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I Distinguishability of photons results in different coincidence
rates of the interfering photons.

I Some coincidence rates in interferometry are related to
matrix functions.

I Some of these matrix functions have known computational
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Indistinguishability and permanents
I If two indistinguishable (τ = 0) pulses enter input modes 1

and 2, and exit at output 2 and 3:

I The scattering amplitude is:

U12U23 + U13U22 = Per
(

U12 U13
U22 U23

)
.

which is just the permanent of the scattering matrix.
I The probability P ((1,2)→ (2,3)) ∼ |Per|2.
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to be ”hard” to compute.

I If there exists a polynomial-time classical algorithm that
samples from the same probability distribution as a
linear-optical network (fed with indistinguishable photons),
then lots of problems thought to be “hard” can be solved
using this algorithm (unlikely!).

I Linear-optical networks function as “restricted” quantum
computers to establish “quantum computational
supremacy” over classical computers.
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I 2 pulses are injected in distinct input channels of an
interferometer:

I There is a controllable delay τ = τ1 − τ2 between pulses.
I The experiment counts the rate at which photons exit from

two different output channels:
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I For indistinguishable pulses the coincidence rate
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What is a permanent?

Look at U =
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I The permanent of U has the expansion

Per(U) = U11(U22U33 + U23U32)

+ U12(U21U33 + U23U31)

+ U13(U21U32 + U22U31)

I It contains 6 = 3! terms and 18 multiplications.
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What is a permanent?

I Unlike the determinant: row reduction
is not possible.

I Best method known for permanents
of “arbitrary” complex matrices:
Ryser’s formula involves
(n − 1)(2n − 1) multiplications.

I Per(A · B) 6= Per(A) · Per(B) in general,
but Per(P · A ·Q) = Per(A)
if P and Q are permutation matrices.

I Special cases exists if the matrix is not completely
“arbitrary”.

I Permanents of hermitian semi-definite matrices are
well-studied (lots of connection with graph theory).
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I For n photons in m modes there are
(n+m−1
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)
possible

output configurations (some having more than one photons
per output mode).

I For m = 10 and n = 10: ∼ 9× 104 possible output modes,
I For m = 100 and n = 10: ∼ 1023 possible output modes

I The probability of each output configuration is |Per(Us)|2,
the permanent of a specified n × n submatrix of the
scattering matrix U.
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I A particular output is unlikely to get significant statistics
unless the number of photons increases at the same
(exponential) rate at the number of output configurations.

I Using the interferometer as a permanent calculator is not
efficient.

I Solution: transform the problem into a sampling problem
where one looks at the distribution of photons in all output
modes.
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I The Galton board “samples” the binomial distribution, i.e.
the probability of one marble reaching bin n of N total bins
is
(N

n

)
(1

2)N .
I After sending many marbles in the

board, the “output” distribution
approaches the binomial distribution.

I The error in the “sampling” of the
distribution is measured by the 1-norm
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between the “experimental”
(or measured) distribution and the
(ideal) binomial distribution.

I The Galton board demonstrates
classical random walk.



Sampling paradigm: Random walk

I The Galton board “samples” the binomial distribution, i.e.
the probability of one marble reaching bin n of N total bins
is
(N

n

)
(1

2)N .

I After sending many marbles in the
board, the “output” distribution
approaches the binomial distribution.

I The error in the “sampling” of the
distribution is measured by the 1-norm
distance ‖D − P‖ = 1

2
∑

i |di − pi |
between the “experimental”
(or measured) distribution and the
(ideal) binomial distribution.

I The Galton board demonstrates
classical random walk.



Sampling paradigm: Random walk

I The Galton board “samples” the binomial distribution, i.e.
the probability of one marble reaching bin n of N total bins
is
(N

n

)
(1

2)N .
I After sending many marbles in the

board, the “output” distribution
approaches the binomial distribution.

I The error in the “sampling” of the
distribution is measured by the 1-norm
distance ‖D − P‖ = 1

2
∑

i |di − pi |
between the “experimental”
(or measured) distribution and the
(ideal) binomial distribution.

I The Galton board demonstrates
classical random walk.



Sampling paradigm: Random walk

I The Galton board “samples” the binomial distribution, i.e.
the probability of one marble reaching bin n of N total bins
is
(N

n

)
(1

2)N .
I After sending many marbles in the

board, the “output” distribution
approaches the binomial distribution.

