-

Poissonian states.



         .1 aTTa aLnaLnAL
dt

d
 

Driving the nonlinear coherent loss incoherently

 31 aaaA 

Exact solutions for Mandel parameter: the

curve corresponds to the linear loss rate Г=

10γ. Inset shows photon-number distribution of

the stationary state for nT=5.

Alas, strong thermal driving washes non-classicality away.

D. Mogilevtsev, A. Mikhalychev, V. S. Shchesnovich, and N. Korolkova, 

PRA 87, 063847 (2013).



A final touch of quirkiness: creating unit states

    .0, 0   nnfaaafA 

Limit of strong nonlinear loss and simultaneous strong thermal 

driving (alas, it is rather impractical …)

  



T

T
n

nfn


,

In this limit one can have truncated unit states

.
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1 0
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

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m

stationary mm
n



http://www.clipartguide.com/



Conclusions

1. Losses can help you to create non-classical states.

2. Nonlinear losses can generate any state deterministically.

3. Nonlinear losses can be made robust with respect to linear ones.

4. Classical driving and nonlinear loss can produce stationary 

states independent of an arbitrarily large linear loss.

THANKS!THANKS!


