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» If two indistinguishable (7 = 0) pulses enter input modes 1
and 2, and exit at output 2 and 3:

» The scattering amplitude is:

Ui2Uzz + UyzUsp = Per < e Uis ) .

U, Uz

which is just the permanent of the scattering matrix.
» The probability P ((1,2) — (2,3)) ~ |Per]|?.
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» The matrix function is the permanent of a scattering
submatrix, and permanents of a complex matrix are known
to be “hard” to compute.

» If there exists a polynomial-time classical algorithm that
samples from the same probability distribution as a
linear-optical network (fed with indistinguishable photons),
then lots of problems thought to be “hard” can be solved
using this algorithm (unlikely!).

» Linear-optical networks function as “restricted” quantum
computers to establish “quantum computational
supremacy” over classical computers.
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» 2 pulses are injected in distinct input channels of an
interferometer:

» There is a controllable delay = = 71 — 7 between pulses.

» The experiment counts the rate at which photons exit from
two different output channels:
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HOM dip

» For indistinguishable pulses the coincidence rate
Rate = [T J|? = |Per(U)|?, the permanent of U.

» For the “50-50 beamsplitter”:

1 —ia A=y
U— < e e

E o o > and the rate is Per(U)=0.

» This ties the indistinguishability features of the input pulses
with the matrix function Per(U).
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What is a permanent?

Uiy U2 Uss
Look at U = U21 U22 U23
Usy Uz Uss

» The permanent of U has the expansion

Per(U) = U11 (U22U33 + U23U32)
+ Ui2(Uz1Usz + Uaz Usq)
+ Ui3(Uz1Usp + Uxp Usy)

» It contains 6 = 3! terms and 18 multiplications.
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» Unlike the determinant: row reduction
is not possible.

» Best method known for permanents
of “arbitrary” complex matrices:
Ryser’s formula involves
(n—1)(2" — 1) multiplications.
» Per(A- B) # Per(A) - Per(B) in general,
but Per(P - A- Q) = Per(A)
if P and Q are permutation matrices.
» Special cases exists if the matrix is not completely
“arbitrary”.

» Permanents of hermitian semi-definite matrices are
well-studied (lots of connection with graph theory).
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Interferometer: a (quantum) permanent calculator?

» For n photons in m modes there are ("""~ possible
output configurations (some having more than one photons
per output mode).

» Form=10and n=10: ~ 9 x 10* possible output modes,
» For m =100 and n = 10: ~ 10%® possible output modes

» The probability of each output configuration is |Per(Us)|?,

the permanent of a specified n x n submatrix of the

scattering matrix U.
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Interferometer: a (quantum) permanent calculator?

» A particular output is unlikely to get significant statistics
unless the number of photons increases at the same
(exponential) rate at the number of output configurations.

» Using the interferometer as a permanent calculator is not
efficient.

» Solution: transform the problem into a sampling problem
where one looks at the distribution of photons in all output
modes.
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» The Galton board “samples” the binomial distribution, i.e.
the probability of one marble reaching bin n of N total bins
. N 1 N
1S (n)(2) '

» After sending many marbles in the
board, the “output” distribution
approaches the binomial distribution.

» The error in the “sampling” of the
distribution is measured by the 1-norm
distance D — Pl = 3 >_;|d; — pil
between the “experimental”

(or measured) distribution and the
(ideal) binomial distribution.

» The Galton board demonstrates
classical random walk.
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» After sending many n-tuples of indistinguishable photons in
the interferometer the “output” distribution of the photons
will “approximate” an ideal distribution.

» The error in the “sampling” of the distribution is measured
by the 1-norm distance between the “experimental” (or
measured) distribution and the (ideal) binomial distribution.

» This paradigm is BosonSampling.
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The tasks

» Assume the unitary transformation is known.
» Characterizing this unitary can be very time-consuming.

» The experimentalist “samples” the distribution by sending
an n-tuple of photons through the interferometer, and
records the output.

» The experimentalist is guaranteed that this output will occur
[Per(Ugs)?

nsina...ng!

» if two (or more) photons come out the same channel reject:
Uks is not a submatrix of the original unitary.

with probability
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The tasks

» The theorist needs to construct an efficient (i.e. polynomial
in resources) algorithm so that

P(s) = |Per(Uss)I?

(whatever this algorithm is).
» If she is successful, she also has an algorithm to efficiently
calculate permanents of matrices.
» This is hard to do because calculating permanents involves
an exponential number of operations using Ryser’s method.
» This algorithm can be used to solve other “hard” problems.
» As of now, only brute force method known, i.e. actually
calculate all the permanents.
» given computer running at 100 x 10'S FLOPS, 15 photons

in 275 channels implies ~ 10%° multiplications and ~ 33000
years of runtime.
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The outcome

» The interferometer functions as an elementary “quantum
computer”.

