




Quantum bit(s) 

Qubit 

Qubits 

Example: 

Examples: 
product state 

entangled states 



Single-qubit operations in the standard basis  

Phase flip 

Bit flip 

S-gate 

T-gate 

Hadamard gate 



Two-qubit operations in the standard basis  

Controlled-NOT 

SWAP gate 



Standard model of quantum computation: quantum circuit 
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Universality  ability to compute any computable function 

Fault-tolerance  ability to compute for arbitrary duration of time 

Scalability  ability to compute problems of arbitrary size 
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Universal set of quantum computing operations 

Example of a universal set: 

any single qubit operation and one entangling gate 



Overview 

Geometric theory of two-qubit operations 
•  local invariants 
•  Cartan decomposition and three-torus 
•  Weyl chamber and local equivalence classes 
•  local equivalence classes of perfect entanglers 

Applications 
•  superconducting electronics  
•  trapped ion quantum computing 

Optimal control applications 

Two-qubit gates as a metric space 
•  metric and invariant volume  
•  how large are control targets?  
•  what is the volume of the space of perfect entanglers? 

Metric properties and applications 
Entropy 15, 1963 (2013) 

Geometric theory 
Phys. Rev. A 67, 042313 (2003) 

Universality 
Phys. Rev. Lett. 91, 027903 (2003) 
Phys. Rev. A 69, 042309 (2004) 
Phys. Rev. Lett. 93, 020502 (2004) 

Optimal control applications 
Phys. Rev. A 84, 042315 (2011) 
& a work in progress 

Phys. Rev. A 89, 032301 (2014) 



Phys. Rev. A 67, 042313 (2003) 
Phys. Rev. Lett. 91, 027903 (2003) 
Phys. Rev. A 69, 042309 (2004) 
Phys. Rev. Lett. 93, 020502 (2004) 



where U(1) is a global phase and SU(4) is the group of four-by-four unitary 
matrices with unit determinant.  

Examples: in the standard computational basis: 

Two-qubit gates 

Unitary operators acting on the state of two quantum bits 

form the group of four-by-four unitary matrices U(4): 



SU(4) group and su(4) algebra 

SU(4) group su(4) algebra 

Generators: Example: 



Cartan decomposition of su(4) 

Cartan, maximal Abelian, subalgebra: 



Cartan decomposition of SU(4) 
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Parameter counting: 
    6       +        3       +       6     =    15   =    42 - 1 

If two gates have the same A in the Cartan decomposition, they are  
locally equivalent: 



Local equivalence and construction of local invariants 

Construction: 

2) transformation into the Bell basis 

Two gates are locally equivalent if they differ only by local operations 

J. Makhlin, QIP, 1, 243 (2003) 

1) Cartan decomposition (fix: the standard computational basis) 

J. Zhang, J. Vala, S. Sastry, K.B. Whaley 
Phys. Rev. A 67, 042313 (2003) 



Local equivalence and construction of local invariants 

3) elimination of the local part O1  

4) characteristic equation of m and elimination of O2 

J. Zhang, J. Vala, S.Sastry, K.B. Whaley 
Phys. Rev. A 67, 042313 (2003) 

J. Makhlin, QIP, 1, 243 (2003) 

F2 determines the spectrum on the Makhlin matrix m:  tr(m) = tr(F2) 

Local invariants 



Local equivalence classes 

σ(F2) = {e                 , e                , e                  , e                   } i(c1-c2+c3)     i(c1+c2-c3)     -i(c1+c2+c3)     i(-c1+c2+c3) 

Uniquelly characterize a class of gates that are equivalent up to local, single 
qubit, transformations; they define local equivalence classes [U]. 

Local invariants: 

Relation between the Cartan decomposition and local invariants: 



Weyl chamber 

T3 

Non-local factor A of the Cartan decomposition has the structure of three-torus 

Local invariants 

are invariant with interchanges of c1, c2, and c3 with & without sign flips: 

symmetry  
reduction 

symmetry  
reduction 

Weyl chamber 
J. Zhang, J. Vala, S.Sastry, K.B. Whaley 
Phys. Rev. A 67, 042313 (2003) 



Examples 

[CNOT] 

[DCNOT] 

[SWAP] 

[B] 

[SWAP1/2] 

Each point inside of the Weyl chamber corresponds to one local equivalence class.  
This is unique with except of the base of the Weyl chamber.  

[I] 

[I] 



[DCNOT] 

[SWAP] 

[B] 
[CNOT] 

Perfect entanglers 
Definition 
A two qubit gate is called a perfect entangler if it can produce  
a maximally entangled state from a product state. 

Theorem 
A two qubit gate U is a perfect entangler if and only if  the convex hull  
of the eigenvalues of the Makhlin matrix m(U) containes zero. 

Examples 
CNOT 
σ[m(CNOT)]  = {1, 1, -1, -1} 

J. Zhang, J. Vala, S.Sastry, K.B. Whaley 
Phys. Rev. A 67, 042313 (2003) 



Weyl chamber and local equivalence classes 

[CNOT] 

[DCNOT] 

[SWAP] 

[SWAP1/2] 

[I] 

[SWAP] 
[I] 

[SWAP1/2] 

[CNOT] 



Superconducting electronics 
Phys. Rev. A 67, 042313 (2003) 

Trapped ions 
Phys. Rev. A 89, 032301 (2014). 



Application I: superconducting electronics 

[CNOT] 

perfect  
    entanglers 

Weyl chamber trajectory: 
curvature                   translation 

Josephson junction charge-coupled qubits 



Application II: quantum computation with trapped ions 
Two distingushable qubits, ions, in one-dimensional harmonic trap 

interacting via electromagnetic field 



a) |00n>, |11n>:   

b) |01n>, |10n>: 

Effective Hamiltonian 



a) |00n>, |11n>:   

b) |01n>, |10n>: 

Effective Hamiltonian with two laser fields 

Two ions excited by two laser fields: 



Solution and decomposition 

The entangling capabilities of the gate Ut(ξ) are invariant to systematic 
variations of the phase φ+ , including phase errors in applied laser fields or 
imperfections of the physical implementations.  



The subspace spanned by the basis {|01>, |10>} is invariant to  
random fluctuations of the phase of the two laser fields. 

Phase error invariant subspace 



CNOT 

CNOT gate is obtained using additional single qubit operations when ξ(t) = π/4: 



Conclusions 
Geometric theory of two-qubit gates 
•  provides powerful representation of two-qubit local equivalence classes;  
•  allows insights into structure and properties of perfect entanglers; 
•  gives intuitive picture of two-qubit quantum evolution; 
•  enables analytical construction of two-qubit quantum circuits; 
•  leads to new gates and implementations. 

Optimal control applications 
•  relaxing constraints on the optimization target relaxes constraints on  
  physical interactions, optimization process and implementation; 
•  optimization to a given local equivalence class converges faster and 
  more reliably; 
•  optimization to the set of perfect entanglers promises to maximize 
  entanglement generation, preliminary results are quite encouraging 

Metric properties 
•  derived expressions for the invariant length element and volume in 
  the representation particularly suitable for quantum information processing; 
•  true size of optimization targets; the largest in the center of the Weyl chamber; 
•  perfect entanglers are (almost) everywhere! 