I The error in the “sampling” of the
distribution is measured by the 1-norm
distance ‖D − P‖ = 1

2
∑

i |di − pi |
between the “experimental”
(or measured) distribution and the
(ideal) binomial distribution.

I The Galton board demonstrates
classical random walk.



Sampling paradigm: Random walk

I The Galton board “samples” the binomial distribution, i.e.
the probability of one marble reaching bin n of N total bins
is
(N

n

)
(1

2)N .
I After sending many marbles in the

board, the “output” distribution
approaches the binomial distribution.

I The error in the “sampling” of the
distribution is measured by the 1-norm
distance ‖D − P‖ = 1

2
∑

i |di − pi |
between the “experimental”
(or measured) distribution and the
(ideal) binomial distribution.

I The Galton board demonstrates
classical random walk.



BosonSampling

I After sending many n-tuples of indistinguishable photons in
the interferometer the “output” distribution of the photons
will “approximate” an ideal distribution.

I The error in the “sampling” of the distribution is measured
by the 1-norm distance between the “experimental” (or
measured) distribution and the (ideal) binomial distribution.
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The tasks

I Assume the unitary transformation is known.
I Characterizing this unitary can be very time-consuming.

I The experimentalist “samples” the distribution by sending
an n-tuple of photons through the interferometer, and
records the output.

I The experimentalist is guaranteed that this output will occur

with probability
|Per(Uks)|2
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Uks is not a submatrix of the original unitary.



The tasks
I Assume the unitary transformation is known.

I Characterizing this unitary can be very time-consuming.

I The experimentalist “samples” the distribution by sending
an n-tuple of photons through the interferometer, and
records the output.

I The experimentalist is guaranteed that this output will occur

with probability
|Per(Uks)|2

ns
1!n2

2 . . .n
s
m!

.

I if two (or more) photons come out the same channel reject:
Uks is not a submatrix of the original unitary.



The tasks
I Assume the unitary transformation is known.

I Characterizing this unitary can be very time-consuming.

I The experimentalist “samples” the distribution by sending
an n-tuple of photons through the interferometer, and
records the output.

I The experimentalist is guaranteed that this output will occur

with probability
|Per(Uks)|2

ns
1!n2

2 . . .n
s
m!

.

I if two (or more) photons come out the same channel reject:
Uks is not a submatrix of the original unitary.



The tasks
I Assume the unitary transformation is known.

I Characterizing this unitary can be very time-consuming.

I The experimentalist “samples” the distribution by sending
an n-tuple of photons through the interferometer, and
records the output.

I The experimentalist is guaranteed that this output will occur

with probability
|Per(Uks)|2

ns
1!n2

2 . . .n
s
m!

.

I if two (or more) photons come out the same channel reject:
Uks is not a submatrix of the original unitary.



The tasks
I Assume the unitary transformation is known.

I Characterizing this unitary can be very time-consuming.

I The experimentalist “samples” the distribution by sending
an n-tuple of photons through the interferometer, and
records the output.

I The experimentalist is guaranteed that this output will occur

with probability
|Per(Uks)|2

ns
1!n2

2 . . .n
s
m!

.

I if two (or more) photons come out the same channel reject:
Uks is not a submatrix of the original unitary.



The tasks

I The theorist needs to construct an efficient (i.e. polynomial
in resources) algorithm so that

P(s) = |Per(Uks)|2

(whatever this algorithm is).

I If she is successful, she also has an algorithm to efficiently
calculate permanents of matrices.

I This is hard to do because calculating permanents involves
an exponential number of operations using Ryser’s method.

I This algorithm can be used to solve other “hard” problems.
I As of now, only brute force method known, i.e. actually

calculate all the permanents.
I given computer running at 100× 1015 FLOPS, 15 photons

in 275 channels implies ∼ 1029 multiplications and ∼ 33000
years of runtime.
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I The interferometer functions as an elementary “quantum
computer”.

I it is not a programmable (universal) computer

I The “computation” is one of sampling the distribution of
permanents.

I Requires only linear optics, photon sources and photon
detectors.

I This is a rather “useless” practical problem but
I can still be used to demonstrate the superiority of the

quantum vs classical computer.



