State-of-the-art on winning probability relations

Prof. dr. Bernard De Baets

Ghent University
Belgium

Prepared for the International Centre for Uncertainty and Information
Olomouc (CZ), 30-04-13

Contents

(1) Intransitivity of indifference
(2) Intransitivity of preference
(3) Reciprocal relations
(3) Dice games
(3) Poset ranking
(0) Graded stochastic dominance
((More dice games: beyond transitivity

1. Intransitivity of indifference

The Sorites Paradox

Many versions of the Sorites Paradox:

- The Bald Man Paradox: there is no particular number of hairs whose loss marks the transition to
 boldness
- The Heap Paradox: no grain of wheat can be identified as making the difference between a heap and not being a heap
- The Luce Paradox: sugar in coffee example

The Poincaré Paradox

Approximate equality of real numbers is not transitive, i.e. stating that $a \in \mathbb{R}$ is similar to $b \in \mathbb{R}$ if

$$
|a-b| \leq \epsilon
$$

is not transitive

Possible symmetric configurations ($n=3$)

(b)

The Poincaré Paradox revisited

The fuzzy relation

$$
E_{\epsilon}(a, b)=\max \left(1-\frac{|a-b|}{\epsilon}, 0\right)
$$

is T_{L}-transitive, i.e. $E_{\epsilon}(a, b)+E_{\epsilon}(b, c)-1 \leq E_{\epsilon}(a, c)$

The function $d_{\epsilon}=1-E_{\epsilon}$ is a metric: the triangle inequality holds

$$
d_{\epsilon}(a, b)+d_{\epsilon}(b, c) \geq d_{\epsilon}(a, c)
$$

T-Transitivity of fuzzy relations

Fuzzy relation: $R: A^{2} \rightarrow[0,1]$, with a unipolar semantics

- A fuzzy relation R on A is called T-transitive, with T a t-norm, if

$$
T(R(a, b), R(b, c)) \leq R(a, c)
$$

for any a, b, c in A

Triangular norms

Basic continuous t-norms:

minimum	$T_{\mathbf{M}}$	$\min (x, y)$
product	$T_{\mathbf{P}}$	$x y$
Łukasiewicz t-norm	$T_{\mathbf{L}}$	$\max (x+y-1,0)$

T-triplets

Consider three elements a_{1}, a_{2} and a_{3} :

- A permutation $\left(a_{i}, a_{j}, a_{k}\right)$ is called a T-triplet if

$$
T\left(R\left(a_{i}, a_{j}\right), R\left(a_{j}, a_{k}\right)\right) \leq R\left(a_{i}, a_{k}\right)
$$

- There can be at most $6 T$-triplets
- T-transitivity expresses that there always are $6 T$-triplets

2. Intransitivity of preference

Transitivity of preference

Transitivity of preference is a fundamental principle underlying most major rational, prescriptive and descriptive contemporary models of decision making

- Rationality of individual and collective choice: a transitive person, group or society that prefers choice option x to y and y to z must prefer x to z
- Intransitive relations are often perceived as something paradoxical and are associated with irrational behaviour
- Main argument: money pump

Intransitivity of preference

- Transitivity is expected to hold if preferences are based on a single scale (fitness maximization)
- Intransitive choices have been reported from both humans and other animals, such as gray jays (Waite, 2001) collecting food for storage

- Bounded rationality: intransitive choices are a suboptimal byproduct of heuristics that usually perform well in real-world situations (Kahneman and Tversky, 1969)
- Intransitive choices can result from decision strategies that maximize fitness (Houston, McNamara and Steer, 2007), as a kind of insurance against a run of bad luck

Intransitivity in life

Life provides many examples of intransitive relations, they often seem to be necessary and play a positive role

- sports: team A which defeated team B , which in turn won from C , can be overcome by C
- 13 love triangles:

The God-Einstein-Oppenheimer dice puzzle

(New York Times, 30-03-09)
Integers 1-18 distributed over 3 dice:

A	1	2	13	14	15	16
B	7	8	9	10	11	12
C	3	4	5	6	17	18

Winning probabilities:

Statistical preference

Statistical preference: X is preferred to Y if $\operatorname{Prob}\{X>Y\}>\frac{1}{2}$

- May lead to cycles (Steinhaus and Trybuła, 1959):

- There exist 10.705 cyclic distributions of the numbers $1-18$ and 15 of them constitute a cycle of the highest equal probability $21 / 36=7 / 12$

