Formal L-concepts with Rough Intents

Eduard Bartl & Jan Konecny

CLA 2014

Motivation and Aims

Motivation

- Many models involving ordinary sets and relations have been subject to extensions in which the ordinary sets and relations are replaced by fuzzy sets and fuzzy relations.
- While the natural reason for such extensions comes from the need to extend the applicability of the models, the technical side of the extensions is far from being obvious.
- Various methods have been proposed (the best-known concept of representation of fuzzy sets by cuts.)
- We focus on models based on closure-like structures derived from a binary relation.

Aim of the paper

- we provide a simple proof of the so-called basic theorem of a general type of concept lattices and generalize several existing approaches to concept lattices.
- we promote a useful representation of fuzzy sets Cartesian representation.

Outline

- Brief Introduction to Formal Concept Analysis
- Generalized Concept Lattices and the Main Theorem
- The Cartesian Representation
- The Simple Proof of the Main Theorem
- Summary

Formal Concept Analysis

(Wille, Germany, 1982) non-numerical method for identification of formal concepts (based on logic/algebra/discrete math)

INPUT: Context

	y_1	y_2	y_3	y_4
x_1	1	1	1	1
x_2	1	0	1	1
x_3	0	1	1	1
x_4	0	1	1	1
x_5	1	0	1	0

```
X = \{x_1, x_2 \dots\} ... objects (rows) Y = \{y_1, y_2 \dots\} ... attributes (columns) I ... relation of incidence \langle x, y \rangle \in I = (1 \text{ in the table}) ... ... object has attribute
```

OUTPUTS:

- Concept lattices
- Attribute implications

Formal Concept Analysis

Concept lattices

Induced operators . . . mappings ${}^{\uparrow}$, ${}^{\downarrow}$. $A\subseteq X\mapsto A^{\uparrow}$. . . attributes common to all objects from A $B\subseteq Y\mapsto B^{\downarrow}$. . . objects sharing all attributes from B Formal Concept in $\langle X,Y,I\rangle$. . . $\langle A,B\rangle$, $A\subseteq X$, $B\subseteq Y$, s.t.

$$A^{\uparrow} = B$$
 and $B^{\downarrow} = A$

 $A \dots \mathsf{extent} \dots \mathsf{objects}$ covered by formal concept $B \dots \mathsf{intent} \dots \mathsf{attributes}$ covered by formal concept

Example: DOG (extent = collection of all dogs (foxhound, poodle, . . .), intent = {barks, has four limbs, has tail, . . . })

Subconcept–superconcept ordering \leq of formal concept is defined by

$$\langle A_1, B_1 \rangle \leq \langle A_2, B_2 \rangle$$
 iff $A_1 \subseteq A_2$ (iff $B_2 \subseteq B_1$)

Example: $DOG \le ANIMAL \le ORGANISM$

Formal Concept Analysis

Concept Lattice and the Main Theorem

$$\mathcal{B}(X,Y,I)=\{\langle A,B\rangle\,|\,A^{\uparrow}=B,B^{\downarrow}=A\}+\leq \text{is called a concept lattice}.$$

Theorem

(1) The set $\mathcal{B}(X.Y,I) = \{\langle A,B \rangle \mid A^{\uparrow} = B, B^{\downarrow} = A\}$ with \leq infima and suprema defined as follows

$$\bigwedge_{j \in J} \langle A_j, B_j \rangle = \langle \bigcap_{j \in J} A_j, (\bigcup_{j \in J} B_j)^{\downarrow \uparrow} \rangle \qquad \bigvee_{j \in J} \langle A_j, B_j \rangle = \langle (\bigcup_{j \in J} A_j)^{\uparrow \downarrow}, \bigcap_{j \in J} B_j, \rangle$$

(2) Moreover, a complete lattice $\mathbf{V} = \langle V, \leq \rangle$ is isomorphic to $\mathcal{B}(X,Y,I)$ iff there are mappings $\gamma: X \to V$ and $\mu: Y \to V$ such that $\gamma(X)$ is supremally dense in \mathbf{V} , $\mu(Y)$ is infimally dense in \mathbf{V} , and $\langle x,y \rangle \in I$ is equivalent to $\gamma(x) \leq \mu(y)$ for all $x \in X, y \in Y$.