The outcome

I The interferometer functions as an elementary “quantum
computer”.

I it is not a programmable (universal) computer
I The “computation” is one of sampling the distribution of

permanents.

I Requires only linear optics, photon sources and photon
detectors.

I This is a rather “useless” practical problem but
I can still be used to demonstrate the superiority of the

quantum vs classical computer.



The outcome

I The interferometer functions as an elementary “quantum
computer”.

I it is not a programmable (universal) computer
I The “computation” is one of sampling the distribution of

permanents.
I Requires only linear optics, photon sources and photon

detectors.

I This is a rather “useless” practical problem but
I can still be used to demonstrate the superiority of the

quantum vs classical computer.



The outcome

I The interferometer functions as an elementary “quantum
computer”.

I it is not a programmable (universal) computer
I The “computation” is one of sampling the distribution of

permanents.
I Requires only linear optics, photon sources and photon

detectors.
I This is a rather “useless” practical problem but

I can still be used to demonstrate the superiority of the
quantum vs classical computer.



The outcome

I The interferometer functions as an elementary “quantum
computer”.

I it is not a programmable (universal) computer
I The “computation” is one of sampling the distribution of

permanents.
I Requires only linear optics, photon sources and photon

detectors.
I This is a rather “useless” practical problem but
I can still be used to demonstrate the superiority of the

quantum vs classical computer.



Results

© 2013 Macmillan Publishers Limited.  All rights reserved. 

Integrated multimode interferometers with
arbitrary designs for photonic boson sampling
Andrea Crespi1,2, Roberto Osellame1,2*, Roberta Ramponi1,2, Daniel J. Brod3, Ernesto F. Galvão3*,
Nicolò Spagnolo4, Chiara Vitelli4,5, Enrico Maiorino4, Paolo Mataloni4 and Fabio Sciarrino4*

The evolution of bosons undergoing arbitrary linear unitary
transformations quickly becomes hard to predict using classical
computers as we increase the number of particles and modes.
Photons propagating in a multiport interferometer naturally
solve this so-called boson sampling problem1, thereby motivat-
ing the development of technologies that enable precise control
of multiphoton interference in large interferometers2–4. Here,
we use novel three-dimensional manufacturing techniques to
achieve simultaneous control of all the parameters describing
an arbitrary interferometer. We implement a small instance of
the boson sampling problem by studying three-photon interfer-
ence in a five-mode integrated interferometer, confirming the
quantum-mechanical predictions. Scaled-up versions of this
set-up are a promising way to demonstrate the computational
advantage of quantum systems over classical computers. The
possibility of implementing arbitrary linear-optical interfero-
meters may also find applications in high-precision measure-
ments and quantum communication5.

Large-scale quantum computers hold the promise of solving
otherwise intractable computational problems such as factoring6.
Despite the experimental efforts made to date, this prospect is still
far from feasible in all proposed physical implementations7. It is
thus very important to establish intermediate experimental mile-
stones for the field. One such example is provided by the recent
study by Aaronson and Arkhipov1 on the computational complexity
of simulating the output distribution of bosons propagating in linear-
optical interferometers, a task that has become known as boson
sampling. It is well known that a linear-optical quantum computer,
composed only of passive optical elements (such as beamsplitters
and phase shifters), becomes universal for quantum computation if
adaptive measurements are possible8,9. It was shown in ref. 1 that
such a device, even without adaptive measurements, produces an
output that is hard to simulate classically, given reasonable compu-
tational complexity assumptions. More precisely, ref. 1 shows that a
linear-optical quantum process comprising (i) the input of photons
in a Fock state, (ii) unitary evolution implemented only via beamsplit-
ters and phase shifters, and (iii) simultaneous photon-counting
measurement of all modes generates a probability distribution of out-
comes that cannot be sampled efficiently (even approximately) using
a classical computer. This suggests a feasible experiment to demon-
strate the computational capabilities of quantum systems, consisting
essentially of observing the multiphoton interference of Fock states
in a sufficiently large multimode linear-optical interferometer.

At the core of this hardness-of-simulation result is the fact that
the probability associated with each experimental outcome is

proportional to the permanent of a matrix associated with the
interferometer (see Methods for details), and the permanent is a
function that is notoriously hard to compute10. In ref. 1 it was
estimated that a system of approximately 20 photons in m ≈ 400
modes would already pose severe difficulties for its classical simu-
lation. At present, the most promising technology for achieving
this regime involves inputting Fock states into multimode integrated
photonic chips2–4,11–13.

