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Quantum information will produce scientific knowledge 
and deliver useful quantum technologies

Quantum Computing

Quantum Simulation
QI

Quantum Metrology

Quantum Communication



What is a quantum simulation?

Definition
Quantum simulation is the intentional reproduction of the quantum aspects of a 

physical or unphysical model onto a typically more controllable quantum system.

Richard Feynman

Let nature calculate for us

Quantum simulation <=> Quantum theatre

<=>

Greek theatre

Mimesis or imitation is always partial, 
this is the origin of creativity and arts



Conjecture on the origin of creativity 
!
!

a) Imitation or simulation, be classical or quantum, 
may be useful but is condemned to imperfection. 

!
b) This is the origin of artistic and scientific creativity, be for the sake of 

fundamental knowledge or for developing quantum technologies.



Is it possible to implement a quantum simulation of impossible physics?

The operation “complex conjugation of a wavefunction” is forbidden by quantum physics. 
However, it is possible to simulate it quantum mechanically with a suitable codification.

ψ ==>ψ *

An example of what looks like a quantum simulation but maybe not

Graphene is described by the 2+1 massless Dirac equation, 
but it is not a quantum simulation because it is not intentional.

<=>
?



Why are quantum simulations relevant and interesting? 
!
!
!

a) Because we can discover analogies between unconnected fields, producing a flood of 
knowledge in both directions, e.g. black hole physics and Bose-Einstein condensation. 

b) Because we can study phenomena that are difficult to access or even absent in nature, 
e.g. Dirac equation: Zitterbewegung & Klein Paradox, unphysical operations.

c) Because we can predict novel physics without manipulating the original systems, 
experiments make calculations beyond classical capabilities, e.g., fermionic models,QFTs.

e) Because we are unhappy with reality, we enjoy arts and fiction in all its forms: 
literature, music, theatre, painting, quantum physics.

d) Because we can contribute to the development of novel quantum technologies 
via scalable quantum simulators and their merge with quantum algorithms.



Trapped ions

Optical lattices 

Circuit QED

Quantum photonics

Quantum Technologies for Quantum Simulations

... and others are arriving!



Early examples of quantum simulations
a) The simplest and most fundamental model describing the coupling between 
light and matter is the Jaynes-Cummings (JC) model in cavity QED (CQED).

 
Hr = η Ωr σ +aeiφ r +σ −a†e− iφ r( )

Red sideband excitation of the ion = JC interaction

 
Hb = η Ωb σ +a†eiφ b +σ −ae−iφ b( )

Blue sideband excitation of the ion = anti-JC interaction

We could consider the implementation of the JC model in trapped ions 
as one of the first nontrivial quantum simulations.

 
H0 = ν(a

†a + 1
2
)

The quantized electromagnetic field is replaced by quantized ion motion

 
HJC =

ω0

2
σ z + ω a†a + g σ +a +σ −a†( )



b) We could see the JC model in circuit QED (cQED) as a quantum simulation; 
the two-level atom is replaced by a superconducting qubit, also called artificial atom.

Quantum simulations are never a plain analogy, cQED has advantages in atomic control 
as in microwave CQED, but also longitudinal and transversal driving as in optical CQED.

 
HJC =

ω0

2
σ z + ω a†a + g σ +a +σ −a†( )



Analog or Digital Quantum Simulations?

a) Reproducing the Dirac equation in trapped ions is a good example of analog 
quantum simulators. Qubits map onto qubits, modes onto modes, and so on. 

!
b) Digital quantum simulators allow us to reproduce quantum dynamics 

that are difficult with analog quantum simulators, enhancing our capabilities. 

!
c) The most clever strategy should be to go for an analog-digital approach 

to optimize the resources provided by each quantum platform.



Quantum Emulation or Quantum Simulation?

a) Emulation is the process of mimicking the outwardly observable 
behaviour to match an existing target or model. 

The internal structure of the emulating system does not have to accurately 
reflect the internal state of the emulated target or model.

b) Simulation consists in the effort of modelling the underlying structure of 
an existing target or model. 

The internal structure of the emulating system tries to accurately reflect the 
internal state of the emulated target or model.



One-to-one quantum simulators or embedding quantum simulators?

a) A one-to-one quantum simulator is a device that uses a two-level system to mimic 

a two-level system and a harmonic oscillator to mimic a harmonic oscillator. 