A single die variant

Integers 1-18 distributed over 1 die: 3 numbers on each face

15	12	17	13	4	14	16	11	3	2	1	10

Winning probabilities:

The single die can be seen as 3 coupled dice

Rock-Paper-Scissors

Cyclic dice are a type of Rock-Paper-Scissors (RPS): (ancient children's game, jan-ken-pon, rochambeau)

- rock defeats scissors
- scissors defeat paper
- rock loses to paper

Rock-Paper-Scissors

The Rock-Paper-Scissors game:

- is often used as a selection method in a way similar to coin flipping, drawing straws, or throwing dice
- unlike truly random selection methods, RPS can be played with a degree of skill: recognize and exploit the non-random behaviour of an opponent
- World RPS Society:
"Serving the needs of decision makers since 1918"

Rock-Paper-Scissors

RPS in voting

The voting paradox of Condorcet (Marquis de Condorcet, 1785)
voter 1: $A>B>C$
voter 2: $B>C>A$
voter 3: $C>A>B$

Inspiration to Arrow's impossibility theorem: there is no choice procedure meeting the democratic assumptions

RPS in evolutionary biology: lizards

Common side-blotched lizard mating strategies (Sinervo and Lively, Nature, 1996) depending on the colour of throats of males

RPS in evolutionary biology: Survival of the Weakest

Cyclic competitions in spatial ecosystems (Reichenbach et al., 2007; Frey, 2009) (alternative to Lotka-Volterra equations, computer simulations using cellular automata)

- in large populations, the weakest species would - with very high probability - come out as the victor
- biodiversity in RPS games is negatively correlated with the rate of migration: critical rate of migration $\epsilon_{\text {crit }}$ above which biodiversity gets lost

Simulating microbial competition

Simulation setting:

- three subpopulations:

- initial population density: 25% A, 25% B , 25% C, $25 \% \square$
- cellular automaton on a square grid
- environmental conditions discarded

Simulating microbial competition: mechanisms

- Reproduction (μ):
- Selection (σ):

- Migration (ϵ):

Simulation experiment 1

$$
\epsilon<\epsilon_{C}
$$

Simulation experiment 2

$\epsilon>\epsilon_{C}$

3. Reciprocal relations

Reciprocal relations

Reciprocal relation: $Q: A^{2} \rightarrow[0,1]$, with a bipolar semantics, satisfying

$$
Q(a, b)+Q(b, a)=1
$$

- Example 1: 3-valued representation of a complete relation R

$$
Q(a, b)=\left\{\begin{array}{cl}
1 & , \text { if } R(a, b)=1 \text { and } R(b, a)=0 \\
1 / 2 & , \text { if } R(a, b)=R(b, a)=1 \\
0 & , \text { if } R(a, b)=0 \text { and } R(b, a)=1
\end{array}\right.
$$

- Example 2: winning probabilities associated with a random vector $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$

$$
Q\left(X_{i}, X_{j}\right)=\operatorname{Prob}\left\{X_{i}>X_{j}\right\}+\frac{1}{2} \operatorname{Prob}\left\{X_{i}=X_{j}\right\}
$$

Possible complete asymmetric configurations ($n=3$)

Oppenheimer's set of dice

Reciprocal relation:

$$
Q=\left(\begin{array}{ccc}
1 / 2 & 24 / 36 & 16 / 36 \\
12 / 36 & 1 / 2 & 24 / 36 \\
20 / 36 & 12 / 36 & 1 / 2
\end{array}\right)
$$

T-transitivity of reciprocal relations

Although not compatible with the bipolar semantics, T-transitivity can be imposed formally

Theorem

Consider a reciprocal relation on three elements:

- There are either 3,5 or $6 T_{M}$-triplets
- There are either 3, 4, 5 or $6 T_{p}$-triplets
- There are either 3 or $6 T_{L}$-triplets

T_{L}-transitivity of reciprocal relations

T_{L}-transitivity of a reciprocal relation $=$ "triangle inequality":

$$
Q(a, b)+Q(b, c) \geq Q(a, c)
$$

Theorem

The winning probability relation associated with a random vector satisfies the triangle inequality

Stochastic transitivity of reciprocal relations

A reciprocal relation Q is called g-stochastic transitive if

$$
(Q(a, b) \geq 1 / 2 \wedge Q(b, c) \geq 1 / 2) \Rightarrow g(Q(a, b), Q(b, c)) \leq Q(a, c)
$$