In this Letter we report on the experimental implementation of
a small instance of the Aaronson–Arkhipov proposal, using up to
three photons interfering in a randomly chosen, five-mode inte-
grated photonic chip. We have made two important choices that
provably make the quantum experiment harder to simulate classi-
cally1: we avoid any structure by choosing a random interferometer,
and the interferometer has more modes than the number of input
photons. Implementing this arbitrary interferometer also serves
as a stringent test of our novel manufacturing techniques. This
allowed us to verify that non-interacting bosons evolve according
to the permanent of matrices of size up to 3 × 3.

Any m-mode linear interferometer can be decomposed into
basic linear-optical elements (phase shifters and beamsplitters)
using the decomposition given in ref. 14. The general layout
of this decomposition is depicted in Fig. 1a for the case where
m¼ 5. It consists of a network of beamsplitters with different
transmissivities ti (where Ti¼ ti

2 is the transmission probability of
the photon), interspersed by phase shifters restricted, without loss
of generality, to the [0,p] range, as discussed in Supplementary
Section SI. Unfortunately, large interferometers built with these
discrete elements tend to suffer from mechanical instabilities.
A more promising approach involves integrating these linear-
optical elements using optical waveguides in a glass chip15,16.
In this work, waveguides were fabricated using the femtosecond
laser micromachining technique17,18, which exploits nonlinear
absorption of focused femtosecond pulses to induce a permanent
and localized refractive index increase in transparent materials.
Arbitrary three-dimensional circuits can be directly written by
translating the sample along the desired path, keeping the
velocity constant with respect to the laser beam. This maskless
and single-step technique allows fast and cost-effective
prototyping of new devices, enabling the implementation of
three-dimensional layouts that are impossible to achieve with
conventional lithography4.

In the integrated optics approach (Fig. 1b) the role of beamsplit-
ters is performed by directional couplers, devices that bring two
waveguides close together to redistribute the light propagating in
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The evolution of bosons undergoing arbitrary linear unitary
transformations quickly becomes hard to predict using classical
computers as we increase the number of particles and modes.
Photons propagating in a multiport interferometer naturally
solve this so-called boson sampling problem1, thereby motivat-
ing the development of technologies that enable precise control
of multiphoton interference in large interferometers2–4. Here,
we use novel three-dimensional manufacturing techniques to
achieve simultaneous control of all the parameters describing
an arbitrary interferometer. We implement a small instance of
the boson sampling problem by studying three-photon interfer-
ence in a five-mode integrated interferometer, confirming the
quantum-mechanical predictions. Scaled-up versions of this
set-up are a promising way to demonstrate the computational
advantage of quantum systems over classical computers. The
possibility of implementing arbitrary linear-optical interfero-
meters may also find applications in high-precision measure-
ments and quantum communication5.

Large-scale quantum computers hold the promise of solving
otherwise intractable computational problems such as factoring6.
Despite the experimental efforts made to date, this prospect is still
far from feasible in all proposed physical implementations7. It is
thus very important to establish intermediate experimental mile-
stones for the field. One such example is provided by the recent
study by Aaronson and Arkhipov1 on the computational complexity
of simulating the output distribution of bosons propagating in linear-
optical interferometers, a task that has become known as boson
sampling. It is well known that a linear-optical quantum computer,
composed only of passive optical elements (such as beamsplitters
and phase shifters), becomes universal for quantum computation if
adaptive measurements are possible8,9. It was shown in ref. 1 that
such a device, even without adaptive measurements, produces an
output that is hard to simulate classically, given reasonable compu-
tational complexity assumptions. More precisely, ref. 1 shows that a
linear-optical quantum process comprising (i) the input of photons
in a Fock state, (ii) unitary evolution implemented only via beamsplit-
ters and phase shifters, and (iii) simultaneous photon-counting
measurement of all modes generates a probability distribution of out-
comes that cannot be sampled efficiently (even approximately) using
a classical computer. This suggests a feasible experiment to demon-
strate the computational capabilities of quantum systems, consisting
essentially of observing the multiphoton interference of Fock states
in a sufficiently large multimode linear-optical interferometer.

