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Partial suppression of nonadiabatic transitions

Outlook
m Adiabatic processes, Berry compensation
m Partial compensation of nonadiabatic transitions

m Examples: interacting spins, expanding potential well, atoms with
Rydberg blockade

m Discussion: further prospects of the method
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Partial suppression of nonadiabatic transitions

Dynamic vs. adiabatic transport




Adiabatic processes and Berry compensation

Evolution under time-dependent Hamiltonian

i v) = Ho(B)]v)
expand
W(E) =D an(t)e™ (1))

with instantaneous eignestates

Ho(t)|n(t)) = En(t)[n(t))
On(t) = — )dt’

(1)

()

(3)
(4)
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Adiabatic processes and Berry compensation

Evolution under time-dependent Hamiltonian

ihz énei9"|n) + ZanEneiG" -+ tha e’e" ZanE e’e" (5)
n n
multiplying with (k|:

— 3" 2,0 (k| ) (6)



Adiabatic processes and Berry compensation

Evolution under time-dependent Hamiltonian
Time derivative of Hy|n) = Ep|n) :

Foln) + Holi) = Enln) + Eql)

Multiply with (k| with k # n:

(k|Foln) + (k| Holf) = En(k|7),
(KlHoln) + Ec(K|) = En(kli),
(i) = LD

Therefore

ai = —ai(klk) =) ape/On=0%) k’HO‘ n)

(11)

6
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Adiabatic processes and Berry compensation

Evolution under time-dependent Hamiltonian
Adiabatic approximation:

(k|Ho|n)
En - Ek

T < 1,

ac ~ —ai(klk)
a(t) ~ ak(0)e"®

Geometric phase ~:

~
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Adiabatic processes and Berry compensation

Evolution under time-dependent Hamiltonian

Apply an additional Hmiltonian

[ Demirplak and Rice, J. Phys. Chem. A 107, 9937 (2003); Berry, J.
Phys. A Math. Theor. 42, 365303 (2009) | :

Hg = k) (|i)(n] — [m){nli){n]) (16)

System starting in eigenstate |n) of Hp, evolving under H = Hy + Hp
stays exactly in eigenstate |n) of Hp.
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Partial compensation

What if Hg is not available in the lab?
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Partial compensation

What if Hg is not available in the lab?

But we have couple of other controllable Hamiltonians instead:
Ly, Lo, ...

Task: Keep system as close as possible to eigenstate |0(t)) of Hp(t).
Choose suitable ay(t), aa(t) ..., the system evolves under Hamiltonian

H=Hy+ aili +asly--- = Hy + He (17)
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Partial compensation

What if Hg is not available in the lab?

But we have couple of other controllable Hamiltonians instead:
Ly, Lo, ...

Task: Keep system as close as possible to eigenstate |0(t)) of Hp(t).
Choose suitable ay(t), aa(t) ..., the system evolves under Hamiltonian

H=Hy+ aili +asly--- = Hy + He (17)

Minimize norm of vector (Hc — Hg)|0), i.e., minimize

K K
(0] (Z arly — HB> (Z Qe Lgr — HB> |0). (18)
k=1

k'=1
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Partial compensation

Minimising the quadratic form by solving linear equations:

K
> Amkak = Cn, (19)
k=1
where
Amk = (Lmli+ Lilp), (20)
Cx = <LkHB aF HBLk>a (21)

(mean values calculated in state |0(t)))

T. Opatrny and K. Mglmer, New J. Phys. 16 015025 (2014).
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Example: two spin-% particles

Ho = —B(c + 6?) + Joo?® (22)

Eigenstates:
| =—) (for |B/J| > 1)
| 1)+ [41) (for |B/J| < 1).

