
Fuzzy logic and knowledge structures

Michal Krupka
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Purpose of the talk

introduce fuzzy logic [2,3]

show a possibility of using it in knowledge structures [1]
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Uncertainty

Approaches to uncertainty

Probability (lack of information)

Fuzzy logic (vague concepts in human language)

. . . others
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Vague concepts in human language
Tall man

Low temperature

Good student

These concepts do not have sharp boundaries.

We assign to each individual the degree to which the concept applies to him/her/it.
The degree is usually from [0, 1]. We obtain a fuzzy set.

�C3020

0

1

A fuzzy set of high temperatures
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Remarks

Inexact concepts are good.

Exact shapes of fuzzy sets come from an expert. (However, they do not matter.)

Differences between fuzziness and probability!
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Residuated lattices

Definition
A complete residuated lattice: algebra L = 〈L,∧,∨,⊗,→, 0, 1〉

1 〈L,∧,∨, 0, 1〉 is a complete lattice

2 〈L,⊗, 1〉 is a commutative monoid

3 ⊗ and → satisfy adjointness property: a⊗ b ≤ c iff a ≤ b→ c.

Examples on [0, 1] and its subsets
L = 〈[0, 1],min,max,⊗,→, 0, 1〉,
–  Lukasiewicz: a⊗ b = max(a+ b− 1, 0), a→ b = min(1− a+ b, 1).

– Gödel (minimum): a⊗ b = min(a, b), a→ b =

{
1 if a ≤ b,
b otherwise.

– Goguen (product): a⊗ b = a · b, a→ b =

{
1 if a ≤ b,
b
a

otherwise.
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Fuzzy sets (L-sets)
An L-set A in a universe X: mapping A : X → L
A(x): the degree to which x is in A.

Operations with L-sets

– Intersection: an L-set A ∩B such that (A ∩B)(x) = A(x) ∧B(x) for each
x ∈ X

– Union: an L-set A ∪B such that (A ∪B)(x) = A(x) ∨B(x) for each x ∈ X

Subsethood relation

– A ⊆ B if A(x) ≤ B(x) for each x

– More generally: subsethood degree

S(A,B) =
∧
x∈X

A(x)→ B(x)
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Example

– A(x): x understands German.

– B(x): x understands Dresden dialect.

A(x) B(x) A(x) ∧B(x) A(x) ∨B(x) A(x)⊗B(x) A(x)→ B(x)
x1 0.1 0.2 0.1 0.2 0.0 1.0
x2 1.0 0.8 0.8 1.0 0.8 0.8
x2 0.6 0.5 0.5 0.6 0.1 0.9

In particular, we have

S(A,B) =
∧
x∈X

A(x)→ B(x) = 0.8
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Why fuzzy sets in knowledge structures?

They allow intermediate degrees (levels) of mastering an item.

– Johannes Guttenberg invented the printing press in 1440. Is 1441 a correct
answer?

– Quantitative results: high jump.

– Ability to write poems, sing, understand a foreign language. . .

They allow fuzzy reasoning about items, knowledge states, skills. . .

– If a student cannot use past tense then he cannot use irregular verbs as well.
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Graded knowledge structures

Definition
Graded knowledge state on Y is graded (fuzzy) set K in Y . Graded knowledge
structure on Y is any family K ⊆ LY of graded knowledge states which contains ∅
and Y .

Y . . . set of problems/questions/items
K(y) ∈ L . . . the degree to which an individual in knowledge state K has
mastered problem y

Definition
Graded knowledge space on Y is graded (fuzzy) knowledge structure K satisfying:

(i) if Ki ∈ K, i ∈ I, then
⋃

i∈I Ki ∈ K (closed under union),

(ii) if K ∈ K and a ∈ L, then a∗ ⊗K ∈ K (closed under ⊗-multiplication).

First results on graded knowledge structures and graded knowledge spaces can be
found in [1].
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