At the core of this hardness-of-simulation result is the fact that
the probability associated with each experimental outcome is

proportional to the permanent of a matrix associated with the
interferometer (see Methods for details), and the permanent is a
function that is notoriously hard to compute10. In ref. 1 it was
estimated that a system of approximately 20 photons in m ≈ 400
modes would already pose severe difficulties for its classical simu-
lation. At present, the most promising technology for achieving
this regime involves inputting Fock states into multimode integrated
photonic chips2–4,11–13.

In this Letter we report on the experimental implementation of
a small instance of the Aaronson–Arkhipov proposal, using up to
three photons interfering in a randomly chosen, five-mode inte-
grated photonic chip. We have made two important choices that
provably make the quantum experiment harder to simulate classi-
cally1: we avoid any structure by choosing a random interferometer,
and the interferometer has more modes than the number of input
photons. Implementing this arbitrary interferometer also serves
as a stringent test of our novel manufacturing techniques. This
allowed us to verify that non-interacting bosons evolve according
to the permanent of matrices of size up to 3 × 3.

Any m-mode linear interferometer can be decomposed into
basic linear-optical elements (phase shifters and beamsplitters)
using the decomposition given in ref. 14. The general layout
of this decomposition is depicted in Fig. 1a for the case where
m¼ 5. It consists of a network of beamsplitters with different
transmissivities ti (where Ti¼ ti

2 is the transmission probability of
the photon), interspersed by phase shifters restricted, without loss
of generality, to the [0,p] range, as discussed in Supplementary
Section SI. Unfortunately, large interferometers built with these
discrete elements tend to suffer from mechanical instabilities.
A more promising approach involves integrating these linear-
optical elements using optical waveguides in a glass chip15,16.
In this work, waveguides were fabricated using the femtosecond
laser micromachining technique17,18, which exploits nonlinear
absorption of focused femtosecond pulses to induce a permanent
and localized refractive index increase in transparent materials.
Arbitrary three-dimensional circuits can be directly written by
translating the sample along the desired path, keeping the
velocity constant with respect to the laser beam. This maskless
and single-step technique allows fast and cost-effective
prototyping of new devices, enabling the implementation of
three-dimensional layouts that are impossible to achieve with
conventional lithography4.

In the integrated optics approach (Fig. 1b) the role of beamsplit-
ters is performed by directional couplers, devices that bring two
waveguides close together to redistribute the light propagating in
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The evolution of bosons undergoing arbitrary linear unitary
transformations quickly becomes hard to predict using classical
computers as we increase the number of particles and modes.
Photons propagating in a multiport interferometer naturally
solve this so-called boson sampling problem1, thereby motivat-
ing the development of technologies that enable precise control
of multiphoton interference in large interferometers2–4. Here,
we use novel three-dimensional manufacturing techniques to
achieve simultaneous control of all the parameters describing
an arbitrary interferometer. We implement a small instance of
the boson sampling problem by studying three-photon interfer-
ence in a five-mode integrated interferometer, confirming the
quantum-mechanical predictions. Scaled-up versions of this
set-up are a promising way to demonstrate the computational
advantage of quantum systems over classical computers. The
possibility of implementing arbitrary linear-optical interfero-
meters may also find applications in high-precision measure-
ments and quantum communication5.

Large-scale quantum computers hold the promise of solving
otherwise intractable computational problems such as factoring6.
Despite the experimental efforts made to date, this prospect is still
far from feasible in all proposed physical implementations7. It is
thus very important to establish intermediate experimental mile-
stones for the field. One such example is provided by the recent
study by Aaronson and Arkhipov1 on the computational complexity
of simulating the output distribution of bosons propagating in linear-
optical interferometers, a task that has become known as boson
sampling. It is well known that a linear-optical quantum computer,
composed only of passive optical elements (such as beamsplitters
and phase shifters), becomes universal for quantum computation if
adaptive measurements are possible8,9. It was shown in ref. 1 that
such a device, even without adaptive measurements, produces an
output that is hard to simulate classically, given reasonable compu-
tational complexity assumptions. More precisely, ref. 1 shows that a
linear-optical quantum process comprising (i) the input of photons
in a Fock state, (ii) unitary evolution implemented only via beamsplit-
ters and phase shifters, and (iii) simultaneous photon-counting
measurement of all modes generates a probability distribution of out-
comes that cannot be sampled efficiently (even approximately) using
a classical computer. This suggests a feasible experiment to demon-
strate the computational capabilities of quantum systems, consisting
essentially of observing the multiphoton interference of Fock states
in a sufficiently large multimode linear-optical interferometer.