J -B -B 0
-B —J 0 -B
-B 0 -J -B

0 -B -B J

Ho =

19 /59



Example: two spin-% particles

With parametrization

= Asingp (24)
A
= —cosy (25)
2
eigenvectors
cos 0
61) = 1 1+sing |¢>_i 1
! - 2/1+sing | 1+sing |’ 2 RV
Cos 0
1 1+singp
1 0 1 —Cos
= —= 3 e 26
|¢3) AR |94) = 5 o | —ame (26)
-1 1+sing
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Example: two spin-% particles

Berry Hamiltonian

He = ih|61)(¢1] + ihlga) (al,

I

o - - O
.o .
o

o - - o

= (o0

(27)

(2)> .(28)
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Example: two spin-% particles

Partial compensation

L= pa)(,l)agz) + qcrgl)a}(?). (29)

(¢1|L%|¢1) = (q+p)? (30)

(¢1|LHg + HplL|p1) = (g+ p)he, (31)

(32)

(¢1]LHg + HplL|¢1)  h¢ (33)
2(¢1|L2|¢1) 2(g+p)

(1) .(2) (1) (2)

2(q+p)




Example: four spin-% particles

Original Hamiltonian:
4 ) 3 ) )
Ho = —B(t)ZU)(;]) +J0209)a§”1). (35)
j=1 j=1

Parameter change: B(t) = Byexp (—2.4t/ty)
State change from | >———) to | T{1)) + | T4

For adiabatic transition: tg must be large.
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Example: four spin-% particles

20

0 0.5 1.0 2.0 2.5

1.5
t/t,

Figure: Eigenvalues of the Hamiltonian (35).



Example: four spin-% particles

Possible choice of compensating operators:

L, = 0}(,1)09) + 0§3)0§4), (36)
L, = agl)a}(,z) + a}(,3)a§4), (37)
L3 = a§2)a§3) + U§2)0§/3), (38)
Ly = 09)0}(,4) + 0}(,1)09). (39)
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Example: four spin-% particles
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Fidelity of the evolved state
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Example: four spin-% particles

2.0
(a) N
— 1.0
~ oc/ \
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10 2N\ /
20
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Figure: Compensation parameters ai;—a4 of the scheme with 4 operators.
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Example: four spin-% particles

0.8
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Figure: Compensation parameters «;; and a3 of the scheme with 2 operators.
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Example: particle in an expanding box

Infinitely deep box, one wall moving:

= — 4
Ho =5+ U(x) (40)
with
00 for x < 0,
Ux)=< 0 for 0<x < D(t), (41)
00 for D(t) < x.

Berry compensation: solved by Jarzynski [arXiv:1305.4967 (2013)]

D
Hg = ﬁ(xp + px). (42)

29 /59



Example: particle in an expanding box

If Hg is not available, another option:

D
He =~ p. (43)
2
(b) ol B
7] 2
2 :
a a
i .
o
. £ L
2.0 -1.0 0.6 -0.2 0.2 0.6
x/Dy

x/Dy

Figure: Particle in expanding box.
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Example: squeezing with Rydberg blockade

Spin squeezing
Example: two-level atoms
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Squeezing with Rydberg blockade

Spin squeezing
Example: two-level atoms
Single-atom operators:

S = (a6l + [B)a),

/

Sy = S(-la)bl+1B)a),

5. = o(la)al - [B)(e)

32/59



Example: squeezing with Rydberg blockade

Spin squeezing
Example: two-level atoms
Many atoms:

«

Il
~[]
O,

Jo = %(aTb—FabT)
I
J, = E(aTb—abT),
J, = %(aTa—bTb),
[2.a"] = [b,b'] =

[Jody)] = —il;
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Example: squeezing with Rydberg blockade

Spin squeezing
Example: many two-level atoms

eeels L 0O
ﬂmi LR 5
2 ©
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Example: squeezing with Rydberg blockade