Generalization of FCA

Instead of

	y_1	y_2	y_3	y_4
x_1	1	1	1	1
x_2	1	0	1	1
x_3	0	1	1	1
x_4	0	1	1	1
x_5	1	0	1	0

$$X = \{x_1, x_2 \dots\}$$
 ... objects (rows) $Y = \{y_1, y_2 \dots\}$... attributes (columns) I ... relation of incidence $\langle x, y \rangle \in I = (1 \text{ in the table})$ object has attribute

we have

$$X = \{x_1, x_2 \dots\} \dots$$
 objects (rows) $X = \{x_1, x_2 \dots\} \dots$ objects (rows) $Y = \{y_1, y_2 \dots\} \dots$ attributes (columns) $I \dots$ relation of incidence $I(x,y) \dots$ degree in which the object x has the attribute y

Supremum preserving aggregation structures

Aggregation structure:

 $\mathbf{L}_1 = \langle L_1, \leq_1 \rangle, \mathbf{L}_2 = \langle L_2, \leq_2 \rangle, \mathbf{L}_3 = \langle L_2, \leq_2 \rangle$ – complete lattices, and $\square : L_1 \times L_2 \to L_3$. A quadruple $\langle \mathbf{L}_1, \mathbf{L}_2, \mathbf{L}_3, \square \rangle$ satisfying

$$(\bigvee_{1j\in J} a_j) \square b = \bigvee_{3j\in J} (a_j \square b) \qquad a \square (\bigvee_{2j'\in J'} b_{j'}) = \bigvee_{3j'\in J'} (a \square b_{j'}).$$

is called a (supremum preserving) aggregation structure.

Operations of residuation:

 $\circ_{\square}: L_1 \times L_3 \to L_2$ and ${}_{\square} \circ : L_3 \times L_2 \to L_1$ (adjoints to \square) are defined by

$$a_1 \circ_{\square} a_3 = \bigvee_2 \{a_2 \mid a_1 \square a_2 \leq_3 a_3\},$$

 $a_3 \Box \circ a_2 = \bigvee_1 \{a_1 \mid a_1 \Box a_2 \leq_3 a_3\}.$

(We put indices in a_1 and the like for mnemonic reasons. Thus, a_1 indicates that a_1 is taken from L_1 and the like.)

Aggregation Structures - Examples

 $\langle L, \wedge, \vee, \otimes, \rightarrow, 0, 1 \rangle$ – complete residuated lattice with partial order \leq .

- $\langle L, \wedge, \vee, 0, 1 \rangle$ complete lattice,
- $\langle L, \otimes, 1 \rangle$ commutative monoid,
- $a \otimes b \leq c$ iff $a \leq b \rightarrow c$ (adjointness).

Consider $L_i = L$ and \leq_i is either \leq or the dual of \leq (i.e. $\leq_i = \leq$ or $\leq_i = \leq^{-1}$).

(a) Let $\mathbf{L}_1 = \langle L, \leq \rangle$, $\mathbf{L}_2 = \langle L, \leq \rangle$, and $\mathbf{L}_3 = \langle L, \leq \rangle$, let \square be \otimes . Then, as is well known, \square commutes with suprema in both arguments. Namely, due to commutativity of \otimes , commuting amounts to $a \otimes \bigvee_{j \in J} b_j = \bigvee_{j \in J} (a \otimes b_j)$.

Furthermore,

$$a_1 \circ_{\square} a_3 = \bigvee \{a_2 \mid a_1 \otimes a_2 \leq a_3\} = a_1 \to a_3$$

and, similarly, $a_3 \,_{\square} \circ a_2 = a_2 \to a_3$.

(b) Let $\mathbf{L}_1 = \langle L, \leq \rangle$, $\mathbf{L}_2 = \langle L, \leq^{-1} \rangle$ and $\mathbf{L}_3 = \langle L, \leq^{-1} \rangle$, let \square be \rightarrow . Then \square commutes with suprema in both arguments.

Namely, the conditions for commuting with suprema in this case become

$$(\bigvee_{j\in J} a_j) \to b = \bigwedge_{j\in J} (a_j \to b) \text{ and } a \to (\bigwedge_{j\in J} b_j) = \bigwedge_{j\in J} (a \to b_j)$$

which are well-known properties of residuated lattices.