At the core of this hardness-of-simulation result is the fact that
the probability associated with each experimental outcome is

proportional to the permanent of a matrix associated with the
interferometer (see Methods for details), and the permanent is a
function that is notoriously hard to compute10. In ref. 1 it was
estimated that a system of approximately 20 photons in m ≈ 400
modes would already pose severe difficulties for its classical simu-
lation. At present, the most promising technology for achieving
this regime involves inputting Fock states into multimode integrated
photonic chips2–4,11–13.

In this Letter we report on the experimental implementation of
a small instance of the Aaronson–Arkhipov proposal, using up to
three photons interfering in a randomly chosen, five-mode inte-
grated photonic chip. We have made two important choices that
provably make the quantum experiment harder to simulate classi-
cally1: we avoid any structure by choosing a random interferometer,
and the interferometer has more modes than the number of input
photons. Implementing this arbitrary interferometer also serves
as a stringent test of our novel manufacturing techniques. This
allowed us to verify that non-interacting bosons evolve according
to the permanent of matrices of size up to 3 × 3.

Any m-mode linear interferometer can be decomposed into
basic linear-optical elements (phase shifters and beamsplitters)
using the decomposition given in ref. 14. The general layout
of this decomposition is depicted in Fig. 1a for the case where
m¼ 5. It consists of a network of beamsplitters with different
transmissivities ti (where Ti¼ ti

2 is the transmission probability of
the photon), interspersed by phase shifters restricted, without loss
of generality, to the [0,p] range, as discussed in Supplementary
Section SI. Unfortunately, large interferometers built with these
discrete elements tend to suffer from mechanical instabilities.
A more promising approach involves integrating these linear-
optical elements using optical waveguides in a glass chip15,16.
In this work, waveguides were fabricated using the femtosecond
laser micromachining technique17,18, which exploits nonlinear
absorption of focused femtosecond pulses to induce a permanent
and localized refractive index increase in transparent materials.
Arbitrary three-dimensional circuits can be directly written by
translating the sample along the desired path, keeping the
velocity constant with respect to the laser beam. This maskless
and single-step technique allows fast and cost-effective
prototyping of new devices, enabling the implementation of
three-dimensional layouts that are impossible to achieve with
conventional lithography4.

In the integrated optics approach (Fig. 1b) the role of beamsplit-
ters is performed by directional couplers, devices that bring two
waveguides close together to redistribute the light propagating in

1Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy, 2Dipartimento di
Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy, 3Instituto de Fı́sica, Universidade Federal Fluminense, Av. Gal. Milton
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transformations quickly becomes hard to predict using classical
computers as we increase the number of particles and modes.
Photons propagating in a multiport interferometer naturally
solve this so-called boson sampling problem1, thereby motivat-
ing the development of technologies that enable precise control
of multiphoton interference in large interferometers2–4. Here,
we use novel three-dimensional manufacturing techniques to
achieve simultaneous control of all the parameters describing
an arbitrary interferometer. We implement a small instance of
the boson sampling problem by studying three-photon interfer-
ence in a five-mode integrated interferometer, confirming the
quantum-mechanical predictions. Scaled-up versions of this
set-up are a promising way to demonstrate the computational
advantage of quantum systems over classical computers. The
possibility of implementing arbitrary linear-optical interfero-
meters may also find applications in high-precision measure-
ments and quantum communication5.