» itis not a programmable (universal) computer

» The “computation” is one of sampling the distribution of
permanents.

» Requires only linear optics, photon sources and photon
detectors.

» This is a rather “useless” practical problem but

» can still be used to demonstrate the superiority of the
quantum vs classical computer.
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Integrated multimode interferometers with
arbitrary designs for photonic boson sampling
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Partial distinguishability
» Look now at arbitrary delays.
» The input state scatters to

lout) = / Aoy dwp (w1 )d(wn) €27
x [Urta] (wn) + Ui ah(wn)| |Ured] (we) + Usodh(w2) | 10)
> aI (w1)aI (w2) : reject because two photons in detector 1.
> write & (wy)a)(wz) = (aﬁ (wi)a(w2) + &l (wr )a;(wz))

+ 5 (8] (wn)al(we) - al (w1)a(w2))
» With P12 LW & Wwo
» there is a symmetric [ T ] part:
Pio[T1=+T]

» and an antisymmetric H part

P =—H
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How does partial distinguishability work?

» Similar to writing as

a 7-combination of and

» The coincidence rate R(7) eventually yields
2

R(r) =302 (1+e )+ JHRE (1 —e )

with [T ]the permanent of the scattering matrix,
- the determinant of the scattering matrix.

» For partially distinguishable photons, there is more than
just a permanent.

» Note that, for 7 = 0, only |[TT7|? survives.
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How does partial distinguishability work?

» for 3 photons there are 3! terms in the decomposition of

al (1)l (w2)a) (ws).

> 3! pOSSible permutations: 1, P12, Pos, P13, P23, Pi3o.
» 3! possible “basis configurations”:

antisymmetric: @

symmetric: [T1]
mixed symmetry: [,

mixed symmetry: -]
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Relevance to BosonSampling

The proposal of A&A contains five sources of “errors” that will
not make an experimental realization ideal.

Imperfect preparation of the input Fock state
inaccurate characterization of the unitary matrix

v

v

v

photon losses

v

imperfect detectors

v

non-simultaneity of photon arrival times
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» Inject 3 photons at the input
of an interferometer.

@, n, ¢, P Ng
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» Select 3 output channels

thereby selecting a 3 x 3 submatrix
of the 5 x 5 scattering matrix.

» Record the coincidence counts as are function of the 2
relative delays w/r to a reference photon.
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3 photons in 5 channels (Vienna experiment)
The result is a 2-D landscape in delay space

» There is a single point at the center:

» This occurs when both delays are 0:.
» This corresponds to 3 indistinguishable photons



Typical landscape features
All landscapes have the same typical features.



Typical landscape features
All landscapes have the same typical features.



Mixed symmetry states

» First pair:
(91 = [al (wn)ab(we) - af (wa)a(wn)] & (ws)[0)
+ | 8] (ws)ah (w2) — &) (we)ah(ws)| al(w)IO)

BB 1 = Pas| )4,

where Pj interchanges w; + wj



Mixed symmetry states

» First pair:

(91 = [al (wn)ab(we) - af (wa)a(wn)] & (ws)[0)
+ | 8] (ws)ah (w2) — &) (we)ah(ws)| al(w)IO)
BB 1 = Pas| )4,

where Pj interchanges w; + wj

- Pff®), = +(10)
P12!>1 = +!>1



Mixed symmetry states

» First pair:

(91 = [al (wn)ab(we) - af (wa)a(wn)] & (ws)[0)
+ | 8] (ws)ah (w2) — &) (we)ah(ws)| al(w)IO)
BB 1 = Pas| )4,

where Pj interchanges w; + wj

- Prff)s =+ 501

P12!>1 = +!>1

» but
Piofhs = =51 — 52



Mixed symmetry states

» First pair:
(91 = [al (wn)ab(we) - af (wa)a(wn)] & (ws)[0)
+ [al(ws)a (we) — &l (we)ah(ws)] al(wr)[0)
BB 1 = Pas| )4,
where Pj interchanges w; + wj
> Pialg®) = +[3)
P12!>1 = +!>1
» but
Pia[Z1 = =1 — [
» Similar properties holds for the second pair of states
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Mixed symmetry matrix functions

To go along with mixed symmetry states are mixed symmetry
matrix functions called immanants.

» The are constructed in a group-theoretical way using

characters.
1| Pi2 | P13 | Po3 || P23 | Pia2
|| 1 1 1 1 1 1 Permanent
E 1] -1 -1] -1 1 1 Determinant
H ||2] O 0 0 -1 | =1 || (2,1)-Immanant

» To compute the permanent:

Per(U) =

» Note that P;Per(U) =

Ui1UopUsz + UioUo Usz + Uiz Uao Usy

+ Uy1UagUsp + UpUsz U1 + Uiz Uz Usz

=3

) [Uto(1) Uzo(2) Uso(3))

+Per(U): permuting any two
columns of U does not change the permanent.




