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Tomáš Opatrný
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Why squeezing?

Metrology: suppressed noise of interferometers
optics:detection of gravitational waves
squeezed atomic spin states: magnetometry
atomic clocks

Quantum information processing: irreducble resource
quantum teleportation of continuous variables
quantum cryptography
quantum computation with continuous variables
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Why squeezing?

Measurement noise 100 times lower than the quantum-projection limit
using entangled atoms

[Hosten et al. (Kasevich group)]
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Why squeezing?

Quantum information processing with squeezed states

Quantum teleportation of continuous variables [Vaidman, PRA 49,
1473 (1994)].
Quantum cryptography with continuous variables (e.g., [Hillery,
PRA 61, 022309 (2000)]
Quantum computation with continuous variables (e.g., [Lloyd &
Braunstein, PRL 82, 1784 (1999)])

Analogue computation,
quantum simulators,
to have universal computer, necessary to have Hamiltonian of higher
than quadratic nonlinearity in x and p.

0 1 2

PSfrag repla
ements

j 

in

i

j 

out

i

P

1

X

0

Ali
e Bob

ENT

12 / 56



Basics of squeezing

Squeezing
Example: harmonic oscillator

Hamiltonian:

H =
p̂2

2m
+

1

2
mω2x̂2

Coherent states: saturate uncertainty relation

∆x =

√
~

2mω

∆p =

√
~mω

2

∆x∆p =
~
2
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Basics of squeezing

Squeezing
Example: harmonic oscillator
Creation and annihilation operators:

x̂ =

√
~

2mω
(â + â†)

p̂ = −i
√

~mω
2

(â− â†)

[x̂ , p̂] = i~
[â, â†] = 1

H = ~
(
â†â +

1

2

)
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Basics of squeezing

Squeezing
Example: harmonic oscillator Squeezed coherent states: can also
saturate uncertainty relation, but, e.g.:

∆x <

√
~

2mω

∆p >

√
~mω

2

∆x∆p =
~
2

x

p

∆ p

x∆
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Basics of squeezing: detection

Homodyne detection

Signal

I

I

Local oscillator

1

2

2

1

a a

a

b

â1 =
1√
2

(
â + b̂

)
, â2 =

1√
2

(
â− b̂

)
I1 ∝ â†1â1 =

1

2
â†â +

|b|
2

(
â†e iϕ + âe−iϕ

)
+
|b|2

2

I2 ∝ â†1â1 =
1

2
â†â− |b|

2

(
â†e iϕ + âe−iϕ

)
+
|b|2

2
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Basics of squeezing: detection

Homodyne detection

Signal

I

I

Local oscillator

1

2

2

1

a a

a

b

I1 − I2 ∝ |b|
(
â†e iϕ + âe−iϕ

)
Example: ϕ = 0

I1 − I2 ∝ |b|
(
â† + â

)
∝ x̂

Example: ϕ = π/2

I1 − I2 ∝ i |b|
(
â† − â

)
∝ p̂
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Basics of squeezing: detection

Homodyne detection

Noise squeezing [G. Breitenbach dissertation, 1998; Nature 387, 471
(1997)] 19 / 56



Basics of squeezing: squeezing production

Parametric down-conversion

[Wikipedia, Denysbondar]
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Basics of squeezing: squeezing production

Parametric down-conversion

H = χ(b̂ â†1â
†
2 + b̂†â1â2)

Parametric down-conversion, degenerate case

H = χ(b̂ â†2 + b̂†â2)

2ω

ω
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Basics of squeezing: squeezing production

Kerr nonlinearity
(index of refraction proportional to light intensity)

H = χn̂2

Strong pulses propagating in optical fibres

Squeezed vacuum

Coherent 
light

Fibre with Kerr

nonlinearity
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Basics of squeezing: squeezing production

Jaynes-Cummings model
a two level atom and a single-mode field

ĤJC = g
(
âσ̂+ + â†σ̂−

)

[C. W. Woods and J. Gea-Banacloche, J. Mod. Opt. 40, 2361-2379 (1993)]
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Hamilton canonical equations and squeezing rate

Classical Hamiltonian H(x , p), equations of motion

ẋ =
∂H

∂p
,

ṗ = −∂H
∂x

.

Continuity equation

∂%

∂t
= −

∑
k

∂jk
∂qk

,

jk = %q̇k .

