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Quantum operations

Choi-Jamiolkowski isomorphism
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Maximally entangled probe state

Transformation of input states

Complete positivity condition
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Quantum gate fidelity

Choi matrix of a unitary operation U – density matrix of a pure maximally entangled state:
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Quantum gate fidelity – defined as normalized overlap of Choi operators:

Practical determination of gate fidelity:

• quantum process tomography – full reconstruction of process matrix 
• Monte Carlo sampling 
• Hofmann lower and upper bounds on gate fidelity



Hofmann bounds on gate fidelity

Determine average state fidelities for two conjugate bases j
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Average state fidelities:
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H.F. Hofmann, Phys. Rev. Lett. 94, 160504 (2005).



Hofmann bounds on gate fidelity
Average state fidelities:
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Lower bound on quantum gate fidelity

Upper bound on quantum gate fidelity
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Minimum number of probe states
To obtain a nontrivial bound on quantum gate fidelity, it suffices to probe 
the quantum gate with d+1 pure probe states:

Computational basis states: Superposition state:
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Average state fidelity F: State fidelity G:
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Determine a lower bound on quantum gate fidelity given F and G.

D.M. Reich, G. Gualdi, and C.P. Koch, Phys. Rev. A 88, 042309 (2013).



Two-qubit gates

Construction of a specific quantum operation that will be proven to minimize the 
gate fidelity for given fixed state fidelitites F and G:

J. Fiurášek and M. Sedlák, Phys. Rev. A 89, 012323 (2014).



Parameters of the quantum operation

Determined from the trace-preservation 
condition and from the fixed state fidelitites:

Analytical formula for quantum gate fidelity of this operation:



Generalized Hofmann lower bound

Define a threshold fidelity

If F>Fth then the lower bound on 
gate fidelity reads

If F<Fth then the lower bound is zero:
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Comparison with standard Hofmann bound
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Optimality proof
The proof exploits semidefinite programming techniques.

Define operator

and find Lagrange multipliers x,w,y,z such that

where



Optimality proof II

Positive semidefinitenes of M implies
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Altogether we have



Optimality proof III

Lagrange multipliers: Eigenvalues of M:

It can be proven analytically that all the eigenvalues are non-negative.



N-qubit gates
Construction of the specific quantum operation can be extended to N-qubit
gates but no proof of optimality is available.

Anyway, this construction yields an 
upper bound on the generalized 
Hofmann lower bound for this case:

The bound is 0 when F<Fth.

The fidelity F must be exponentially close to 1 to obtain a nontrivial bound.