In this case, we have

$$a_1 \circ_{\square} a_3 = \bigwedge \{a_2 \mid a_1 \to a_2 \ge a_3\} = a_1 \otimes a_3$$

$$a_3 \square \circ a_2 = \bigvee \{a_1 \mid a_1 \to a_2 \ge a_3\} = a_3 \to a_2.$$

Fuzzy Sets and Fuzzy Contexts

Fuzzy sets

Let $\mathbf{L} = \langle L, \leq \rangle$ be a complete lattice and U be ordinary set (universe).

L-set A in U is a mapping $A:U\to L$.

Operations with L-sets defined component-wise using operations of L System of all L-sets in U denoted L^U .

Let $\langle \mathbf{L}_1, \mathbf{L}_2, \mathbf{L}_3, \Box \rangle$ be a sup-preserving aggregation structure. \mathbf{L}_3 -context – $\langle X, Y, I \rangle$:

- X and Y are non-empty sets of objects and attributes, respectively
- $I: X \times Y \to L_3$ is a binary \mathbf{L}_3 -relation between X and Y. For $x \in X$ and $y \in Y$, the degree I(x,y) is interpreted as the degree to which the object x has the attribute y.

Concept-forming operators $^{\uparrow}:L_1{}^X \to L_2{}^Y$ and $^{\downarrow}:L_2{}^Y \to L_1{}^X$ defined by

$$A^{\uparrow}(y) = \bigwedge_{2x \in X} (A(x) \circ_{\square} I(x, y))$$

$$B^{\downarrow}(x) = \bigwedge_{1y \in Y} (I(x,y) \square \circ B(y))$$

for any $A \in L_1^X$ and $B \in L_2^Y$.

Formal concept – pair $\langle A, B \rangle$ consisting of an \mathbf{L}_1 -set A in X and an \mathbf{L}_2 -set B in Y for which $A^{\uparrow} = B$ and $B^{\downarrow} = A$.

 $\mathcal{B}(X,Y,I)$ denotes the set of all formal concepts of I, i.e.

$$\mathcal{B}(X,Y,I) = \{ \langle A,B \rangle \in L_1^X \times L_2^Y \mid A^{\uparrow} = B, B^{\downarrow} = A \}.$$

Subconcept-superconcept hierarchy \leq of formal concept is defined by

$$\langle A_1, B_1 \rangle \leq \langle A_2, B_2 \rangle$$
 iff $A_1 \subseteq A_2$ (iff $B_2 \subseteq B_1$)

Examples of concept-forming operators

(a) Let $\mathbf{L}_1 = \langle L, \leq \rangle$, $\mathbf{L}_2 = \langle L, \leq \rangle$, and $\mathbf{L}_3 = \langle L, \leq \rangle$, let \square be \otimes . Fuzzy sets $A^{\uparrow} \in L^Y$ and $B^{\downarrow} \in L^X$:

$$A^{\uparrow}(y) = \bigwedge_{x \in X} A(x) \to I(x, y)$$

$$B^{\downarrow}(x) = \bigwedge_{y \in Y} B(y) \to I(x, y)$$

(b) Let $\mathbf{L}_1 = \langle L, \leq \rangle$, $\mathbf{L}_2 = \langle L, \leq^{-1} \rangle$, $\mathbf{L}_3 = \langle L, \leq^{-1} \rangle$, let \square be \rightarrow . Fuzzy sets $A^{\cap} \in L^Y$ and $B^{\cup} \in L^X$:

$$A^{\cap}(y) = \bigvee_{x \in X} A(x) \otimes I(x, y)$$

$$B^{\cup}(x) = \bigwedge_{y \in Y} I(x, y) \to B(y)$$

Theorem

Let $\langle \mathbf{L}_1, \mathbf{L}_2, \mathbf{L}_3, \Box \rangle$ be a supremum-preserving aggregation structure and $\langle X, Y, I \rangle$ be an \mathbf{L}_3 -context.