Large-scale quantum computers hold the promise of solving
otherwise intractable computational problems such as factoring6.
Despite the experimental efforts made to date, this prospect is still
far from feasible in all proposed physical implementations7. It is
thus very important to establish intermediate experimental mile-
stones for the field. One such example is provided by the recent
study by Aaronson and Arkhipov1 on the computational complexity
of simulating the output distribution of bosons propagating in linear-
optical interferometers, a task that has become known as boson
sampling. It is well known that a linear-optical quantum computer,
composed only of passive optical elements (such as beamsplitters
and phase shifters), becomes universal for quantum computation if
adaptive measurements are possible8,9. It was shown in ref. 1 that
such a device, even without adaptive measurements, produces an
output that is hard to simulate classically, given reasonable compu-
tational complexity assumptions. More precisely, ref. 1 shows that a
linear-optical quantum process comprising (i) the input of photons
in a Fock state, (ii) unitary evolution implemented only via beamsplit-
ters and phase shifters, and (iii) simultaneous photon-counting
measurement of all modes generates a probability distribution of out-
comes that cannot be sampled efficiently (even approximately) using
a classical computer. This suggests a feasible experiment to demon-
strate the computational capabilities of quantum systems, consisting
essentially of observing the multiphoton interference of Fock states
in a sufficiently large multimode linear-optical interferometer.

At the core of this hardness-of-simulation result is the fact that
the probability associated with each experimental outcome is

proportional to the permanent of a matrix associated with the
interferometer (see Methods for details), and the permanent is a
function that is notoriously hard to compute10. In ref. 1 it was
estimated that a system of approximately 20 photons in m ≈ 400
modes would already pose severe difficulties for its classical simu-
lation. At present, the most promising technology for achieving
this regime involves inputting Fock states into multimode integrated
photonic chips2–4,11–13.

In this Letter we report on the experimental implementation of
a small instance of the Aaronson–Arkhipov proposal, using up to
three photons interfering in a randomly chosen, five-mode inte-
grated photonic chip. We have made two important choices that
provably make the quantum experiment harder to simulate classi-
cally1: we avoid any structure by choosing a random interferometer,
and the interferometer has more modes than the number of input
photons. Implementing this arbitrary interferometer also serves
as a stringent test of our novel manufacturing techniques. This
allowed us to verify that non-interacting bosons evolve according
to the permanent of matrices of size up to 3 × 3.

Any m-mode linear interferometer can be decomposed into
basic linear-optical elements (phase shifters and beamsplitters)
using the decomposition given in ref. 14. The general layout
of this decomposition is depicted in Fig. 1a for the case where
m¼ 5. It consists of a network of beamsplitters with different
transmissivities ti (where Ti¼ ti

2 is the transmission probability of
the photon), interspersed by phase shifters restricted, without loss
of generality, to the [0,p] range, as discussed in Supplementary
Section SI. Unfortunately, large interferometers built with these
discrete elements tend to suffer from mechanical instabilities.
A more promising approach involves integrating these linear-
optical elements using optical waveguides in a glass chip15,16.
In this work, waveguides were fabricated using the femtosecond
laser micromachining technique17,18, which exploits nonlinear
absorption of focused femtosecond pulses to induce a permanent
and localized refractive index increase in transparent materials.
Arbitrary three-dimensional circuits can be directly written by
translating the sample along the desired path, keeping the
velocity constant with respect to the laser beam. This maskless
and single-step technique allows fast and cost-effective
prototyping of new devices, enabling the implementation of
three-dimensional layouts that are impossible to achieve with
conventional lithography4.

In the integrated optics approach (Fig. 1b) the role of beamsplit-
ters is performed by directional couplers, devices that bring two
waveguides close together to redistribute the light propagating in
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] [
U12a†1(ω2) + U22a†2(ω2)

]
|0〉

I a†1(ω1)a†1(ω2) : reject because two photons in detector 1.
I write a†1(ω1)a†2(ω2) = 1

2

(
a†1(ω1)a†2(ω2) + a†1(ω1)a†2(ω2)

)
+ 1

2

(
a†1(ω1)a†2(ω2)− a†1(ω1)a†2(ω2)

)
I With P12 : ω1 ↔ ω2

I there is a symmetric part:
P12 = +

I and an antisymmetric part

P12 = − .



How does partial distinguishability work?

I Similar to writing as

a τ -combination of and

I The coincidence rate R(τ) eventually yields

R(τ) = 1
2 | |2 (1 + e−σ

2τ2
) + 1

2 | |
2 (1− e−σ

2τ2
)

with the permanent of the scattering matrix,
the determinant of the scattering matrix.

I For partially distinguishable photons, there is more than
just a permanent.

I Note that, for τ = 0, only | |2 survives.
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How does partial distinguishability work?
I for 3 photons there are 3! terms in the decomposition of

a†α(ω1)a†β(ω2)a†γ(ω3).