- weak stochastic transitivity $(g=1 / 2)$: iff $1 / 2$-cut of Q is transitive
- moderate stochastic transitivity $(g=\mathrm{min})$: iff all α-cuts (with $\alpha \geq 1 / 2$) are transitive
- strong stochastic transitivity ($g=\max$)

A reciprocal relation Q is called partially stochastic transitive if

$$
(Q(a, b)>1 / 2 \wedge Q(b, c)>1 / 2) \Rightarrow \min (Q(a, b), Q(b, c)) \leq Q(a, c) ;
$$

iff all α-cuts (with $\alpha>1 / 2$) are transitive

4. Dice games: independent RV

A probabilistic viewpoint

Three random variables X_{1}, X_{2} and X_{3} :

$$
\operatorname{Prob}\left\{X_{1}>X_{2} \wedge X_{2}>X_{3}\right\} \leq \operatorname{Prob}\left\{X_{1}>X_{3}\right\}
$$

Even if they are independent, then not necessarily

$$
\operatorname{Prob}\left\{X_{1}>X_{2}\right\} \operatorname{Prob}\left\{X_{2}>X_{3}\right\} \leq \operatorname{Prob}\left\{X_{1}>X_{3}\right\}
$$

How close are winning probabilities to being T_{P}-transitive

$$
Q(a, b) Q(b, c) \leq Q(a, c) ?
$$

Oppenheimer's set of dice

Reciprocal relation:

$$
Q=\left(\begin{array}{ccc}
1 / 2 & 24 / 36 & 16 / 36 \\
12 / 36 & 1 / 2 & 24 / 36 \\
20 / 36 & 12 / 36 & 1 / 2
\end{array}\right)
$$

Four product-triplets, the only conditions not fulfilled are

$$
Q(b, c) Q(c, a) \leq Q(b, a) \quad \text { and } \quad Q(c, a) Q(a, b) \leq Q(c, b)
$$

since

$$
\frac{20}{36} \times \frac{24}{36}=\frac{12}{36}+\frac{1}{27}>\frac{12}{36}
$$

Cycle-transitivity

Reciprocal relation $Q:$| $\alpha_{a b c}$ | $\min \{Q(a, b), Q(b, c), Q(c, a)\}$ |
| :---: | :---: |
| $\beta_{a b c}$ | $\operatorname{median}\{Q(a, b), Q(b, c), Q(c, a)\}$ |
| $\gamma_{a b c}$ | $\max \{Q(a, b), Q(b, c), Q(c, a)\}$ |

Tp-transitivity

A reciprocal relation Q is $T_{\mathbf{P}}$-transitive if and only if $\alpha \beta \leq 1-\gamma$ (both clockwise and counter-clockwise)

Pairwise independent random variables

Theorem (characterization for $n=3$ and rational numbers)

The winning probability relation $Q^{\mathbf{P}}$ associated with pairwise independent random variables is weakly T_{P}-transitive (dice-transitive), i.e.

$$
\beta \gamma \leq 1-\alpha
$$

(both clockwise and counter-clockwise)

Interpretation

The winning probability relation $Q^{\mathbf{P}}$ is at least $\frac{4}{6} \times 100 \% T_{P}$-transitive

Some interesting numbers for 3 dice

	4 faces	5 faces	6 faces	7 faces
$4 T_{\mathbf{P}}$-triplets	8.66%	1.67%	0.325%	0.060%
$5 T_{\mathbf{P}}$-triplets	14.01%	7.98%	4.2%	2.31%
$6 T_{\mathbf{P}}$-triplets	85.90%	92.00%	95.8%	97.68%
total number	$5.78 \mathrm{E}+03$	$1.26 \mathrm{E}+05$	$2.86 \mathrm{E}+06$	$6.65+07$

Avoiding cycles

- The strict ϕ-cut of $Q^{\mathbf{P}}$, with ϕ the golden section:

$$
\frac{22}{36}<\phi=\frac{\sqrt{5}-1}{2}<\frac{23}{36}
$$

contains no cycles of length 3

- The 3/4-cut of $Q^{\mathbf{P}}$ is acyclic

5. Poset ranking: coupled RV

Partially ordered sets

Partially ordered sets (posets) are witnessing an increased interest:

