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Quantum Repeater 

• Quantum communication fails when channels are long 

• Solution: Quantum repater 

o Divide channel into segments 

o Prepare locally entangled states 

o Distribute to neighbouring segments  

o Swap entanglement 

o Iterate until full channel length is connected 
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Quantum Memory 

• Need synchronisation of segments 

• Storage of states and on demand release 

 

 

 

April 29, 2014 Christoph Baune 4 

  

 

 



The `Wavelength Problem´ 

• Very efficient generation of entangled states at 1550 nm 

 

• Distribution: Lowest losses in optical fibers at 1550 nm 

 

• Optical transitions of quantum memories: 500-900 nm 

 

 

• Solution: Quantum Up-Conversion 

o Quantum states converted from 1550 nm to 532 nm 

o Use low noise, commercially available, and easy-to-handle single 

photon detectors at visible wavelengths 
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Quantum Up-Conversion 

• Sum-frequency generation with a strong pump in PPKTP 

• Pump and signal frequency add up:  

 signal converted to 532 nm! 

• More efficient in a cavity 

• Well defined input and output modes 
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• Strong pump, treated classically  

 

• Hamiltonian of quantum up-conversion 

 

 

• ζ : nonlinear coupling parameter 

 

• Time evolution 

 

 

• Conversion efficiency 

 

 

 

 

 

 

Quantum Up-Conversion 
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Conversion Efficiency 

• Determined with dim classical fields 

• 90.2 ± 1.5 %  
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Squeezed States at 532 nm 

• Quantum state up-conversion of squeezed light 
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Squeezed States at 532 nm 

• Quantum state up-conversion with squeezed light 

o 4 dB @ 1550 nm converted to 1.5 dB at 532 nm 
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Further possible applications: 

• High precision phase measurements  

(e.g. gravitational wave detectors) 

• Quantum enhanced imaging 

• Quantum enhanced spectroscopy 



`Direct´ Squeezing? 

• Common method to generate squeezed vacuum states: 

Parametric down-conversion 

• Requires second harmonic as pump:  

ultra violet light 

 

 

• PDC not applicable to produce high-quality squeezed states 

at 532 nm 

• Quantum up-conversion promises up to 6 dB squeezing! 
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Gaussian vs. Non-Gaussian 

• Squeezed states are Gaussian states 

 

• No-go theorems for Gaussian states 

• Many quantum information protocols require non-Gaussian 

states  

o Entanglement distillation 

o Quantum state teleportation 

 

• Non-Gaussian state: Single photon! 
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Single Photon Up-Conversion 

• Produce correlated photon pairs at 1550 and 810 nm 

• Up-convert 1550 nm photons to 532 nm 

• Perform correlation measurement with 810 nm photons 
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CLICK! 

CLICK? 



Generation of Single Photons 

• Use spontaneous parametric down-conversion in non-linear 

medium (PPKTP) 

• By detecting one single photon at 810 nm we project the 

1550 nm mode onto a single photon state 
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• More efficient in a cavity; well defined output modes 

• Cavity doubly resonant for 810 & 1550 nm 

 

 

 

 

 

• Tuning of cavity length makes small wavelength changes (<1nm) 

o Find optimal mode for up-conversion 

 

• Pump exceeds threshold: oscillation 

o Optical parametric oscillator (OPO) 

o Nice for alignment purposes! 

 

Generation of Single Photons II 
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Single Photon Source 
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Trigger Mode Filtering 

• Photons are generated in many free spectral ranges (FSR)  

 

• Need for efficient filtering in heralding path to suppress 

uncorrelated modes 
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Filter Cavity 

 

• Two mirrors, R=99% 

• Spacing 2.5 mm 

• Suppression of ~20 FSRs by -30 dB 
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Photon source transmission 

 

 

 

Filter cavity transmission 

 



PDC - Linewidths 
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Two-fold coincidences between 810 nm (trigger)  

and 1550 nm (signal) defined as: 

Symmetric decay rates γ810 = γ1550 = γ 

Extra filtering effect: γ810 > γ1550 and up-conversion cavity:  κ 

γ : cavity decay rate 

ϵ : gain parameter 

λ = γ - | ϵ | 

μ = γ + | ϵ | 

κ : extra filter decay rate 



Extra Filtering Effect 

April 29, 2014 Christoph Baune 20 

…due to asymmetric cavity decay rates and up-conversion cavity 

κ : linewidth of extra filter 



Gain Parameter ϵ 

• Two-fold coincidences: 

 

 

• ϵ is proportional to pump amplitude 

 

• Larger ϵ : 

o Larger photon production rate 

o Higher multiphoton contribution   |n=2> , … 

o Lower single photon purity 
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Data Acquisition 

