
Optimized and Parallel Query Processing
in Similarity-based Databases

Petr Krajča
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Motivation

Natural query

Find a hatchback which costs about $11,500 or less.

Database query

RETRIEVE cars WHERE type ≈type ’Hatchback’

⊗ (price ≈price 11500 ∨ price < 11500);

Result

name price type year
1.00 Ford Focus 9811.0 Hatchback 2011
0.80 Hyundai i30 11699.0 Hatchback 2010
0.50 Honda Accord 10600.0 Wagon 2010
0.44 Ford Fiesta 11560.0 Wagon 2011
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Theoretical Foundations

generalized Codd’s relational model

relational algebra

relational calculus

functional dependencies

(i) Bělohávek R., Vychodil V.: Relational model of data over domains with similarities: An extension for
similarity queries and knowledge extraction. In IRI (2006), IEEE Systems, Man, and Cybernetics
Society.

(ii) Bělohávek R., Opichal S., Vychodil V.: Relational algebra for ranked tables with similarities: Properties
and implementation. In IDA (2007), M. R. Berthold, et al., Eds., vol. 4723 of Lecture Notes in
Computer Science, Springer.

(iii) Bělohávek R., Vychodil V.: Data tables with similarity relations: functional dependencies, complete
rules and non-redundant bases. In: DASFAA 2006, LNCS 3882, pp. 644–658 (2006)

(iv) Bělohlávek R., Vychodil V.: Query systems in similarity-based databases: logical foundations,
expressive power, and completeness. In: ACM SAC 2010, pp. 1648–1655 (2010)

(v) Bělohlávek R., Vychodil V.: Codd’s relational model from the point of view of fuzzy logic. J. Logic and
Computation 21:851–862 (2011)

(vi) . . .

Krajča P. (Palacký University, Olomouc) MDAI 2015 September 22, 2015 3 / 26

http://www.inf.upol.cz


Towards Practical Implementation

Query Language (RESIQL)

Krajca P., Vychodil V.: Basic Concepts of Relational Query Language
for Similarity-Based Databases. (MDAI 2012)

Algorithms for Data Processing

Krajca P., Vychodil V.: Query Optimization Strategies in Similarity-Based Databases.
(MDAI 2013)

covers the most common scenarios (top-k queries)

further requirements (e.g., order of rows, random access)

unusual or complex queries difficult to optimize

. . . a fallback plan
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Preliminaries
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Scale of Truth Degrees

complete residuated lattice: L = 〈L,∧,∨,⊗,→, 0, 1〉
〈L,∧,∨, 0, 1〉 is a complete lattice with 0 and 1 being the least and greatest
element of L

〈L,⊗, 1〉 is a commutative monoid

⊗ and → satisfy so-called adjointness property:
a⊗ b ≤ c iff a ≤ b→ c for each a, b, c ∈ L

Example 1

L = [0, 1]

a⊗ b = max(0, a+ b− 1)

a→ b = min(1, 1− a+ b)

Example 2

L = [0, 1]

a⊗ b = a · b

a→ b =

{
1, if a < b
b
a , otherwise
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Data Model: Basic Concepts

nonempty set Y of attributes – names of columns

finite subset R ⊆ Y is called a relation scheme (heading of the table)

each attribute y ∈ Y has its domain Dy (set of attribute’s values)

having a scale of truth degrees, L each domain Dy can be equipped with a map
≈y: Dy ×Dy → L, called a similarity, satisfying conditions of reflexivity and
symmetry:

(i) ≈y(u, u) = 1 for all u ∈ Dy;

(ii) ≈y(u, v) = ≈y(v, u)
for all u, v ∈ Dy

u≈y v is interpreted as a degree to which u ∈ Dy is similar to v ∈ Dy
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Data Model: Ranked Data Tables (Definition)

cartesian product of domains Dy (y ∈ R), denoted by
∏

y∈RDy, is a set of all maps
r : R→

⋃
y∈RDy such that r(y) ∈ Dy for all y ∈ R

each r ∈
⋃

y∈RDy shall be called a tuple on R over domains Dy (y ∈ R)

a ranked data table on R (shortly, an RDT) over domains Dy with similarities ≈y

(y ∈ R) is any map

D :
∏
y∈R

Dy → L

such that there are at most finitely many tuples r such that D(r) > 0.