Spin squeezing
Many two-level atoms
Poincare sphere




Example: squeezing with Rydberg blockade

Spin squeezing
Many two-level atoms

PHYSICAL REVIEW A VOLUME 50, NUMBER 1 JULY 19%4

Squeezed atomic states and projection noise in spectroscopy

D. J. Wineland, J. J. Bollinger, and W. M. Itano
Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80303

D. J. Heinzen
Physics Department, University of Texas, Austin, Texas 78712
(Received 11 January 1994)

We investigate the properties of angular-momentum states which yield high sensitivity to rotation.
‘We discuss the ication of these pin” or lated-particle states to spectroscopy. Tran-
sitions in an of N two-level (or, equi , spin-}) particles are assumed to be detected by
observing changes in the state populations of the particles (population spectroscopy). When the particles”
states are detected with 100% efficiency, the fundamental limiting noise is projection noise, the noise as-

sociated with the ions in the d i If the particles are first prepared in
particular quantum-mechanically correlated states, we ﬂnd (hat the signal-to-noise ratio can be improved
over the case of initially uncorrelated particles. We have i i for a lar case

of Ramsey’s separated oscillatory method where the radiation pulse lengths are short compared to the
time between pulses. We introduce a squeezing parameter £ which is the ratio of the statistical uncer-
tainty in the d ination of the when using correlated states vs that when using
uncorrelated states. More lly, this i ifies the iti of an angular-
momentum state to rotation. Other squeezing perlmclers whlch are relevant for use in other contexts
can be defined. We discuss certain states which exhibit squeezing parameters £g =N ~'"%. We investigate
possible experimental schemes for generation of squeezed-spin states which might be applied to the spec-
troscopy of trapped atomic ions. We find that applying a Jaynes-Cummings-type coupling between the
ensemble of two-level systems and a suitably prepared harmonic oscillator results in correlated states
with & < 1.
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Example: squeezing with Rydberg blockade

Spin squeezing
Gross et al., Nature 464, 1165 (2010)

~ 10% atoms squeezed by ~ 5 dB in ~ 10 ms
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Example: squeezing with Rydberg blockade

Spin squeezing

Gross et al., Nature 464, 1165 (2010)
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~ 103 atoms squeezed by ~ 5 dB in ~ 10 ms
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Example: squeezing with Rydberg blockade

Spin squeezing
Riedel et al., Nature 464, 1170 (2010)

AMVA

N MIW \lm

~ 103 atoms squeezed by ~ 5 dB in ~ 10 ms
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Example: squeezing with Rydberg blockade

Spin squeezing
Riedel et al., Nature 464, 1170 (2010)

ASZ /(N/4) (6B)

12 | o 10 20 |

-90 -45 0 45 90 135 180 225 270 315 360
Turning angle, ¢ (degrees)

-50
-250 -200 -150 -100 -50 O 50 100 150 200 250
8§

~ 10° atoms squeezed by ~ 5 dB in ~ 10 ms
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Example: squeezing with Rydberg blockade

Rydberg atom
Excited atom with large principal number n

m size ~ n? (~ 0.3 pm for n ~ 80)
m lifetime ~ n3-n*> (~ 600 us for n ~ 80)

E
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Example: squeezing with Rydberg blockade

Rydberg atom
Rydberg blockade: resonance transitions

——— —
- e

—— —o—
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Example: squeezing with Rydberg blockade

Rydberg atom

Rydberg blockade: resonance transitions

a N ) b
Cy/R
|rir)
2E =3 e 1A
& 20 T
T
: - ><
g lg.r3. Ir.g) 1) [#2)
5 1 f
B
—
« V20
|9.g)
°1 )
R’ |grg
Gaetan et al., Nature Physics 5, 115 (2009)
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Example: squeezing with Rydberg blockade

Jaynes - Cummings model
A single two-level atom and a single-mode quantum field

Hjc = ga‘o_+graoy
or = [b){a
o- = |a)(b]

m Photon generation and atom deexcitation

m Photon absorption and atom excitation
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Example: squeezing with Rydberg blockade

Jaynes - Cummings model
A single two-level atom and a single-mode quantum field
Squeezing of the field

Im(0) Im(o)

5 Re(o) = 0 5 Re(o)

G. Banacloche, PRL 65, 3385 (1990); picture from JMO 40, 2361
(1993).
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Example: squeezing with Rydberg blockade