I 3! possible permutations: 1l ,P12,P23,P13,P123,P132.
I 3! possible “basis configurations”:

antisymmetric:

symmetric:

mixed symmetry: 1

mixed symmetry: 2
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Relevance to BosonSampling

The proposal of A&A contains five sources of “errors” that will
not make an experimental realization ideal.

I Imperfect preparation of the input Fock state
I inaccurate characterization of the unitary matrix
I photon losses
I imperfect detectors
I non-simultaneity of photon arrival times
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3 photons in 5 channels (Vienna experiment)

I Inject 3 photons at the input
of an interferometer.
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I Select 3 output channels

thereby selecting a 3× 3 submatrix
of the 5× 5 scattering matrix.

I Record the coincidence counts as are function of the 2
relative delays w/r to a reference photon.
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I There are plateaus in 2 corners:

I These are areas where the two relative delays are large.

I These correspond to 3 distinct pulses
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3 photons in 5 channels (Vienna experiment)
The result is a 2-D landscape in delay space

I There is a single point at the center:
I This occurs when both delays are 0:.
I This corresponds to 3 indistinguishable photons
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All landscapes have the same typical features.
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Mixed symmetry states

I First pair:

| 1 3
2 〉1 =

[
a†1(ω1)a†2(ω2)− a†1(ω2)a†2(ω1)

]
a†3(ω3)|0〉

+
[
a†1(ω3)a†2(ω2)− a†1(ω2)a†2(ω3)

]
a†3(ω1)|0〉

| 1 2
3 〉1 = P23| 1 3

2 〉1 ,

where Pij interchanges ωi ↔ ωj

I P13| 1 3
2 〉1 = +| 1 3

2 〉1
P12| 1 2

3 〉1 = +| 1 2
3 〉1

I but
P12| 1 3

2 〉1 = −| 1 3
2 〉1 − | 1 2

3 〉1
I Similar properties holds for the second pair of states
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Mixed symmetry matrix functions
To go along with mixed symmetry states are mixed symmetry
matrix functions called immanants.

I The are constructed in a group-theoretical way using
characters.

1l P12 P13 P23 P123 P132

1 1 1 1 1 1 Permanent

1 −1 −1 −1 1 1 Determinant

2 0 0 0 −1 −1 (2,1)-Immanant

I To compute the permanent:

Per(U) = U11U22U33 + U12U21U33 + U13U22U31

+ U11U23U32 + U12U23U31 + U13U21U32 ,

=
∑

χ (σ)
[
U1σ(1)U2σ(2)U3σ(3)

]
I Note that PijPer(U) = +Per(U): permuting any two

columns of U does not change the permanent.
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Rates for partially distinguishable pulses

Suppose
I photons 2 and 3 have no relative delays (are made

indistinguishable)

I photon 1 is delayed by τ w/r to photons 2 and 3.
I the rate is then expressible as:

Rate(τ) = A(1 + e−τ
2
)| |2 + (1− e−τ

2
)|
∑

bijk ijk |2

I Permanent occurs because (obviously) if two photons are
the same then it’s a subcase of three photons the same.

I The linear combination of immanants that occurs is such
that P23|

∑
bijk ijk |2 = |

∑
bijk ijk |2.

I this must be so because the rate is a scalar (a number).
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Experimental results beyond permanents



Computational complexity of immanants

Many immanants are in the same complexity class as
permanents. For n photons immanants are labeled by a
diagram with n boxes in at most n rows:

I Immanants of the type . . . are “just about equally
hard” to compute as permanents.

I Immanants of the type . . . are “just about equally
hard” to compute as permanents.

I There is a sliding scale of hardness but if one or more of
the rows gets “very long” in comparison with the total
number of rows then the associated immanant is “hard”.
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Issues and Fortunes

I There are many more of these immanants than there are
permanents (good!)

I Thus far: The rates are given in terms of linear
combinations of immanants.

I Maybe immanants are hard, but what of linear
combinations of immanants?

I Not clear if one can extend to BosonSampler for
immanants.

I They have a clear physical interpretation: . . .

corresponds to:

I n − 2 photons photons arriving at the same time: . . .
with n − 2 boxes.

I two photons arriving together , but well distinct from the
previous n − 2:

I etc for the other diagrams.
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