Mixed symmetry matrix functions

To go along with mixed symmetry states are mixed symmetry
matrix functions called immanants.
» The are constructed in a group-theoretical way using

characters.
1| P12 | P13 | Pos || Pios | Pia2
|| 1 1 1 1 1 1 permanent
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» The are constructed in a group-theoretical way using

characters.
1| P12 | P13 | Pos || Pios | Pia2
|| 1 1 1 1 1 1 permanent
E 1) -1 -1 -1 1 1 Determinant
H ||2] O 0 0 -1 | =1 || (2,1)-Immanant

» To compute the determinant:

Det(U) =

Ui1UopUsz — Uyo U1 Uz — Uiz Uao Usy

— Ui1 Uz Uszp + Uy Uaz Uzy + Uy U1 Usp
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) [Uto(1) Uzo(2) Uso(3)

» Note that P;Det(U) = —Det(U): permuting any two
columns of U multiplies the determinant by —1.
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To go along with mixed symmetry states are mixed symmetry
matrix functions called immanants.
» The are constructed in a group-theoretical way using
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Mixed symmetry matrix functions

To go along with mixed symmetry states are mixed symmetry
matrix functions called immanants.
» The are constructed in a group-theoretical way using

characters.

1

P12 | P13 | Po3 || Pi23

P32

[T

1

1 1 1 1

1

permanent

i

1

—1 =1 =1

1

Determinant

H

2

0 0 0 —1

—1

(2,1)-Immanant

» To compute the (2-1)-immanant:
Per(U) = 2U11UxpUsz — Uy2Uaz Uy — Uy3Uz1 Uz
= Z XT(0) [Uto(1) Uzo(2) Uso(3)]

» Permuting any two columns of U does not change the
immanant back to itself.




Mixed symmetry matrix functions

To go along with mixed symmetry states are mixed symmetry
matrix functions called immanants.
» The are constructed in a group-theoretical way using

characters.
1| Pia | P13 | Pos || Pis | Pia2
|| 1 1 1 1 1 1 permanent
E 1) -1 -1 -1 1 1 Determinant
H ||2] O 0 0 -1 | =1 || (2,1)-Immanant

» To compute the (2-1)-immanant:
Per(U) = 2Uy1UxpUsz — UyoUoz Uz — Uiz Uz Usz

= Z XT(0) [Uto(1) Uzo(2) Uso(3)]
» Permuting any two columns of U does not change the

immanant back to itself.
» In fact there are 4 linearly independent immanants:

H123, H213, H 132, H312.
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Rates for partially distinguishable pulses

Suppose

» photons 2 and 3 have no relative delays (are made
indistinguishable)
photon 1 is delayed by + w/r to photons 2 and 3.
the rate is then expressible as:

v

v

Rate(r) = A(1 +e ) mm2 + (1 —e )Y byl

v

Permanent occurs because (obviously) if two photons are
the same then it’s a subcase of three photons the same.

The linear combination of immanants that occurs is such
that ng‘ Z b,'jkEj,'jk‘z = | Z bijkE:‘ijk|2-
this must be so because the rate is a scalar (a number).

v

v



Experimental results beyond permanents
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Computational complexity of immanants

Many immanants are in the same complexity class as
permanents. For n photons immanants are labeled by a
diagram with n boxes in at most n rows:

» Immanants of the type H...oare “just about equally
hard” to compute as permanents.

» Immanants of the type . ..coare “just about equally
hard” to compute as permanents.

» There is a sliding scale of hardness but if one or more of
the rows gets “very long” in comparison with the total
number of rows then the associated immanant is “hard”.
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Issues and Fortunes

» There are many more of these immanants than there are
permanents (good!)
» Thus far: The rates are given in terms of linear
combinations of immanants.
» Maybe immanants are hard, but what of linear
combinations of immanants?
» Not clear if one can extend to BosonSampler for
immanants.

» They have a clear physical interpretation: A --m

corresponds to:
» n — 2 photons photons arriving at the same time: (J.. .
with n — 2 boxes.
» two photons arriving together £, but well distinct from the
previous n — 2:
» etc for the other diagrams.
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Summary

» The interference of photons is highly quantum.
» Bridges complexity theory and physics.
» “Simple” to realize in the lab.
In theory there is no difference between theory and

practice. In practice there is.
Yogi Berra

» The fully indistinguishable case could be within reach and

demonstrate the supremacy of a (dedicated) quantum
computer.

» For partially distinguishable photons we need generalized
matrix functions immanants.

» Hurdles to get clean “immanant signals”
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