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Why squeezing?

m Metrology: suppressed noise of interferometers
m optics:detection of gravitational waves
m squeezed atomic spin states: magnetometry
m atomic clocks
m Quantum information processing: irreducble resource
m quantum teleportation of continuous variables
®m quantum cryptography
®m quantum computation with continuous variables
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Measurement noise 100 times lower than the quantum-projection limit
using entangled atoms
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Why squeezing?

Quantum information processing with squeezed states

m Quantum teleportation of continuous variables [Vaidman, PRA 49,
1473 (1994)].
m Quantum cryptography with continuous variables (e.g., [Hillery,
PRA 61, 022309 (2000)]
m Quantum computation with continuous variables (e.g., [Lloyd &
Braunstein, PRL 82, 1784 (1999)])
m Analogue computation,
m quantum simulators,
m to have universal computer, necessary to have Hamiltonian of higher
than quadratic nonlinearity in x and p.

12 /56



Basics of squeezing

Squeezing
Example: harmonic oscillator
m Hamiltonian:

~D 1
H= 2”—m + 5 mu?
m Coherent states: saturate uncertainty relation
h
Ax = —
x 2mw
hmw
Ap = —
P 2
h
AxAp = =
xAp 5
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Basics of squeezing

Squeezing
Example: harmonic oscillator
Coherent states: saturate uncertainty relation

p

Ap
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Basics of squeezing

Squeezing
Example: harmonic oscillator
Creation and annihilation operators:

h
o _ st
X 2mw(a )
I
o= —iy/ (5 al)
2
Bl = ih
.37 = 1
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Basics of squeezing

Squeezing
Example: harmonic oscillator Squeezed coherent states: can also
saturate uncertainty relation, but, e.g.:

h
Ax < —
x 2mw
hmw
A jdddied
p > 5
h
AxAp = —
xAp >
p
Ap
9Ax
X 16 / 56




Basics of squeezing: detection

Homodyne detection
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Basics of squeezing: detection

Homodyne detection

T @
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I
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b
Local oscillator
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Example: ¢ =0
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Example: ¢ =7/2
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Basics of squeezing: detection

Homodyne detection

Noise squeezing [G. Breitenbach dissertation, 1998; Nature 387, 471
(1997)] 19/56



Basics of squeezing: squeezing production

Parametric down-conversion

[Wikipedia, Denysbondar]
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Basics of squeezing: squeezing production

Parametric down-conversion

H = x(b alal + bfa;3,)

Parametric down-conversion, degenerate case

H = x(b 3™ + b'5?)
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Basics of squeezing: squeezing production

Kerr nonlinearity
(index of refraction proportional to light intensity)

H = xn?

Strong pulses propagating in optical fibres

Fibre with Kerr

nonlinearity
{Squeezedvacuum

Coherent
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Basics of squeezing: squeezing production

Jaynes-Cummings model
a two level atom and a single-mode field

He=g (:9&+ + a*&_)

[

[C. W. Woods and J. Gea-Banacloche, J. Mod. Opt. 40, 2361-2379 (1993)] 23/56



Hamilton canonical equations and squeezing rate

Classical Hamiltonian H(x, p), equations of motion

. _ OH
= o5’
. _ _OH
P = Ox’
Continuity equation
9 _ _Z%
ot p aqk7
Jk = 0Gk-
Liouville theorem
do
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Hamilton canonical equations and squeezing rate

Phase space is the countryside, Hamiltonian is the elevation

Rules of motion:

m Follow the countour line (constant elevation), hill on your left,
valley on your right,

m speed is proportional to the slope magnitude.
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Hamilton canonical equations and squeezing rate

Phase space is the countryside, Hamiltonian is the elevation

P
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Hamilton canonical equations and squeezing rate

Phase space is the countryside, Hamiltonian is the elevation

P

A
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Hamilton canonical equations and squeezing rate