(1) $\mathcal{B}(X,Y,I)$ equipped with \leq is a complete lattice with infima and suprema described as:

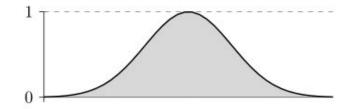
$$\bigwedge_{j \in J} \langle A_j, B_j \rangle = \left\langle \bigcap_{j \in J} A_j, (\bigcup_{j \in J} B_j)^{\uparrow \downarrow} \right\rangle, \bigvee_{j \in J} \langle A_j, B_j \rangle = \left\langle (\bigcup_{j \in J} A_j)^{\downarrow \uparrow}, \bigcap_{j \in J} B_j \right\rangle$$

(2) Moreover, a complete lattice $\mathbf{V} = \langle V, \leq \rangle$ is isomorphic to $\mathcal{B}(X,Y,I)$ iff there are mappings $\gamma: X \times L_1 \to V$ and $\mu: Y \times L_2 \to V$ such that $\gamma(X \times L_1)$ is supremally dense in \mathbf{V} , $\mu(Y \times L_2)$ is infimally dense in \mathbf{V} , and $a \square b \leq_3 I(x,y)$ is equivalent to $\gamma(x,a) \leq \mu(y,b)$ for all $x \in X, y \in Y, a \in L_1, b \in L_2$.

The Cartesian Representation

For a complete lattice $\mathbf{L}=\langle L,\leq \rangle$ and a fuzzy set A in X with truth degrees in L, we put

$$\lfloor A \rfloor = \{ \langle x, a \rangle \in X \times L \, | \, a \le A(x) \}$$



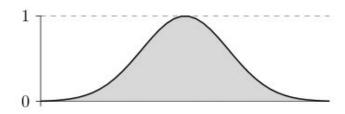
That is, $\lfloor A \rfloor$ is the "area below the membership function".

For an ordinary set $A' \subseteq X \times L$ define an **L**-set $\lceil A' \rceil$ in X by

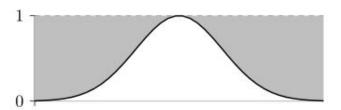
$$\lceil A' \rceil(x) = \bigvee \{ a \mid \langle x, a \rangle \in A' \}.$$

Considering aggregation structures from the running examples. . .

(a)
$$\mathbf{L} = \langle L, \leq \rangle$$



(b)
$$\mathbf{L} = \langle L, \leq^{-1} \rangle$$



The Simple Proof

For aggregation structure $\langle \mathbf{L}_1, \mathbf{L}_2, \mathbf{L}_3, \Box \rangle$ and \mathbf{L}_3 -context $\langle X, Y, I \rangle$, consider the ordinary context $\langle X \times L_1, Y \times L_2, I^{\times} \rangle$, where $I^{\times} \subseteq (X \times L_1) \times (Y \times L_2)$ is defined by

$$\langle \langle x, a \rangle, \langle y, b \rangle \rangle \in I^{\times} \text{ iff } a \square b \leq_3 I(x, y).$$

The concept lattice $\mathcal{B}(X,Y,I)$ over $\langle \mathbf{L}_1,\mathbf{L}_2,\mathbf{L}_3,\Box\rangle$ is isomorphic to the ordinary concept lattice $\mathcal{B}(X\times L_1,Y\times L_2,I^\times)$.

 $\varphi \colon \mathcal{B}(X,Y,I) \to \mathcal{B}(X \times L_1, Y \times L_2, I^{\times}), \ \psi \colon \mathcal{B}(X \times L_1, Y \times L_2, I^{\times}) \to \mathcal{B}(X,Y,I)$ defined by

$$\varphi(\langle A, B \rangle) = \langle \lfloor A \rfloor, \lfloor B \rfloor \rangle,$$

$$\psi(\langle A', B' \rangle) = \langle \lceil A' \rceil, \lceil B' \rceil \rangle$$

for $\langle A,B\rangle\in\mathcal{B}(X,Y,I),\langle A',B'\rangle\in\mathcal{B}(X\times L_1,Y\times L_2,I^\times)$ are well-defined, mutually inverse, order-preserving bijections between the two concept lattices.

Summary

- simple proof of the main theorem for general concept lattices was shown.
- the Cartesian representation is a useful tool in fuzzy set theory and its applications.

To be in the full version of the paper

- alternative proof of the main theorem (using the Cartesian representation)
- more general form of the main theorem (concept-forming parametrized by truth-stressing hedges)