- multi-criteria analysis without a common scale
- allow for incomparability
- usually based on product ordering in a multi-dimensional setting
- the Hasse diagram technique in environmetrics and chemometrics

Real-world example: pollution in Baden-Württemberg

Toy example: a poset and its linear extensions

Linear extension: an order-preserving permutation of the elements

Toy example: average rank

Discrete random variable X_{a} describing the position of a in a random linear extension

Toy example: poset ranking

Ranking the elements according to their average rank (weak order)

Toy example: mutual rank probabilities

Fraction of linear extensions in which a is ranked above b :

$$
\operatorname{Prob}\left\{X_{a}>X_{b}\right\}=\frac{3}{9}
$$

Mutual rank probability relation

Mutual rank probability relation: reciprocal relation expressing the probability that x_{i} is ranked above x_{j}

$$
Q\left(x_{i}, x_{j}\right)=\operatorname{Prob}\left\{X_{i}>X_{j}\right\}
$$

Toy example:

$$
Q=\left(\begin{array}{ccccc}
1 / 2 & 3 / 9 & 0 & 0 & 0 \\
6 / 9 & 1 / 2 & 3 / 9 & 0 & 1 / 9 \\
1 & 6 / 9 & 1 / 2 & 2 / 9 & 0 \\
1 & 1 & 7 / 9 & 1 / 2 & 4 / 9 \\
1 & 8 / 9 & 1 & 5 / 9 & 1 / 2
\end{array}\right)
$$

Linear extension majority cycles

Linear Extension Majority: x_{i} is ranked above x_{j} if $\operatorname{Prob}\left\{X_{i}>X_{j}\right\}>\frac{1}{2}$

- May lead to cycles $(n \geq 9)$: only 5 out of 183231 posets of size 9 contain LEM 3-cycles, none of them contains longer LEM cycles

$$
\begin{aligned}
& Q(g, h)=Q(h, i)=Q(i, g)=\frac{720}{1431} \\
& Q(d, e)=Q(e, f)=Q(f, d)=\frac{720}{1431} \\
& Q(a, b)=Q(b, c)=Q(c, a)=\frac{720}{1431}
\end{aligned}
$$

- Yu (1998): α-cuts of Q_{P} are transitive for

$$
\alpha>\frac{1}{2}(1+(\sqrt{2}-1) \sqrt{2 \sqrt{2}-1}) \approx 0.78
$$

Transitivity

Theorem

The mutual rank probability relation is moderately T_{P}-transitive, i.e.

$$
\alpha \gamma \leq 1-\beta
$$

(both clockwise and counter-clockwise)

Interpretation

The mutual rank probability relation is at least $\frac{5}{6} \times 100 \% T_{p}$-transitive

Avoiding 3-cycles

The strict ϕ-cut of Q_{P}, with ϕ the golden section, contains no cycles of length 3

Product-triplets and min-triplets

There are 1104891746 non-isomorphic posets of 12 elements

6. Graded stochastic dominance: artificially coupled RV

Stochastic dominance

Aim:

- to define a partial order relation on a set of real-valued RV
- semantics: RV taking higher values are preferred

Application areas:

- economics and finance
- social statistics
- decision making under uncertainty
- machine learning and multi-criteria decision making

Stochastic dominance

General principle:

- pairwise comparison of RV
- pointwise comparison of performance functions

The cumulative distribution function (CDF) F_{X} :

$$
F_{X}(x)=\operatorname{Prob}\{X \leq x\}
$$

First order stochastic dominance (FSD)

- First order stochastic dominance relation (FSD):

$$
X \succeq_{\mathrm{FSD}} Y \stackrel{\text { def }}{\Leftrightarrow} F_{X} \leq F_{Y}
$$

or, equivalently,

$$
\mathbf{E}[u(X)] \geq \mathbf{E}[u(Y)]
$$

for any increasing function u

- FSD implies weak statistical preference: $Q^{P}(X, Y) \geq 1 / 2$

Shortcomings

- no tolerance for small deviations, no grading
- usually sparse graphs

Dice games versus co-monotone comparison

Proportional expected difference

- Reciprocal relation: $Q^{\mathrm{M}}(X, Y)=\frac{1}{n} \sum_{k=1}^{n} \delta_{k}^{M}$
with

$$
\delta_{k}^{\mathbf{M}}=\left\{\begin{array}{cl}
1 & , \text { if } x_{k}>y_{k} \\
1 / 2 & , \text { if } x_{k}=y_{k} \\
0 & , \text { if } x_{k}<y_{k}
\end{array}\right.
$$