This may not be the clever approach when scaling up quantum simulations. 

!
b) An embedding quantum simulator (EQS) is a device that embeds the original dynamics 

into an enlarged Hilbert space to enhance and optimize the extraction of information. 

!
EQS merge the concepts of quantum simulation with quantum computing.



Basic interactions in trapped ions 
 
a) The carrier excitation: 

 

Hσφ
= Ωσφ = Ω σ +eiφ +σ −e−iφ( )

φ = 0→ Hσ x
= Ωσ x

φ = − π
2
→ Hσ y

= Ωσ y

⎧

⎨
⎪

⎩
⎪

b) The red sideband excitation: 

 
Hr = η Ωr σ +aeiφ r +σ −a†e−iφ r( )

 
Hb = η Ωb σ +a†eiφ b +σ −ae−iφ b( )

c) The blue sideband excitation: 

 
x = 

2Mν
a† + a( ) = Δ a† + a( )

d) The linear superposition of red and blue sideband excitations: 

 Hr+b = η Ωσφ αx + βpx( )
 
px = i

Mν
2

a† − a( ) = i
2Δ

a† − a( )
with 

Dirac equation in trapped ions



a) The linear superposition of carrier, red and blue sideband excitations, yield an effective Hamiltonian 
corresponding to the 1+1 Dirac Hamiltonian for a free particle: 

 

i ∂
∂t
φ = HD

ionφ = 2ηΔ Ωσ x px + Ωσ z( )φ =
Ω 2ηΔ Ω px

2ηΔ Ω px −Ω

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ φ,

 

i ∂
∂t
φ = HDφ = cσ x px +mc

2σ z( )φ =
mc2 cpx
c px −mc2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
φ

to be compared with the original: 

 

Ω = mc2

2ηΔ Ω = c

⎧
⎨
⎪

⎩⎪
producing the parameter correspondence: 

b) Similar steps produce the quantum simulation of higher dimensional Dirac equations 

L. Lamata, J. León, T. Schätz, and E. Solano, PRL 98, 253005 (2007)

Designing the Dirac equation



“Instantaneous” measurements of ZB 
with sub-Δ resolution and beyond the diffraction limit. 

Reconstruction of absolute square wavefunction 
 of quantum walks in trapped ions. 

R. Gerritsma et al., Nature (2010) 
F. Zähringer et al., PRL (2010) 



h) We have also proposed the quantum simulation of the Klein Paradox 

 
i ∂
∂t
Φ = HDLPΦ = cσ x px +αx +mc

2σ z( )Φ

The Dirac Linear Potential is not always reflecting the particle. This amounts to a Klein Paradox behavior, 
where the particle can move from positive to negative energy components via tunneling. 

J. Casanova et al., PRA 82, 020101(R) (2010); R. Gerritsma et al., PRL 106, 060503 (2011). 
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The quantum Rabi model (QRM) describes, in fact, the dipolar light-matter coupling. 
The JC model is the QRM after RWA, it is the SC regime of cavity/circuit QED.

 
HRabi =

ω0

2
σ z + ω a†a + g σ + +σ −( ) a + a†( )

The QRM is not used for describing experiments because the RWA applies rather well 
in the microwave and optical regimes in quantum optics, where the JC model is enough.

The USC regime & quantum Rabi model

However, we have recently seen the advent of the ultrastrong coupling (USC) regime 
of light-matter interactions in cQED, where 0.1< g/w < 1, and RWA cannot be applied.

- Current experimental efforts are trying to approach USC regimes where g/w ~ 0.5-1.0 
- 

- Recently, the analytical solutions of the QRM were presented: D. Braak, PRL 107, 100401 (2011).

T. Niemczyk et al., Nature Phys. 6, 772 (2010) 
!

P. Forn-Díaz et al., PRL 105, 237001 (2010)

Quantum simulations with circuit QED



Deep strong coupling (DSC) regime of the QRM

The DSC regime of the JC model happens when g/w > 1.0, and we can ask 
whether such a regime could be experimentally reached or ever exist in nature.

chains break into the known Jaynes-Cummings doublets
fjg; na þ 1i; je; naig because we enter into the domain of
applicability of the RWA.