• APD signals recorded  

with oscilloscope 

o Triggered on 810 nm photons 

o Stored and processed on PC 

 

• Disadvantages 

o Slow and inefficient (4h measurement time for 4s data)  

 

• Advantages 

o Access to full time series in post-processing, 0.5 ns resolution 

o Easy, inexpensive, available 
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Coincidences 

• Analyse time series according to: 

o Two-fold coincidences 

• APD-T and APD-A 

• APD-T and APD-B 

o Three-fold coincidences 

• APD-T and APD-A and APD-B 
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Photon Statistics 

• Low gain ϵ = 0.10 γ 

o Very low three-fold  

coincidence rate 
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T+A 

T+B 

T+A+B 

ϵ = 0.10 γ 

Shape of two-fold coincidence curve 

fits the theoretically expected shape! 



Photon Statistics 

• Medium gain ϵ = 0.16 γ 

o moderate three-fold 

coincidence rate 
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T+A 

T+B 
T+A+B 

ϵ = 0.16 γ 
ϵ = 0.10 γ 



Photon Statistics 

• High gain ϵ = 0.28 γ 

o high three-fold 

coincidence rate 
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Higher gain 

• Higher three-fold coincidence rate 

• Lower single photon purity 

T+A 

T+B 

T+A+B 

ϵ = 0.10 γ 

ϵ = 0.28 γ 

ϵ = 0.16 γ 



Coincidence Window 

• Time window around the trigger of detecting a signal photon 

o Small window: few two-fold coincidence events, low noise 

o Large window: more two-fold coincidence events, higher noise 

• Can be set in post-processsing 

• Determine p0 ,  p1   
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g
(2)

(0) Values 

• All states show g
(2)

(0)<1: Evidence for non-classicality 

• Larger coincidence window:  

more three-fold coincidences, either true or noise 
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g
(2)

(0) < 0.05 



Quantum Non-Gaussianity (QNG) 

Can the up-converted state be expressed as a convex mixture 

of Gaussian states? 

• Strong and robust measure on non-classicality 

• Does not require full state tomography 

• Only p0 and p1 to be determined 
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Witness of QNG 
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• Difference of witness from 

Gaussian states 

W = p1 + a p0 - WG(a) 

 

• If W>0, then QNG 

 

• WG(a) is the maximum of p1 + a p0 

achievable with Gaussian states, 

tangent to G 

 

• a<1 specifies the witness, 

used to maximise W 

 

• Poissonian statistics of the 

coincidence rates: 

o Statistical error of the witness 

can be expressed in standard 

deviations 

 W / ΔW 

 

QNG 

G 



Quantum Non-Gaussianity (QNG) 

• Verification of QNG with up to 16 standard deviations ΔW 

• QNG destroyed if coincidence window too large or gain too high 
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Reconstructed Wigner Function 
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Wigner function compared to coherent/vacuum wigner function 



Reduce Losses 

April 29, 2014 Christoph Baune 33 

Filter efficiency: 40% 

Total detection efficiency: 20%  

APDs: 60-70% 

90% 

Propagation: ~80% 

Additional filtering and new components would  

increase the detection efficiency to about 60%! 



Optimized Detection Efficiency 

• Additional filter cavities (requires locking schemes) 

 

• AR-coated fibers 
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Improved detection efficiency: 60% 



In The Lab 
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Single Photon Up-Conversion 

Who? Efficiency 

Albota, Wong 
Opt. Lett.29 (2004) 

90% conversion 
33% detection (?) 

Dim coherent  field  
1550 to 633 nm 

Langrock et al. 
Opt. Lett. 30 (2005) 

46% detection Dim coherent  field  
1550 to 700 nm 

Pan, Dong, Zeng 
Appl. Phys. Lett. 89 (2006) 

96% conversion 
40% detection 

Dim coherent  field  
1550 to 630 nm 

Rakher et al. 
Nat. Photonics 4 (2010) 

75% conversion 
21% detection 

Single photons from quantum dots 
1300 to 700 nm, g(2)(0)<0.165 

This work 90% conversion 
20% detection 

Heralded single photons from SPDC 
1550 to 532 nm, g(2)(0)<0.05 
Quantum Non-Gaussianity 
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Summary 

• Single photons are non-Gaussian 

states 

o Non-Gaussian operations are very 

interesting for quantum information 

 

• Up-conversion of single photons  

o Proof of signal photon at telecom 

wavelength of 1550 nm by efficient 

detection at 532 nm 

o Possible resource for quantum 

memories 

 

• Verified Quantum Non-Gaussianity 

of up-converted signal 

o Up to 16 standard deviations 
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Thank you for your attention! 

Dĕkuji! 