Spin squeezing and Schrodinger cat generation in atomic samples
with Rydberg blockade

)

)

T. Opatrny and K. Mglmer, PRA 86, 023845 (2012)
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Example: squeezing with Rydberg blockade

Hamiltonian

HJC]_ = Qlaasrl)—i-Q’{aTa(l)

Hico = Qbo'® + Qb0

m Initialize the state
m Act with the Hamiltonian
m Rotate the state

47 /59



Example: squeezing with Rydberg blockade

Results

0.4

0.3}

0.2}

0.1¢

0.0
20 25 30 35 40

Statistics of the atomic states |a) and |b) (64 atoms)
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Example: squeezing with Rydberg blockade

Results

=32 32

Q-function of the resulting state (64 atoms)
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Example: squeezing with Rydberg blockade

Adiabatic squeezing: Hamiltonian eigenstates

W™ = 2 (1ne07:0.0) + [y — 1,5, 1,0)

+ |na,np—1,0,1) 4 |ny;—1,n,—1,1,1)),
ey = %(\na,nb,0,0>+]na—1,nb,1,0>

— |na,np—1,0,1) — |n;—1,np — 1,1, 1)),
W) = 2 (1na,,0,0) ~ns — 1, ms,1,0)

+ |na,np—1,0,1) — |ny;—1,n,—1,1,1)),
W) = 2 (103,15,0,0) — [y~ 1,mp.1,0)

— |naynp—1,0,1) +|n, — 1, np — 1,1, 1)),
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Example: squeezing with Rydberg blockade

Adiabatic squeezing: Eigenenergies

EV™) = Qe (v + /7b).
E=™) = Qe (yna — /b)),
EMY™ = Quc(—/na + v/nb),
EC2™) = Qe (—/ma — /Mb).

)
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Example: squeezing with Rydberg blockade

Adiabatic squeezing: Combine Hamiltonian

H:quc—i-(].—u)JX

N o0

A~

Eigenvalue [arb. units]
=

N

-6 %
0.90 0.95

0 0.2 0.4 0.6 0.8 10
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Example: squeezing with Rydberg blockade

BUT PROBLEM: LINES TOO CLOSE!

8
6

~

Eigenvalue [arb. units]
=)

-6 %
0.90 0.95

%

0 0.2 0.4 0.6 08

1.0
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Example: squeezing with Rydberg blockade

Adiabatic squeezing
)
(©

| )
1
Ir)

Qfgross) Q €ross) Q Jjc

Qe Qe
Q!C ‘ b> ‘ b>

Q

Jofk |a) —eeee— [
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Example: squeezing with Rydberg blockade

Adiabatic squeezing

— 5.5 %
o) i
E D‘sto 400]

>

)

5}

=}

84|

0 100 200 300 400
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Example: squeezing with Rydberg blockade

Adiabatic squeezing
2

g
0.8

/// Dynamic

|

|

|
0.41 / Adiabatic

0.0 ‘ ‘ ‘
0 100 200 300 400
Q¢ ¢
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Partial suppression of nonadiabatic transitions

Discussion, open questions
m Any general rule for the spin systems?
m Applicability in trapped ion systems?

m Is there any possibility for compensation of nonadiabatic processes
in superfluid — Mott insulator transitions?

m Any suitable approximative methods for large systems (Hilbert
space expands, impossible to solve exactly)?

m So far optimization for a single state |0). Any possibility for
optimization of more states? What about qubit?
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Partial suppression of nonadiabatic transitions

Summary

m Adiabatic processes - robust, but slow. Speeding up means
transitions to unwanted states.

m Additional Hamiltonian Hg can fully compensate nonadiabatic

transitions. Easy to compute, but often impossible to produce in a
lab.

m Partial compensation using available operators L: need to have
nonzero averages (LxHg + HgLy) in the wanted state |0).

m Several examples: paramagnetic vs. antiferomagnetic spin
interactions, expanding box, atoms with Rydberg blockade.

m Many open questions remain.
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Squeezing with Rydberg blockade

Thanks for your attention!
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