- Proportional expected difference relation:

$$
Q^{\mathrm{PED}}(X, Y)=\frac{\frac{1}{n} \sum_{k=1}^{n}\left(x_{k}-y_{k}\right)_{+}}{\frac{1}{n} \sum_{k=1}^{n}\left|x_{k}-y_{k}\right|}=\frac{\mathbf{E}\left[(X-Y)_{+}\right]}{\mathrm{E}[|X-Y|]}
$$

with $Q^{\text {PED }}(X, Y)=1$ if and only if $X \succ_{\text {FSD }} Y$

Proportional expected difference

The case of continuous RV:

$$
Q^{\mathrm{PED}}(X, Y)=\frac{\int\left(F_{Y}(x)-F_{X}(x)\right)_{+} \mathrm{d} x}{\int\left|F_{Y}(x)-F_{X}(x)\right| \mathrm{d} x}
$$

Transitivity

Theorem

The proportional expected difference relation $Q^{P E D}$ is partially stochastic transitive

Use

- The strict $1 / 2$-cut of $Q^{\text {PED }}$ yields the strict order relation characterized by

$$
Q^{\mathrm{PED}}(X, Y)>\frac{1}{2} \quad \Leftrightarrow \quad \mathrm{E}[X]>\mathrm{E}[Y]
$$

- Any α-cut (with $\alpha>1 / 2$) yields a strict order relation: with increasing α the graph (Hasse diagram) becomes more and more sparse (Hasse tree)

Example

Integers 1-9 distributed over 5 dice:

A	1	4	9
B	3	4	8
C	3	6	7
D	2	7	8
E	5	6	7

$$
Q^{\mathrm{PED}}=\left(\begin{array}{ccccc}
1 / 2 & 1 / 3 & 1 / 3 & 1 / 5 & 1 / 4 \\
2 / 3 & 1 / 2 & 1 / 3 & 1 / 4 & 1 / 5 \\
2 / 3 & 2 / 3 & 1 / 2 & 1 / 3 & 0 \\
4 / 5 & 3 / 4 & 2 / 3 & 1 / 2 & 2 / 5 \\
3 / 4 & 4 / 5 & 1 & 3 / 5 & 1 / 2
\end{array}\right)
$$

Example

7. More dice games: beyond transitivity

Rock-Paper-Scissors-Lizard

Integers 1-12 distributed over 4 dice:

A	1	6	12
B	4	5	10
C	3	8	9
D	2	7	11

Statistical preference: 4-cycle $A B C D$ and two 3-cycles $A B C$ and $B C D$

Possible complete asymmetric configurations ($n=4$)

Product-triplets $(n=4)$

Interpretation

The winning probability relation $Q^{\mathbf{P}}$ is at least $\frac{4}{6} \times 100 \% T_{\mathbf{P}}$-transitive
Some figures: number of product-triplets for 4 dice

	4 faces	5 faces	6 faces
16 triplets	-	-	-
17 triplets	-	-	0.000001%
18 triplets	0.001%	0.00004%	0.000003%
19 triplets	0.010%	0.0013%	0.0001%
20 triplets	0.26%	0.080%	0.018%
21 triplets	3.37%	1.51%	0.54%
22 triplets	17.45%	9.48%	4.91%
23 triplets	10.63%	8.23%	5.35%
24 triplets	68.28%	80.69%	89.18%
total number	$2.63 \mathrm{E}+06$	$4.89 \mathrm{E}+08$	$9.30 \mathrm{E}+10$

At least 16 product-triplets it is!

Integers 1-36 distributed over 4 dice:

A	4	5	6	7	8	9	10	34	35
B	11	12	13	14	15	16	17	18	36
C	1	19	20	21	22	23	24	25	26
D	2	3	27	28	29	30	31	32	33

Semi-transitivity and the Ferrers property

Semi-transitivity:
if $a R b$ and $b R c$, then $a R d$ or $d R c$

The Ferrers property:
if $a R b$ and $c R d$, then $a R d$ or $c R b$

Key property of methods for ranking fuzzy intervals (numbers), rather than transitivity!