We introduce the parity basis jp; nbi, where bybjnbi ¼
nbjnbi, and b ¼ !xa such that bjp; nbi ¼

ffiffiffiffiffi
nb

p jp; nb # 1i.
Using this basis, the Hamiltonian in Eq. (1) can be
written as

H ¼ @!bybþ @gðbþ byÞ # @!0

2
ð#1Þbyb!: (4)

This Hamiltonian commutes with the parity operator !,
and for each parity chain (p ¼ &1) there is an independent
Hamiltonian describing a perturbed harmonic oscillator.

Note that the term#@!0ð#1Þbyb!=2 behaves as an energy
shift proportional to !0. In the DSC regime, we can get rid
of the term @gðbþ byÞ in Eq. (4) by changing to the basis

Dð#"0Þjp; nbi, with Dð"0Þ ¼ e"0b
y#"'

0b and "0 ¼ g=!.
The eigenenergies and eigenfunctions can be approxi-
mated as a series in !0=!

E"0
p;nb=@(!nb#g2=!#!0

2
pð#1Þnb"nbnb

þ
X

mb!nb

!2
0

4!ðnb#mbÞ
j"nbmb

j2þOð!3
0=!

3Þ: (5)

Alternative approximations can be found in the literature
[21]. To first order we get a displacement in the energy
levels due to the coupling "nbnb ¼ hnbjDð2"0Þjnbi, a

correction which is much smaller than 1, j"nbmb
j )

2#ðnbþmbÞ: Note that this formalism is rigorously valid in
the DSC regime.

We study now the DSC dynamics with the initial state
jc ð0Þi ¼ jþ; 0bi ¼ jg; 0ai, as we activate the interaction
in Eq. (4). We observe that the photon statistics PnbðtÞ will
spread independently along each parity chain, eventually
reaching an energy barrier and bouncing repeatedly.
Remarkably, an intuitive picture can be found, as displayed
in Figs. 1 and 2, that provides physical insight into a
problem that is, in general, analytically intractable. Note
that, in Figs. 1(a) and 1(b), the round trip of the initial
photon number wave packet induces collapse revivals that
are not reminiscent of the SC regime of the JC model [2],
where initial large coherent states are required. In the DSC
limit, with !0 ¼ 0, this intuitive picture can be rigorously
confirmed integrating the evolution

jc ðtÞi¼Dyð"0Þe#ið!byb#g2=!ÞtDð"0Þjþ;0bi¼Uðt;!0¼0Þ
* jc ð0Þi¼eiðg

2=!Þte#iðg=!Þ2 sinð!tÞjþ;"ðtÞi; (6)

where "ðtÞ ¼ "0ðe#i!t # 1Þ is the amplitude of a coherent
state. The revival probability of the initial state reads

Pþ0bðtÞ ¼ jhc ð0Þjc ðtÞij2 ¼ e#j"ðtÞj2 ; (7)

exhibiting periodic collapses and full revivals [28]. When
the initial state is jþ; 2bi ¼ jg; 2ai, as in Fig. 1(c), the DSC

dynamics generates counterpropagating photon number
wave packets in both directions that bounce back and forth
producing interference secondary peaks. Similar intuition
follows when considering initial superposition states, e.g.,
ðjþ; 0biþ jþ; 2biÞ=

ffiffiffi
2

p
, as long as the state components

belong to the same parity chain, otherwise no secondary
peaks appear. When we break the qubit degeneracy,
!0 ! 0, the intuitive picture remains but we lose the
integrability of the problem. Probability still spreads along
each parity chain, as seen in Fig. 2, but now the photon
number wave packet suffers self-interference, it distorts
and its center no longer follows the periodic orbits of
!0 ¼ 0 The result are full collapses and partial revivals

FIG. 1 (color online). (a),(b) Round trip of a photon number
wave packet and collapse revivals due to DSC dynamics with
initial state jþ; 0bi ¼ jg; 0ai. (c) Collapse revivals with second-
ary peaks due to counterpropagating photon number wave pack-
ets starting in initial state jþ; 2bi ¼ jg; 2ai. For all cases,!0 ¼ 0
and g=! ¼ 2.