Liouville theorem

d%

dt
= 0.
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Hamilton canonical equations and squeezing rate

Phase space is the countryside, Hamiltonian is the elevation

Rules of motion:

Follow the countour line (constant elevation), hill on your left,
valley on your right,

speed is proportional to the slope magnitude.
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Hamilton canonical equations and squeezing rate
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p

x
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Hamilton canonical equations and squeezing rate

Derivation of the squeezing rate
Variation matrix

V =

(
〈∆x2〉 〈∆x∆p〉
〈∆x∆p〉 〈∆p2〉

)
≡
(

Vxx Vxp

Vxp Vpp

)
,

for a state centered in (x0, p0).
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Hamilton canonical equations and squeezing rate

Derivation of the squeezing rate
Change of position

x̃0 + ∆x̃ ≈ x0 + ∆x +
d

dt
(x0 + ∆x) dt

= x0 + ∆x +
∂H(x0 + ∆x , p0 + ∆p)

∂p
dt

≈ x0 + ∆x +
∂H(x0, p0)

∂p
dt

+

(
∂2H(x0, p0)

∂p2
∆p +

∂2H(x0, p0)

∂x∂p
∆x

)
dt
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Hamilton canonical equations and squeezing rate

Derivation of the squeezing rate
Change of momentum

p̃0 + ∆p̃ ≈ p0 + ∆p +
d

dt
(p0 + ∆p) dt

= p0 + ∆p − ∂H(x0 + ∆x , p0 + ∆p)

∂x
dt

≈ p0 + ∆p − ∂H(x0, p0)

∂x
dt

−
(
∂2H(x0, p0)

∂x2
∆x +

∂2H(x0, p0)

∂x∂p
∆p

)
dt.
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Hamilton canonical equations and squeezing rate

Derivation of the squeezing rate
New central position and momentum:

x̃0 ≈ x0 + Hpdt,

p̃0 ≈ p0 − Hxdt,

new deviations:

∆x̃ ≈ ∆x + (Hxp∆x + Hpp∆p) dt,

∆p̃ ≈ ∆p − (Hxp∆p + Hxx∆x) dt.
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Hamilton canonical equations and squeezing rate

Derivation of the squeezing rate

Assuming 〈∆x〉 = 〈∆p〉 = 0, the new variances are (up to the first
order in dt)

〈∆x̃2〉 ≈ 〈∆x2〉+ 2
(
Hxp〈∆x2〉+ Hpp〈∆x∆p〉

)
dt,

〈∆p̃2〉 ≈ 〈∆p2〉 − 2
(
Hxp〈∆p2〉+ Hxx〈∆x∆p〉

)
dt,

〈∆x̃∆p̃〉 ≈ 〈∆x∆p〉+
(
Hpp〈∆p2〉 − Hxx〈∆x2〉

)
dt.
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Hamilton canonical equations and squeezing rate

Derivation of the squeezing rate

In terms of the variation matrix:

Ṽ = SVST ,

where

S =

(
1 + Hxpdt Hppdt
−Hxxdt 1− Hxpdt

)
. (1)
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Hamilton canonical equations and squeezing rate

Derivation of the squeezing rate

For initially isotropic and uncorrelated fluctuations, i.e.,
〈∆x2〉 = 〈∆p2〉 = σ2, and 〈∆x∆p〉 = 0:

〈∆x̃2〉 ≈ σ2 (1 + 2Hxp) dt,

〈∆p̃2〉 ≈ σ2 (1− 2Hxp) dt,

〈∆x̃∆p̃〉 ≈ σ2 (Hpp − Hxx) dt.

Eigenvalues of the new variance matrix Ṽ :

Ṽ± =
〈∆x̃2〉+ 〈∆p̃2〉

2
± 1

2

√
(〈∆x̃2〉 − 〈∆p̃2〉)2 + 4〈∆x̃∆p̃〉2.
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Hamilton canonical equations and squeezing rate

Derivation of the squeezing rate

Inserting the transformed variance:

Ṽ± = σ2 (1± Qdt)

where

Q =
√

(Hpp − Hxx)2 + 4H2
xp (2)

is the squeezing rate.
[T.O., PRA 92, 033801 (2015)]
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Hamilton canonical equations and squeezing rate

Orientation and rotation of the squeezing ellipse

Transformation matrix S , general starting variance matrix:

S =

(
cos (φ− ε) − sin (φ− ε)
sin (φ− ε) cos (φ− ε)

)(
1 + Qdt

2 0

0 1− Qdt
2

)
×
(

cosφ sinφ
sinφ cosφ

)
.

∆ x

∆ p

V
~

~
θθ

V

(a)

φ φ−ε

∆ x

∆ p(b)
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Hamilton canonical equations and squeezing rate

Orientation and rotation of the squeezing ellipse

Up to the first order in ε and dt, one finds

S =

 1 + Qdt
2 cos 2φ ε+ Qdt

2 sin 2φ

−ε+ Qdt
2 sin 2φ 1− Qdt

2 cos 2φ

 . (3)

Comparing this with Eq. (1) one finds

Q cos 2φ = 2Hxp,

Q sin 2φ = Hpp − Hxx ,

2ε = (Hxx + Hpp) dt,

with Q given by Eq. (2).
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Hamilton canonical equations and squeezing rate

Orientation and rotation of the squeezing ellipse

Rotation angle

tan 2φ =
Hpp − Hxx

2Hxp
,

and assuming that ε evolves with time as ε = ωvdt, one gets

ωv =
Hxx + Hpp

2
(4)
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Hamilton canonical equations and squeezing rate

Compensation of motion of the uncertainty ellipse

Rotation center at (xR , pR) = (x , p) + (Rx ,Rp) with

Rx = −Hx

ωc
, Rp = −Hp

ωc
,

angular frequency of the motion of the center

ωc =
H2
xHpp + H2

pHxx − 2HxHpHxp

H2
x + H2

p

. (5)

(x  ,p  )R R

ωc t

ω v t
ω( ) tcωv−

x

p
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Hamilton canonical equations and squeezing rate

Compensation of motion of the uncertainty ellipse

To compensate the drift, add the Hamiltonian

Had1 = −1

2
ωc

[
(x − xR)2 + (p − pR)2

]
.

