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Questions are (a) Compute the set of all divisors of 230. (b)
Compute the greatest common divisor of 275 and 385. (c) Com-
pute the least common multiple of 275 and 385. (d) Compute all
common divisors of 172 and 258.

a b c d
Huey × ×

Dewey ×
Louie × ×

Doofus ×

Data are formalized by Formal Concept Analysis [5] into a for-
mal context 〈L,Q,�〉 , where L is a set of learners, Q is a set of
questions and l�q expresses that the learner l masters the ques-
tion q.

Skills: (x) computing the greatest common divisor by Euclidean
algorithm, (y) knowing relationship between the greatest com-
mon divisor and the least common multiple, (z) computing all
divisors of a given number, and a skill function is given in Figure
??.
Skill function:

q a b c d
σ(q) {{z}} {{z}, {x}} {{x, y}} {{x, z}}

Let S be a set of skills. A skill function [2] is a mapping
σ : Q→ 22

S
such that σ(q) is an antichain for each q ∈ Q.

Theoretical competence model assigning to a learning state mas-
tered skills:

x y z
s1
s2 ×
s3 × ×
s4 × ×
s5 × × ×

A theoretical competence model is given by a formal context
〈T, S, ∗〉 where T is a set of learning states and t ∗ s expresses
that in state t skill s is mastered. The concept lattice B(T, S, ∗)
plays the role of a knowledge space [3].

Our goal is to assign to each learner an appropriate concept of
B(T, S, ∗) via a mapping α.
Dependencies between skills:

R x y z
x 1 0 0.3
y 0.4 1 0.5
z 0 0 1

For expressing dependencies between skills we use fuzzy logic
[4] where a statement is true in the certain degree which is taken
from a residuated lattice. Logical connectives are interpreted by
operations of a residuated lattice. Let L be a residuated lattice
andR be a binary L-relation on the set S. The valueR(s1, s2) ex-
presses the degree to which the following proposition is true: If a
learner has the skill s1, then the learner also has the skill s2. Fol-
lowing natural properties has to be satisfied: for each x, y, z ∈ S
it holdsR(x, x) = 1 (reflexivity) andR(x, y)⊗R(y, z) ≤ R(x, z)
(transitivity). An example of an L-relation R is given in the
figure above. Łukasiewicz chain L = {0, 0.1, 0.2, . . . , 0.9, 1} is
used as the structure of truth degrees in the example.

The L-relation R can be extended to subsets of S by the follow-
ing [1]. For each A,B ∈ 2S we set

R#(A,B) =
(∧

x∈A
∨
y∈B R(x, y)

)
∧
(∧

y∈B
∨
x∈AR(x, y)

)
Possibilities of mastered skill by learners:

l l1 l2 l3 l4
β(l) {{x, y, z}, {x, y}} {{z}, {x}} {{x, z}} {{x, y}}

For a learner we compute possibilities of mastered
skills by β(l) =

⋃̇
σ({l}↑�), where

⋃̇
{A1, . . . An} ={⋃

{S1, . . . , Sn} | S1 ∈ A1, . . . , Sn ∈ An
}

.
Suitability of concepts of the knowledge space for describing
learners:

γ l1 l2 l3 l4
∅ 0 0 0 0
{z} 0.3 1 0.3 0.3
{x, z} 0.5 0.3 1 0.5
{y, z} 0.3 0 0 0.3
{x, y, z} 1 0 0 0.5

The degree to which a concept 〈A,B〉 ∈ B(T, S, ∗) is suit-
able to describe the learning state of a learner l is given by
γ(〈A,B〉, l) =

∨
S∈β(l)R

#(S,B).

A function α for a learner l chooses a concept 〈A,B〉which max-
imizes the value γ(〈A,B〉, l). From ambiguity of choice several
possible mappings αi arise. For the learners from the example
we obtain two possible mappings α1, α2 as shown in Figure ??.
Two possibilities of classifying learners in the knowledge space:

l l1 l2 l3 l4
α1(l) {x, y, z} {z} {x, z} {x, z}
α2(l) {x, y, z} {z} {x, z} {x, y, z}

Using mapping α we can make interesting observations about
learners. For example, the learner l1 solved only difficult prob-
lems. From the fact that intent of α1(l1) and also α2(l1) is
{x, y, z}we can conclude that the learner has all the skills needed
for solving all problems. On the other hand, the learner l4 solved
only the most difficult problem c. Mappings α1 and α2 differ in
classifying this learner. Since according α1 the learner has skills
{x, z}, but for solving problem c one needs skills {x, y}, so we
may be suspicious that the learner has been cheating.
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