Derivation of the squeezing rate
Variation matrix

_( (&x®)  (AxAp)
V= < (AxAp)  (Ap?) >

for a state centered in (xo, po)-

( Vxx pr >
Vio Vip )
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Hamilton canonical equations and squeezing rate

Derivation of the squeezing rate
Change of position

X+ Ax = Xo-f-AX—i—%(Xo—i—AX)dt
OH(xo + Ax, po + Ap)

= xp+ Ax+ dt
op
H
~ X + AXx + Mdt
op
9?*H(xo, po) 9?H(xo, po)
———A —————Ax | dt
+ ( Op? Pt Oxdp X
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Hamilton canonical equations and squeezing rate

Derivation of the squeezing rate
Change of momentum

) 3 d
Bo+Ap =~ po+Ap+ — (po+ Ap)dt

dt
H A A
_ p0+Ap_3 (0 +Ax,po+Bp)
oOx
H
~ pyt Ap IH0Po)

ox

9?H(xo, po) 9?H(xo, po)
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Hamilton canonical equations and squeezing rate

Derivation of the squeezing rate
New central position and momentum:

X0 ~ xo+ Hpdt,
Po po — Hxdt,

%

new deviations:

AX =~ Ax+ (HpAx + HppAp) dt,
Ap ~ Ap— (HplAp+ HuAx)dt.
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Hamilton canonical equations and squeezing rate

Derivation of the squeezing rate

Assuming (Ax) = (Ap) = 0, the new variances are (up to the first
order in dt)

(AR%) ~ (AXP) +2 (Hp(AX?) + Hpp(AxAp)) dt,
(AP =~ (Ap®) — 2 (Hyp(AP?) + Hu(AxAp)) dt,

(AXAB) =~ (AxAp) + (Hpp(Ap®) — Hix(Ax?)) dt.
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Hamilton canonical equations and squeezing rate

Derivation of the squeezing rate

In terms of the variation matrix:
vV = SvsT,
where

[ 1+ Hpdt  Hpdt
5‘( —Hedt  1—Hgpdt ) (1)
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Hamilton canonical equations and squeezing rate

Derivation of the squeezing rate

For initially isotropic and uncorrelated fluctuations, i.e.,
(Ax?) = (Ap?) = 02, and (AxAp) = 0:
(AX?) ~ 02 (1+2H,,) dt,
(AB?) 02 (1 — 2H,,) dt,
(AXAP) =~ 02 (Hpp — Hyx) dt.

Eigenvalues of the new variance matrix V:

%

v = <AX—AP 1\/ AR2) — (AB2))? + 4(AXAP)2.
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Hamilton canonical equations and squeezing rate

Derivation of the squeezing rate

Inserting the transformed variance:
Vi= o2(1+ Qdt)

where

=\ (Hop — Ho 45, (2)

is the squeezing rate.
[T.O., PRA 92, 033801 (2015)]
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Hamilton canonical equations and squeezing rate

Orientation and rotation of the squeezing ellipse

Transformation matrix S, general starting variance matrix:

s = (Temg eI (T )

cos¢ sing
% sing cos¢ |-

@ Ap (b) Ap
W ax
@
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Hamilton canonical equations and squeezing rate

Orientation and rotation of the squeezing ellipse

Up to the first order in € and dt, one finds

1+ 9 cos2¢ e+ Ytsin2g
S = : (3)
—e+%sin2¢ 1—%cos2¢

Comparing this with Eq. (1) one finds
Qcos2¢p = 2H,p,
Rsin2¢ = Hpp — Hyx,
2¢ = (Hx« + Hpp)dt,

with @ given by Eq. (2).
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Hamilton canonical equations and squeezing rate

Orientation and rotation of the squeezing ellipse

Rotation angle

Hpp — Hix
tan2¢ = "ST,
xp

and assuming that € evolves with time as ¢ = w, dt, one gets

H. +H
ottt 2
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Hamilton canonical equations and squeezing rate

Compensation of motion of the uncertainty ellipse

Rotation center at (xg, pr) = (X, p) + (Rx, Rp) with
Ry = —i, R, = ——,
We We
angular frequency of the motion of the center
B H2Hpp + HgHXX — 2HHpHp 5)
H2 + H3 '

