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Array detectors

Array detection scheme

�ber loop

optical coupler|n〉

Loop detector

Light in state |n〉 is combined with N − 1 vacuum states by N-port unitary operation.
The �nal state is detected by N on/o�-detectors
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Binomial POVM:

Π̂k =

(
N

k

)
:
(
e−(η n̂

N
+ν)
)N−k (

1− e−(η n̂
N

+ν)
)k

: (1)

where N is the number of detectors in the array, η is the detection e�ciency, ν
corresponds to dark-count rate.
The corresponding operator of photocounts ĉ is given by

ĉ =
+∞∑
n=0

n Π̂n. (2)

The eigenstate projectors for this operator are not equal to the POVM,
cf. Eq. (1), and its eigenvalues are not equal to n
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Problem's statement

To estimate the mean value of a certain operator Â, which commutes with the
photon-number operator ç n̂, [

Â, n̂
]

= 0. (3)

Examples of Â:

1 The phtoton-number operator n̂;

2 The phtocounting operator ĉ;

3 The moments n̂m;

4 The normally-oredered moments : n̂m :;

5 The projectors |n〉 〈n|;
6 The POVM's with di�erent values of parameters η, ν, N;

7 etc.

From the experiment we have an information about probabilities pn given by (??).
Our aim is to �nd such coe�cients Cn that〈

Â
〉

=
∑
n

Cnpn + R, (4)

where R describes a possible systematic error caused by incompleteness of the
obtained information. This error should also be estimated.
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Geometrical approach to photodetecting

Set of POVMs

Π̂k =
(
N
k

)
:
(
e−(η n̂

N
+ν)
)N−k (

1− e−(η n̂
N

+ν)
)k

:, k = 0, ...N

forms a non-orthogonal basis in the Hilbert space of operator Â. One can
expand Â in this basis:

Â =
∑
n

An Π̂n + R̂, (5)

The task is to �nd An = Tr

[
Â Π̂n

]
òà
〈
R̂
〉

Π̂1

R̂

Π̂2

R̂ is the orthogonal completion of Â for the
basis Π̂n.
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Metric tensor

POVM Π̂n form a�ne basis. For such a basis one can de�ne the covariant
metric tensor

gnm = Tr

[
Π̂n Π̂m

]
. (6)

Inverse to gnm is contravariant metric tensor gnm∑
k

gnk g
km = δn

m. (7)

gnm =

(
N

n

)(
N

m

)
m∑

k=0

n∑
l=0

(
m

k

)(
n

l

)
(−1)k+l

1− (n−l)(m−k)

N2

(8)
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ĝ(8) =


1.00 0 0 ... 0

0 1.02 0.115 ... 2.07× 10−9

0 0.115 0.883 ... 3.53× 10−6

... ... ... ... ...
0 2.07× 10−9 3.53× 10−6 ... ∞

 (9)

Regularisation

gnm(χ) =

(
N

n

)(
N

m

)
m∑

k=0

n∑
l=0

(
m

k

)(
n

l

)
× (−1)k+l N2

N2 − (1− χ)2 (n − l) (m − k)
,

(10)

When χ→ 0 gnm(χ)→ gnm.
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Error

Error can be obtained by estimating the term
〈
R̂
〉
in Eq. (5).〈

R̂
〉2

≤
〈
R̂2
〉
≤ Tr

[
R̂2
]
. (11)

Utilizing the fact that R̂ is orthogonal to the subspace spanned on Π̂n,

∣∣∣〈R̂〉∣∣∣ ≤ (Tr [Â2
]
−
∑
n

AnA
n

) 1
2

. (12)

where
An = Tr

[
Â Π̂n

]
. (13)
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Photocounts

The phtocounting operator

ĉ =
N∑

n=0
n Π̂n = N

(
1− : e−

n̂
N

)
:

Expansion coe�cients for it:

Tr

{
ĉ Π̂k (χ)

}
=

N∑
m=0

m∑
l=0

gmk
(N
m

)(m
l

)
(−1)l

N∑
n=0

m∑
j=0

n
(N
n

)(n
j

) (−1)j

1− (1−χ)2(m−l)(n−j)

N2

.

(14)

The components of ĉ in POVM basis are the numbers of photocounts n:

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

Tr

{
ĉ Π̂k

}
0 1 2 3 4 5 6 7 8

(15)∣∣∣〈R̂〉∣∣∣ = 0 (16)
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The phtoton-number operator and normally-oredered moments

The truncated photon-number operator n̂M

: n̂lM :=
M∑
n=0

nl |n〉 〈n| . (17)

Expansion coe�cients for : n̂lM :, including n̂M :

Tr

[
: n̂lM : Π̂k

]
=

M∑
n=0

nl
N∑

m=0

m∑
l=0

(−1)lgmk
(N
m

)(m
l

) ((1− χ)(m − l))n

Nn
(18)

Assuming photocounts have Poisson distribution

〈ĉ〉 1.0 2.0 3.0 4.0
∣∣∣〈R̂〉∣∣∣

max
〈n̂4〉 1.002 2.061 2.943 3.154 0.661
〈n̂8〉 1.079 2.260 3.155 3.378 4.99

(19)

Error grows as number of clicks gets closer to N

n̂0 n̂1 n̂2 n̂3 n̂4 n̂5 n̂6 n̂7 n̂8∣∣∣〈R̂〉∣∣∣ ≤ 0.0 0.00240 0.08062 0.661 1.89 2.35 3.532 4.34 4.99

(20)
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Symmetrically-oredered moments

Symmetrically-oredered moments

n̂l
M =

l∑
k=0

S(l , k) : n̂k
M : . (21)

where S(l , k) are Stirling numbers of the second kind

Moments of photons and photocounts
photons clicks photons clicks photons clicks

µ1 1.08 1.0 2.26 2.0 3.15 3.0
µ2 2.44 2.0 8.11 6.0 14.54 12.0
µ3 7.22 5.0 36.23 22.0 78.46 57.0
µ4 26.54 15.0 188.20 94.0 468.76 309.0
µ5 115.96 52.0 1085.83 454.0 3001.54 1866.0
µ6 580.56 203.0 6751.6 2430.0 20180.80 12351.0
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Results and conclusions

We have suggested an approach that allows to �nd mean values for
operators that commute with the photon number operator, if statistics of
photocounts is given. And to estimate systematic error occurring.

As an example we apply this approach to �nd the photon statistics from
the statistics of photocounts and to see dependency of error on number
of detectors in the array.

The approach seems to be reasonable at least in case of small detectors.
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Thank you for your attention!
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