Towards Large-Scale Ion Trap Quantum Computation

Muir Kumph

Institut für Experimentalphysik Innsbruck

Olomouc 11.4.2014

Outline

- Computation and Processing
- Qubits
- Ion Traps
- Scaling-up Ion Traps into 2D

Computation/Information Processing

 Encode an idea (number, word, etc) into a physical state

• Encode the manipulation of that idea into a mechanism that works with that physical state

Computational Power

Power = computational rate x word size

• P_{muir}=12 bit x 0.05 Hz

• Ie. 64 bit computer at 1 GHz is roughly as powerful as a 32 bit computer at 500 MHz or 10^11 times more powerful than P_{muir}

Hilbert Space of Classical Channels

- Each variable is associated with a degree of freedom
- N channels, have N degrees of freedom
- For instance, two capacitors with voltage "a" and "b"

Q

Qubits

Two level quantum system

$$\int \int |\gamma| = \alpha |0\rangle + \beta |1\rangle$$

$$|11\rangle$$

$$|1$$

Hilbert Space of Multiple Qubits

- Entanglement means Hilbert space grows exponentially: 2^(2N)
 - Overall phase is not measureable
 - Normalization

Quantum Computation

 Aims to use the large Hilbert space of multibodied quantum systems to perform difficult computations and simulations

 Hilbert space of N q-bits is 2^{2N}-2 degrees of freedom

Exponential Growth

- 1 qubit = 2 degrees of freedom
- 10 qubits = 1048574 degrees of freedom
- 100 qubits = 1.6×10^{60} degrees of freedom

• With 136 qubits, the Hilbert space has more degrees of freedom than the number of atoms in the observable universe (10⁸²)

Immediate Applications of Quantum Information Processors

Direct simulation of quantum many-bodied systems

Feynman, R. P. Simulating physics with computers. *Int. J. Theor. Phys.* **21,** 467–488 (1982).

Solving linear systems of equations

Harrow, A. W., Hassidim, A. & Lloyd, S. Quantum Algorithm for Linear Systems of Equations. *Phys. Rev. Lett.* **103**, 150502 (2009).

Number theory and cryptography

Shor, P. W. Algorithms for Quantum Computation: Discrete Logarithms and Factoring. in *35th Annu. Symp. Found. Comput. Sci.* 124 (IEEE Computer Society Press, 1994). doi:10.1109/SFCS.1994.365700

Single qubit

- can be mapped to any 2 level quantum system

Awschalom, D. D., Bassett, L. C., Dzurak, A. S., Hu, E. L. & Petta, J. R. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. *Science* **339**, 1174–9 (2013).

Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. & Schoelkopf, R. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. *Phys. Rev. A* **69**, 062320 (2004).

Hofmann, H. & Takeuchi, S. Quantum phase gate for photonic qubits using only beam splitters and postselection. *Phys. Rev. A* **66**, 024308 (2002).

Bloch, I. Quantum coherence and entanglement with ultracold atoms in optical lattices. *Nature* **453**, 1016–22 (2008).

Ion Traps

quadrupole field allows for trapping of ion

Steane, A. M. The ion trap quantum information processor. *Appl. Phys. B Lasers Opt.* **642**, 623–642 (1997).

Ion Trap Quantum Computing

3 Ca ions

⁴⁰Ca⁺ Atomic Structure [Ar] 4s¹

Planar Electrode Ion Traps

2D Arrays of Ion Traps

http://heart-c704.uibk.ac.at/

Sterling, R. C. *et al.* Two-dimensional ion trap lattice on a microchip. *Nat. Commun.* **5**, 4637 (2014).

Kumph, M., Brownnutt, M., & Blatt, R. (2011). Two-dimensional arrays of radio-frequency ion traps with addressable interactions. *New Journal of Physics*, 13(7), {073043}. doi:10.1088/1367-2630/13/7/073043

Clark, R. J., Lin, T., Brown, K. R., & Chuang, I. L. (2009). A two-dimensional lattice ion trap for quantum simulation. *Journal of Applied Physics*, *105*(1), {013114}. doi:10.1063/1.3056227

Optimization of 2D arrays of planar point Paul Traps

conventional array of ring traps

segment each microtrap

- squeeze the microtraps next to each other
- neighboring RF electrodes become one

neighboring RF electrodes become one

 each ground still holds one RF null and appears as part of a 2D trap array

but now see what happens when we adjust the RF amplitude on the middle electrode

Addressable Ion Traps

Kumph, M., Brownnutt, M., & Blatt, R. (2011). Two-dimensional arrays of radio-frequency ion traps with addressable interactions. *New Journal of Physics*, *13*(7), {073043}. doi:10.1088/1367-2630/13/7/073043

Addressable 2D Arrays

- A possible path to scale up ion traps for large scale computation and simulation
- RF addressing can be used to tune the strength and the frequency of the coupling

Simulation Results Addressable 2 × 2 array

Motional Splitting

 2 coupled harmonic oscillators can be considered as two independent oscillators with COM and squeeze modes

controlled phase-gate between ions in separate traps

$$T_{gate} = 2\pi\varepsilon_0 m\omega d^3 / e^2$$

if both ions are displaced, phase is shifted |SS> + |DD> → |SS> - |DD>

Cirac, J. I. & Zoller, P. A scalable quantum computer with ions in an array of microtraps. *Nature* **13**, 579 (2000).

Dipole-Dipole Coupling Rate with RF Addressing

 $\delta\omega = \frac{q^2}{2\pi\epsilon_0 m\omega d^3}$ $^{40}Ca^+ \text{ ions}$ $100 \text{ } \mu\text{m trap spacing}$

4 × 4 array Folsom

Trap Wiring

ITO Ground Plane

Filter Board

SMA RF Connectors

Ion Trapping in Folsom

Shuttling and Frequency Tuning

with an adjustable RF electrode

Kumph, M., Holz, P., Langer, K., Niedermayr, M., Brownnutt, M., Blatt, R. (2014). Operation of a planar-electrode ion trap array with adjustable RF electrodes. *ArXiv E-Prints*. quant-ph/1402.0791

Heating Rate

single ion recooling heating rate measurement

Summary and Future

- Technology to electronically adjust adjust coupling between traps in a 2D array now exists
- Microtrap array "Ziegelstadl" up-next

Our Group in Innsbruck