T-semi-transitivity

A fuzzy relation R on A is called T-semi-transitive, with T a t-norm and T^{*} its dual t-conorm, if

$$
T(R(a, b), R(b, c)) \leq T^{*}(R(a, d), R(d, c))
$$

for any a, b, c, d in A

T-Ferrers property

A fuzzy relation R on A is called T-Ferrers, with T a t-norm and T^{*} its dual t -conorm, if

$$
T(R(a, b), R(c, d)) \leq T^{*}(R(a, d), R(c, b))
$$

for any a, b, c, d in A

Reciprocal relations

- Complete relations: transitivity implies semi-transitivity and the Ferrers property
- Reciprocal relations: if T is 1 -Lipschitz continuous, then
- T-transitivity implies T-semi-transitivity
- T-transitivity implies the T-Ferrers property

TL-Ferrers

The winning probability relation associated with a random vector is T_{L}-Ferrers

The Ferrers property

Four independent random variables X_{1}, X_{2}, X_{3} and X_{4} :

$$
\begin{gathered}
\operatorname{Prob}\left\{X_{1}>X_{2}\right\} \operatorname{Prob}\left\{X_{3}>X_{4}\right\} \\
\leq \operatorname{Prob}\left\{X_{1}>X_{4}\right\}+\operatorname{Prob}\left\{X_{3}>X_{2}\right\}-\operatorname{Prob}\left\{X_{1}>X_{4}\right\} \operatorname{Prob}\left\{X_{3}>X_{2}\right\}
\end{gathered}
$$

Theorem

The winning probability relation $Q^{\mathbf{P}}$ associated with pairwise independent random variables is T_{P}-Ferrers

A stronger version of the T_{p}-Ferrers property

Weak T_{p}-transitivity and the T_{p}-Ferrers property revisited

- A reciprocal relation Q is weakly T_{p}-transitive (dice-transitive) if and only if for any 3 consecutive weights $\left(t_{1}, t_{2}, t_{3}\right)$ it holds that

$$
t_{1}+t_{2}+t_{3}-1 \geq \min \left(t_{1} t_{2}, t_{2} t_{3}, t_{3} t_{1}\right)
$$

- A reciprocal relation Q is $T_{\mathbf{P}}$-Ferrers if and only if for any 4 consecutive weights $\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$ it holds that

$$
t_{1}+t_{2}+t_{3}+t_{4}-1 \geq t_{1} t_{3}+t_{2} t_{4}
$$

4-cycle condition

The winning probability relation $Q^{\mathbf{P}}$ associated with pairwise independent random variables satisfies for any for any 4 consecutive weights
$\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$

$$
t_{1}+t_{2}+t_{3}+t_{4}-1 \geq t_{1} t_{3}+t_{2} t_{4}+\min \left(t_{1}, t_{3}\right) \min \left(t_{2}, t_{4}\right)
$$

What if God does throw dice?

Integers 1-20 distributed over 5 dice:

A	1	5	12	20
B	2	6	15	18
C	3	9	14	17
D	4	8	11	19
E	7	10	13	16

Whatever X, Y selected by Oppenheimer and Einstein, God can select Z such that

$$
\begin{aligned}
& \operatorname{Prob}\{Z>\max (X, Y)\}>\operatorname{Prob}\{X>\max (Y, Z)\} \\
& \operatorname{Prob}\{Z>\max (X, Y)\}>\operatorname{Prob}\{Y>\max (X, Z)\}
\end{aligned}
$$

This cannot be realized with 3 or 4 dice

Conclusion

Conclusion

- Cyclic phenomena are not necessarily incompatible with transitivity, but arise due to the granularity considered
- Cycle-transitivity yields a general framework for studying the transitivity of reciprocal relations
- Frequentist interpretation of the transitivity of winning probabilities in terms of product-transitivity
- Alternative theories of stochastic dominance
- In silico species competition and coexistence
- In machine learning, the AUC (area under the ROC curve) in a 1-versus-1 multi-class classification scheme form a reciprocal relation

References: Bell inequalities

(1) S. Janssens, B. De Baets and H. De Meyer, Bell-type inequalities for parametric families of triangular norms, Kybernetika 40 (2004), 89-106.
(2) S. Janssens, B. De Baets and H. De Meyer, Bell-type inequalities for quasi-copulas, Fuzzy Sets and Systems 148 (2004), 263-278.
(3) B. De Baets, S. Janssens and H. De Meyer, Meta-theorems on inequalities for scalar fuzzy set cardinalities, Fuzzy Sets and Systems 157 (2006), 1463-1476.