the degree D(r) assigned to tuple r by D shall be called a rank of tuple r in D
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Data Model: Ranked Data Tables (Remarks)

attributes from R denote table columns

values from Dy are table entries

order of tuples and columns does not matter

RDTs are counterparts to the ordinary data tables in the original Codd’s model

RDTs represent stored data

RDTs are results of similarity-based queries where tuples are allowed to match
conditions to degrees

rank indicates the degree to which tuple satisfies the given query
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Query Processing
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Common Strategy

1 query is transformed from a query language (SQL, RESIQL) into a relational algebra
expression

2 rules of rel. algebra are applied

3 execution plan is constructed (physical operators working with data)

4 data are retrieved

Remarks

for Codd’s original RM set of known physical operators exists (MergeJoin,
HashJoin, etc.)

for generalized RM limited number of physical operators

variants of Fagin’s algorithm

top-k queries

further conditions have to be fulfilled (sorted access, random access)
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Our Alternative Strategy

inspiration in compilers of general purpose programming languages

1 query is transformed from a query language (SQL, RESIQL) into a relational algebra
expression

2 rules of rel. algebra are applied

3 rel. algebra operators are decomposed to elementary operations

4 elementary operations are subject of optimizations

5 query is processed
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Operation: Restriction

for an RDT D on R = {r1, . . . , rn}, attribute ri ∈ R, and c ∈ Dri similarity based
restriction σri≈c(D) is defined by

(σri≈c(D))(u) = D(u)⊗ (u(ri) ≈ c)

if D is result of query Q, the rank given by restriction is a degree to which “u matches
Q and its ri-value is similar to c.

Decomposition

for u in D
emit (rank : D(u) ⊗ (u(ri) ≈ d), r1 : u(r1), ..., rn : u(rn))

New operators

for u in D – loops over all tuples u in D; collects all emitted tuples

emit f(u) – emits new tuple (applies transformation function f on each tuple u)

relationship to map function from Lisp
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Operators: Natural Join

for two RDTs D1 and D2 with relation schemes {r1 . . . , rn, t1, . . . , tn} and
{s1, . . . , sn, t1, . . . , tn}, respectively, with common attributes t1, . . . , tn

natural join is a relation on {r1 . . . , rn, t1, . . . , tn, s1, . . . , sn} consisting of
(set-theoretic) concatenation of all joinable tuples uw and vw from D1 and D2,
respectively, such that

(D1 ./ D2)(uvw) = D1(uw)⊗D2(vw)

Decomposition

for u in D1

for v in D2

emit (rank : D1(u) ⊗ D2(v) ⊗ u(t1) = v(t1) ⊗ · · · ⊗ u(tn) = v(tn),
r1 : u(r1), ..., rn : u(rn),
t1 : u(t1), ..., tn : u(tn),
s1 : v(s1), ..., sn : v(sn))
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Operators: Projection

for an RDT D on T is the projection πR(D) of D onto R ⊆ T defined as follows

(πR(D))(u) =
∨{
D(uv) | v ∈

∏
y∈T\RDy

}
for each tuple u ∈

∏
y∈RDy.