To keep the optimal orientation, add

Had2 = −1

2
(ωv − ωc)

[
(x − x0)2 + (p − p0)2

]
Combined Hamiltonian Had = Had1 + Had2,

Had = −1

2
ωv

[
(x − xr )2 + (p − pr )2

]
+ const., (6)

with the center localized at

(xr , pr ) = (xR , pR) +

(
1− ωc

ωv

)
(x0 − xR , p0 − pR).
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Examples

Harmonic oscillator

H =
1

2
ω(p2 + x2),

Eq. (2) yields Q = 0.
Rotation frequencies ωv = ωc = ω.

(a)

∆ x

∆ p
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Examples

Free particle

H =
1

2m
p2.

Squeezing rate Q = 1/m,
optimum orientation of the uncertainty ellipse θ = π/4,
rotations ωv = 1/(2m), and ωc = 0.

(b)

∆ x

∆ p
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Examples

Free particle

In terms of quantum optical bosonic operators:

x̂ =
1√
2

(
â† + â

)
,

p̂ =
i√
2

(
â† − â

)
,

the Hamiltonian is

H =
1

2
p̂2 = −1

4

(
â†2 + â2

)
+

1

2

(
â†â +

1

2

)
,

i.e., parametric down-conversion plus harmonic oscillator.
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Examples

Inverted oscillator

1

2
ζ(p2 − x2)

Squeezing rate Q = 2ζ,
optimum orientation θ = π/4,
no rotation, ωv = 0.

(c)

∆ x

∆ p
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Examples

xp-Hamiltonian

H = ζxp

Classical counterpart of the quantum operator

Ĥ =
1

2
ζ (x̂ p̂ + p̂x̂) =

i

2
ζ
(
â†2 − â2

)
,

i.e., parametric down-conversion.
Squeezing rate Q = 2ζ,
optimum orientation θ = 0,
no rotation, ωv = 0.

(d) ∆ p

∆ x
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Examples

Pendulum

H =
1

2
p2 − cos x

Squeezing rate

Q = 1− cos x = 2 sin2 x

2
,

rotation ωv = cos2 x
2
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Examples

Kerr nonlinearity

H = χ(p2 + x2)2,

Squeezing rate

Q = 8χ(p2 + x2),

rotation

ωv = 8χ(p2 + x2),

ωc = 4χ(p2 + x2),

(xr , pr ) =
1

2
(x0, p0).
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Examples

Kerr nonlinearity
Compensating Hamiltonian

Had = −4χ(x20 + p20)

[(
x − x0

2

)2
+
(
p − p0

2

)2]
.
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Examples

Jaynes-Cummings Hamiltonian

Classical Hamiltonian postulated as

H = ±g
√

p2 + x2

2
.

Stems from the quantum Hamiltonian

ĤJC = g
(
âσ̂+ + â†σ̂−

)
,

assume the initial quantum state prepared as

|Φ±〉 = |α〉 ⊗ 1√
2

(
|g〉 ± e iϕ|e〉

)
,

with α =
√
ne iϕ = 2−1/2(x + ip).

The mean energy is 〈Φ±|ĤJC |Φ±〉 = ±g
√
n = ±2−1/2g

√
x2 + p2.
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Examples

Jaynes-Cummings Hamiltonian

H = ±g
√

p2+x2

2 , visualization:

x

p

H
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Examples

Jaynes-Cummings Hamiltonian
Squeezing rate

Q =
g√
2

1√
x2 + p2

,

angular velocities

ωv = ± g√
2

1

2
√
x2 + p2

,

ωc = ± g√
2

1√
x2 + p2

,

(xr , pr ) = (−x0,−p0).

Compensating Hamiltonian:

Had = ∓ g

4
√

2
√
x20 + p20

[
(x + x0)2 + (p + p0)2

]
.
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Examples

Jaynes-Cummings Hamiltonian
Phase trajectories
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Summary

Squeezing with classical Hamiltonians

Squeezing rate for planar phase-space Q =
√

(Hpp − Hxx)2 + 4H2
xp,

V̇± = ±QV±.

Interpretation: for zero-gradient points, difference of principal
curvatures of the Hamiltonian

Add non-squeezing Hamiltonians to keep the state at right place
and optimally oriented

For initial stages of squeezing, classical formulas perfectly agree
with quantum predictions.
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