

Frequency Up-Conversion of Gaussian and Non-Gaussian States

Christoph Baune

Tuesday, April 29, 2014

Albert Einstein Institute Hannover

Outline

Introduction and Motivation

- Quantum memories
- Frequency up-conversion
- Up-conversion of squeezed vacuum states

Up-conversion of single photons

- Non-classicality
- Quantum Non-Gaussianity
- o Outlook

Quantum Repeater

- Quantum communication fails when channels are long
- Solution: Quantum repater
 - Divide channel into segments
 - Prepare locally entangled states
 - Distribute to neighbouring segments
 - Swap entanglement
 - Iterate until full channel length is connected

H.-J. Briegel,^{1,2,*} W. Dür,¹ J. I. Cirac,^{1,2} and P. Zotler¹

Albert Einstein Institute Hannover

Quantum Memory

- Need synchronisation of segments
- Storage of states and on demand release

The `Wavelength Problem'

- Very efficient generation of entangled states at 1550 nm
- Distribution: Lowest losses in optical fibers at 1550 nm
- Optical transitions of quantum memories: 500-900 nm

- Solution: Quantum Up-Conversion
 - Quantum states converted from 1550 nm to 532 nm
 - Use low noise, commercially available, and easy-to-handle single photon detectors at visible wavelengths

Quantum Up-Conversion

- Sum-frequency generation with a strong pump in PPKTP
- Pump and signal frequency add up: signal converted to 532 nm!
- More efficient in a cavity
- Well defined input and output modes

Quantum Up-Conversion

 $\frac{d\hat{a}_{810}}{dt} \approx 0$

- Strong pump, treated classically
- Hamiltonian of quantum up-conversion $\hat{H} = i\hbar \langle \hat{a}_{810} \rangle \zeta (\hat{a}_{1550} \hat{a}_{532}^{\dagger} - h.c.)$
- ζ : nonlinear coupling parameter
- Time evolution

 $\hat{a}_{532}(t) = \sin{(\langle \hat{a}_{810} \rangle \zeta t)} \ \hat{a}_{1550}(0)$

Conversion efficiency

$$\gamma = \frac{n_{532}}{n_{1550}}$$

550 nm

Conversion Efficiency

- Determined with dim classical fields
- 90.2 ± 1.5 %

Squeezed States at 532 nm

Quantum state up-conversion of squeezed light

Squeezed States at 532 nm

- Quantum state up-conversion with squeezed light
 - \circ 4 dB @ 1550 nm converted to 1.5 dB at 532 nm

Further possible applications:

- High precision phase measurements (e.g. gravitational wave detectors)
- Quantum enhanced imaging
- Quantum enhanced spectroscopy

`Direct' Squeezing?

- Common method to generate squeezed vacuum states: Parametric down-conversion
- Requires second harmonic as pump: ultra violet light

- PDC not applicable to produce high-quality squeezed states at 532 nm
- Quantum up-conversion promises up to 6 dB squeezing!

Gaussian vs. Non-Gaussian

- Squeezed states are Gaussian states
- No-go theorems for Gaussian states
- Many quantum information protocols require non-Gaussian states
 - Entanglement distillation
 - Quantum state teleportation
- Non-Gaussian state: Single photon!

Single Photon Up-Conversion

- Produce correlated photon pairs at 1550 and 810 nm
- Up-convert 1550 nm photons to 532 nm
- Perform correlation measurement with 810 nm photons

Generation of Single Photons

- Use spontaneous parametric down-conversion in non-linear medium (PPKTP)
- By detecting one single photon at 810 nm we project the 1550 nm mode onto a single photon state

Generation of Single Photons II

- More efficient in a cavity; well defined output modes
- Cavity doubly resonant for 810 & 1550 nm

- Tuning of cavity length makes small wavelength changes (<1nm)
 - Find optimal mode for up-conversion
- Pump exceeds threshold: oscillation
 - Optical parametric oscillator (OPO)
 - Nice for alignment purposes!

 Albert Einstein Institute Hannover

Single Photon Source

Albert Einstein Institute Hannover

Trigger Mode Filtering

- Photons are generated in many free spectral ranges (FSR)
- Need for efficient filtering in heralding path to suppress uncorrelated modes

Filter Cavity

- Two mirrors, R=99%
- Spacing 2.5 mm
- Suppression of ~20 FSRs by -30 dB

Photon source transmission

Filter cavity transmission

Christoph Baune

April 29, 2014 18

PDC - Linewidths

Two-fold coincidences between 810 nm (trigger) and 1550 nm (signal) defined as:

 $\Gamma(\tau) = \langle E_{\text{trigger}}^{-}(t) E_{\text{signal}}^{-}(t+\tau) E_{\text{signal}}^{+}(t+\tau) E_{\text{trigger}}^{+}(t) \rangle$

Symmetric decay rates $\gamma_{810} = \gamma_{1550} = \gamma$

$$\Gamma(\tau) = \left[\frac{\varepsilon\gamma}{2} \left(\frac{1}{\lambda} e^{-\lambda|\tau|} + \frac{1}{\mu} e^{-\mu|\tau|}\right)\right]^2$$

 γ : cavity decay rate ϵ : gain parameter $\lambda = \gamma - |\epsilon|$ $\mu = \gamma + |\epsilon|$ κ : extra filter decay rate

Extra filtering effect: $\gamma_{810} > \gamma_{1550}$ and up-conversion cavity: κ