References: similarity measures

(1) B. De Baets, H. De Meyer and H. Naessens, A class of rational cardinality-based similarity measures, J. Comput. Appl. Math. 132 (2001), 51-69.
(2) B. De Baets and H. De Meyer, Transitivity-preserving fuzzification schemes for cardinality-based similarity measures, European J. Oper. Res. 160 (2005), 726-740.
(3) B. De Baets, S. Janssens and H. De Meyer, On the transitivity of a parametric family of cardinality-based similarity measures, Internat. J. Approximate Reasoning 50 (2009), 104-116.

References: comparison of random variables

(1) B. De Schuymer, H. De Meyer, B. De Baets, S. Jenei, On the cycle-transitivity of the dice model, Theory and Decision 54 (2003), 264-285
(2) H. De Meyer, B. De Baets, B. De Schuymer, Extreme copulas and the comparison of ordered lists, Theory and Decision 62 (2007), 195-217.
(3) B. De Schuymer, H. De Meyer, B. De Baets, Cycle-transitive comparison of independent random variables, J. Multivariate Analysis 96 (2005), 352-373.
(9) H. De Meyer, B. De Baets, B. De Schuymer, On the transitivity of the comonotonic and countermonotonic comparison of random variables, J. Multivariate Analysis 98 (2007), 177-193.
(5) B. De Baets, H. De Meyer, Cycle-transitive comparison of artificially coupled random variables, Int. J. Approx. Reasoning 47 (2008), 306-322.

References: order theory

(1) K. De Loof, H. De Meyer and B. De Baets, Exploiting the lattice of ideals representation of a poset, Fundamenta Informaticae 71 (2006), 309-321.
(2) K. De Loof, B. De Baets, H. De Meyer, Counting linear extension majority cycles in posets on up to 13 points, Computers and Mathematics with Applications 59 (2010), 1541-1547.
(3) B. De Baets, H. De Meyer, K. De Loof, On the cycle-transitivity of the mutual rank probability relation of a poset, Fuzzy Sets and Systems 161 (2010), 2695-2708.
(9) K. De Loof, B. De Baets and H. De Meyer, Approximation of average ranks in posets, MATCH - Communications in Mathematical and in Computer Chemistry 66 (2011), 219-229.
(5) K. De Loof, B. De Baets and H. De Meyer, A necessary 4-cycle condition for dice representability of reciprocal relations, 4OR, to appear.
(0) K. De Loof, B. De Baets and H. De Meyer, A frequentist view on cycle-transitivity w.r.t. commutative dual quasi-copulas, Fuzzy Sets and Systems, submitted.

References: machine learning

(1) W. Waegeman, B. De Baets, A transitivity analysis of bipartite rankings in pairwise multi-class classification, Information Sciences 180 (2010), 4099-4117.
(2) T. Pahikkala, W. Waegeman, E. Tsivtsivadze, T. Salakoski, B. De Baets, Learning intransitive reciprocal relations with kernel methods, European J. Oper. Res. 206 (2010), 676-685.
(3) W. Waegeman, B. De Baets, On the ERA representability of pairwise bipartite ranking functions, Artificial Intelligence Journal 175 (2011), 1223-1250.

References: decomposition of fuzzy relations

(1) B. Van de Walle, B. De Baets and E. Kerre, Characterizable fuzzy preference structures, Annals of Operations Research 80 (1998), 105-136.
(2) B. De Baets and J. Fodor, Additive fuzzy preference structures: the next generation, in: Principles of Fuzzy Preference Modelling and Decision Making (B. De Baets and J. Fodor, eds.), Academia Press, 2003, pp. 15-25. Additive decomposition of fuzzy pre-orders, Fuzzy Sets and Systems 158 (2007), 830-842.
(3) S. Díaz, S. Montes and B. De Baets, Transitivity bounds in additive fuzzy preference structures, IEEE Trans. Fuzzy Systems 15 (2007), 275-286.
(9) S. Díaz, B. De Baets and S. Montes, On the compositional characterization of complete fuzzy pre-orders, Fuzzy Sets and Systems 159 (2008), 2221-2239.
(3) S. Díaz, B. De Baets and S. Montes, General results on the decomposition of transitive fuzzy relations, Fuzzy Optimization and Decision Making 9 (2010), 1-29.