Decomposition

reduce
∨

for u in R
emit (rank : D(u), r1 : u(r1), ..., rm : u(rm))

New Operator

reduce g – aggregates ranks of the same tuples with the aggregation function g
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Operators: more

reduce allows to implement set-theoretic operations by choosing proper aggregation
function

for instance, for union (D1 ∪ D2) we use
∨

Decomposition

reduce
∨

for u in D1

emit u
for v in D2

emit v

intersection more complicated (see proceedings)
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Optimizations
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Optimization: Composition

joins two for operators

Expressions

R1: for u in R
body
emit f1(u)

R2: for v in R1

emit f2(v)

is transformed to

R2: for u in R
body
emit f2(f1(u))
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Optimization: Composition (Example)

two restrictions σri≈ci(σrj≈cj (D)) on RDT D with relation scheme {r1, . . . rn}.
two for-loops

R1: for u in D
emit (rank : D(u) ⊗ (u(ri) ≈ ci), r1 : u(r1), ..., rn : u(rn))

R2: for v in R1

emit (rank : D(v) ⊗ (v(rj) ≈ cj), r1 : v(r1), ..., rn : v(rn))

after transformation

R2: for u in D
emit (rank : D(u) ⊗ (u(ri) ≈ ci) ⊗ (u(rj) ≈ cj),

r1 : u(r1), ..., rn : u(rn))

Remark

new representation corresponds to σ(ri≈ci)⊗(rj≈cj)(D) (consistent with rel. algebra)
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Optimization: Filtering

queries contains often multiple nested loops

decision if the tuple will be emitted (has non-zero rank) is always in the inner-most loop

desirable to skip useless computations

emit is the only place where rank is assigned

if the final rank is given by subexpressions aggregated by a monotone function (e.g., ⊗,
∧), one can determine whether the final rank will be zero, or not

New operator

filter cond – perform expressions in the body if cond 6= 0

filter is placed always to the outter most for-loop

corresponds to loop-invariant code motion optimization
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Optimization: Filtering (Example)

σri=c(D1 ./ D2)

where D1 and D2 are RDTs with disjoint schemes may be compiled to:

for u in D1

filter (u(ri) ≈ c)
for v in D2

emit (rank : D1(u) ⊗ D2(v) ⊗ (u(ri) ≈ c),
r1 : u(r1), ..., rn : u(rn),
s1 : v(s1), ..., sn : v(sn))
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Optimization: Index Selection

RDBMS uses indexes to efficiently retrieve data from the physical storage

exists methods for similarity-based databases

New operator

index D, cond – from the physical storage of the RDT D (must be relational variable)
retrieves tuples satisfying condition cond

if the for has a relational variable as its argument and is followed by a filter

operation, it is an opportunity for optimization
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Optimization: Index Selection (Example)

similarity-based join σri≈si(D1 ./ D2)

two RDTs D1 and D2 with relation schemes {r1 . . . , rn} and {s1, . . . , sn}, respectively

an index on attribute ri

for u in D1

for v in index(D2, u(ri) ≈ v(si))
filter (u(ri) ≈ v(si))
emit (rank : D1(u) ⊗ D2(v) ⊗ (u(ri) ≈ v(si)),

r1 : u(r1), ..., rn : u(rn),
s1 : v(s1), ..., sn : v(sn))

a nested-loop join algorithm

efficiently uses indexes

Krajča P. (Palacký University, Olomouc) MDAI 2015 September 22, 2015 23 / 26

http://www.inf.upol.cz


Implications

operators of the generalized model can be transformed into 3 (or 5) elementary
operations

three simple rules allows to infer algorithms for otherwise unconsidered combinations of
operators

all operators are compatible with the map/reduce framework for data processing
(implicit parallelization)

for, emit, and filter – map jobs
reduce – reduce job

two nested loops and projection

ReduceMap Map
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Evaluation

unoptimized optimized
tuples time tuples time time (8 procs.)

adult 829,821 5.6 s 292,938 3.9 s 1.9 s
bank 2,044,034,521 151 min 65,705 2.3 s 1.2 s
cars 65,898 458 ms 43,964 323 ms 178 ms
wine quality 28,302,400 143.6 s 352,841 7.1 s 2.9 s

Number of tuples fetched and processing time
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Conclusions

novel method of optimizations in similarity based database

complementary to existing algorithms

allows for implicitly parallel or distributed computing (Apache Hadoop, Apache Spark)
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