Extra Filtering Effect

...due to asymmetric cavity decay rates and up-conversion cavity

κ : linewidth of extra filter

Gain Parameter \in

- Two-fold coincidences: $\Gamma(\tau) = \left[\frac{\varepsilon\gamma}{2} \left(\frac{1}{\lambda} e^{-\lambda|\tau|} + \frac{1}{\mu} e^{-\mu|\tau|}\right)\right]^2$
- $oldsymbol{\epsilon}$ is proportional to pump amplitude

- **Larger** *e* :
 - Larger photon production rate
 - \circ Higher multiphoton contribution |n=2>,...
 - Lower single photon purity

$e^{i(\varepsilon \hat{a}_s^{\dagger} \hat{a}_i^{\dagger} + \varepsilon^* \hat{a}_s \hat{a}_i)} |0,0\rangle = (1 - \frac{1}{2}|\varepsilon|^2) |0,0\rangle + \varepsilon |1,1\rangle + \varepsilon^2 |2,2\rangle + \dots$

Data Acquisition

- APD signals recorded with oscilloscope
 - Triggered on 810 nm photons
 - Stored and processed on PC

Disadvantages

Slow and inefficient (4h measurement time for 4s data)

Advantages

- Access to full time series in post-processing, 0.5 ns resolution
- Easy, inexpensive, available

Coincidences

- Analyse time series according to:
 - Two-fold coincidences
 - APD-T and APD-A
 - APD-T and APD-B
 - Three-fold coincidences
 - APD-T and APD-A and APD-B

Photon Statistics

- Low gain $\epsilon = 0.10 \gamma$
 - Very low three-fold coincidence rate

T+A+B →

Shape of two-fold coincidence curve fits the theoretically expected shape!

April 29, 2014 24

Photon Statistics

cavity **Medium gain** $\epsilon = 0.16 \gamma$ 810 nm 532 nm moderate three-fold 0 1550 nm coincidence rate 810nm up-converter $\epsilon = 0.16 \gamma$ 1500 $\epsilon = 0.10 \gamma$ 1250 1000 counts ← T+A 750 ← T+B 500 250 0 -50 -40 -30 -20 -10 0 10 20 30 40 50 delay [ns]

•

filter-

APD-T

APD-A

APD-B

15

12.5

10

7.5

5

2.5

Correlation measurement

single photon source

Photon Statistics

Coincidence Window

- Time window around the trigger of detecting a signal photon
 - Small window: few two-fold coincidence events, low noise
 - Large window: more two-fold coincidence events, higher noise
- Can be set in post-processing
- Determine p_0 , p_1

g⁽²⁾(0) Values

- All states show g⁽²⁾(0)<1: Evidence for non-classicality
- Larger coincidence window: more three-fold coincidences, either true or noise

Quantum Non-Gaussianity (QNG)

Can the up-converted state be expressed as a convex mixture of Gaussian states?

- Strong and robust measure on non-classicality
- Does not require full state tomography
- Only p_0 and p_1 to be determined

Witness of QNG

• Difference of witness from Gaussian states

 $W = p_1 + a p_0 - W_G(a)$

- If *W>0*, then QNG
- $W_G(a)$ is the maximum of $p_1 + a p_0$ achievable with Gaussian states, tangent to G
- a<1 specifies the witness, used to maximise W
- Poissonian statistics of the coincidence rates:
 - Statistical error of the witness can be expressed in standard deviations

 $W/\varDelta W$

Quantum Non-Gaussianity (QNG)

- Verification of QNG with up to 16 standard deviations ΔW
- QNG destroyed if coincidence window too large or gain too high

Reconstructed Wigner Function

Wigner function compared to coherent/vacuum wigner function

Reduce Losses

Total detection efficiency: 20%

Additional filtering and new components would increase the detection efficiency to about 60%!

Optimized Detection Efficiency

- Additional filter cavities (requires locking schemes)
- AR-coated fibers

Improved detection efficiency: 60%

In The Lab

Single Photon Up-Conversion

Who?	Efficiency	
Albota, Wong Opt. Lett.29 (2004)	90% conversion 33% detection (?)	Dim coherent field 1550 to 633 nm
Langrock et al. Opt. Lett. 30 (2005)	46% detection	Dim coherent field 1550 to 700 nm
Pan, Dong, Zeng Appl. Phys. Lett. 89 (2006)	96% conversion 40% detection	Dim coherent field 1550 to 630 nm
Rakher et al. Nat. Photonics 4 (2010)	75% conversion 21% detection	Single photons from quantum dots 1300 to 700 nm, $g^{(2)}(0) < 0.165$
This work	90% conversion 20% detection	Heralded single photons from SPDC 1550 to 532 nm, $g^{(2)}(0) < 0.05$ Quantum Non-Gaussianity

Thanks to:

Jaromír Fiurásek, Olomouc

Aiko Samblowski, Hannover

Roman Schnabel, Hannover

Axel Schönbeck, Hannover

Quest Centre for Quantum Engineering and Space-Time Research

DFG Deutsche Forschungsgemeinschaft Int. Max Planck Research School (IMPRS) on Gravitational Wave Astronomy

Christoph Baune

Albert Einstein Institute Hannover

April 29, 2014 37

Summary

- Single photons are non-Gaussian states
 - Non-Gaussian operations are very interesting for quantum information
- Up-conversion of single photons
 - Proof of signal photon at telecom wavelength of 1550 nm by efficient detection at 532 nm
 - Possible resource for quantum memories
- Verified Quantum Non-Gaussianity of up-converted signal
 - \circ Up to 16 standard deviations

Thank you for your attention! Děkuji!