FIG. 2 (color online). (a) Photon statistics at different times of
the evolution with !0 ¼ 0:5!. (b) Comparison of probability
Pþ;0b ðtÞ calculated for !0 ¼ 0 (solid line) and !0 ¼ 0:5!
(dashed line). In all simulations the initial state is jþ; 0bi and
g=! ¼ 2.

PRL 105, 263603 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

31 DECEMBER 2010

263603-2

Forget about Rabi oscillations or perturbation theory: 
parity chains and photon number wavepackets 

define the physics of the DSC regime.

J. Casanova, G. Romero, et al., PRL 105, 263603 (2010)



We might reach USC/DSC regimes in the lab but be unable to observe them, 
mainly due to the difficulty in ultrafast on/off coupling switching.

What can we do then? Here, we propose two options: 
!

a) We go brute force and try to design ultrafast switching techniques 
that allow us to design a quantum measurement of relevant observables. 

!!
b) We could also reveal these regimes via quantum simulations.

b.1) Recently appeared the first classical simulation of the QRM and DSC regime 
in photonic systems: A. Crespi et al., PRL 108, 163601 (2012).

Is it possible to cheat technology or nature?

b.2) A quantum simulation of the QRM with access to all regimes?



Simulating USC regime and quantum Rabi model

Two-tone microwave driving

Leads to the effective Hamiltonian: QRM in all regimes

D. Ballester, G. Romero, et al., PRX 2, 021007 (2012)

HJC =
~!q

2
�z + ~!a†a+ ~g(�†a+ �a†)

HD = ~⌦1(e
i!1t� +H.c.) + ~⌦2(e

i!2t� +H.c.)

H = ~(! � !1)a
†a+

~⌦2

2
�
z

+
~g
2
�
x

(a+ a†)

A two-tone driving in cavity QED or circuit QED can turn any JC model 
into a USC or DSC regime of the QRM model.



Quantum simulation of relativistic quantum mechanics

1+1 Dirac equation

� = ⇡/2 Zitterbewegung, via measuring
R. Gerritsma et al., Nature 463, 68 (2010)

!e↵ = ! � !1 = 0 HD =
~⌦2

2
�
z

+
~gp
2
�
x

p

HD = ~
X

j

⌦j(e
i(!jt+�)� +H.c.) hXi(t)

1+1 Dirac particle + Potential 

Add a classical driving to the cavity

He↵ =
~⌦2

2
�z � ~gp

2
�yp̂+ ~

p
2⇠x̂

H = HJC + ~
X

j=1,2

(⌦je
�i(!jt+�j)�† +H.c.) + ~⇠(e�i!1ta† +H.c.)

Klein paradox

    Measuring        to observe these effects

R. Gerritsma et al., PRL 106, 060503 (2011)

Quadrature moments have been measured at ETH and WMI: !
E. Menzel et al., PRL 105, 100401(2010); C. Eichler et al., PRL 106, 220503 (2011)

hXi

i~d 
dt

= (c�
x

p+mc2�
z

) 



Disruptive concepts and techniques for QSims?

Here is my take for the next 1-5 years! 

!

a) QSim of unphysical operations and mathematical problems 

b) QSim of embedding quantum simulators for scalable models: 

merging quantum simulation and quantum computing concepts 

c) Digital-analog techniques for scalable QSim of interacting 

fermions and bosons 

d) Error correction and benchmarking of quantum simulators 

e) QSims involving ultrastrong coupling regime of light-matter coupling 

f) QSims involving a continuum of bosonic and fermionic modes



Disruptive applications of quantum simulations?

Here is my take for the next 5-10 years! 

!
a) QSim of condensed-matter models beyond classical capabilities 

b) QSim of quantum chemistry models beyond classical capabilities 

c) QSim of quantum field theory models beyond classical capabilities 

d) QSim of quantum metamaterials in the optical and microwave regimes 

e) QSim of bimomimetic behaviours: quantum biomimetics 



Conclusions and outlook

a) Scalable quantum simulations can produce novel scientific knowledge, 
unaccessible to classical computers and standard measurement techniques.  

!
b) Quantum simulations can explore the limits of simulation in physics, 

including allowed and forbidden quantum operations in nature. 
!

c) Presently, optical lattices and trapped ions dominate quantum simulations. 
Circuit QED and quantum photonics are growing too.