Wce

p :,'No 0t
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Hamilton canonical equations and squeezing rate

Compensation of motion of the uncertainty ellipse

To compensate the drift, add the Hamiltonian

1
Haa1 = _Ewc [(X - XR)2 +(p— pR)2] .
To keep the optimal orientation, add
1
Had2 = _E(wv - wc) [(X - X0)2 + (P - pO)z]
Combined Hamiltonian H,q = Haq1 + Haqo,

1
H,g = — 5 [(x = x)* + (p — pr)?] + const., (6)

with the center localized at

(o) = (xi. PR) + (1 - ‘*’C) (x0 — xR Po — PR).

v
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Harmonic oscillator

1
H= 5("}(102 + X2)7

Eq. (2) yields Q@ = 0.
Rotation frequencies w, = w; = w.

@ Ap

s
\&%M
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Free particle

1
H=_—"p°
2mp

Squeezing rate Q =1/m,
optimum orientation of the uncertainty ellipse 6 = 7 /4,
rotations w, = 1/(2m), and w. = 0.

©) Ap

Al
&%Ax
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Free particle

In terms of quantum optical bosonic operators:

the Hamiltonian is

1 1 1 1
H:§A2:—Z (3T2+32)+2<3T§+2>,

i.e., parametric down-conversion plus harmonic oscillator.
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Inverted oscillator

1. o o
EC(P x°)
Squeezing rate Q = 2,
optimum orientation § = 7 /4,

no rotation, w, = 0.

© Ap -~

Y
&/\ AX
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xp-Hamiltonian
H="{(xp
Classical counterpart of the quantum operator
A= SC b+ p%) = ¢ (37 - 2).
i.e., parametric down-conversion.
Squeezing rate @ = 2(,

optimum orientation 6 = 0,
no rotation, w, = 0.

@ Ap

N
%T?%;
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Pendulum

1
H=-p*-
2p COS X

Squeezing rate
Q=1—cosx = 2sin? g,

2

rotation w, = cos” 5
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Kerr nonlinearity

H = x(p* + x*)?,

Squeezing rate

Q = 8x(p* + x?),

rotation
we = 8x(p* + %),
We = 4X(p2+x2)7
1
(ropr) = 5%, Po)-
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Kerr nonlinearity
Compensating Hamiltonian
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Jaynes-Cummings Hamiltonian

Classical Hamiltonian postulated as

,02—|-X2

H=+g >

Stems from the quantum Hamiltonian
Fe=g (am + éTa_) ,
assume the initial quantum state prepared as

1) = |a) @ —= (lg) £ e”le))

1
V2
with a = /ne™? = 271/2(x + ip).

The mean energy is (®|Hc|®1) = +gv/n=4+2712g\/x2 4 p2.

52 /56



Jaynes-Cummings Hamiltonian

2 2 . . :
H=4g %, visualization:
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Jaynes-Cummings Hamiltonian
Squeezing rate

_ & 1

NN
angular velocities

o, - 1+ &L

’ V22\/x2+ p?’

w, — + 8 L

‘ V2/x? 4 p?’

(xrspr) = (=x0,—po).

Compensating Hamiltonian:

g

“\@\/m[(XJFXO) +(p+po)?] -

Had::F
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Jaynes-Cummings Hamiltonian
Phase trajectories
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Squeezing with classical Hamiltonians

m Squeezing rate for planar phase-space Q = \/(pr — HXX)2 + 4H§p,
Vi =+QV,.

m Interpretation: for zero-gradient points, difference of principal
curvatures of the Hamiltonian

m Add non-squeezing Hamiltonians to keep the state at right place
and optimally oriented

For initial stages of squeezing, classical formulas perfectly agree
with quantum predictions.
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