A source of polarization-entangled photons at 780 nm and 1550 nm wavelength

Adrian Holzäpfel

Motivation

Photonic qubit

- Fast transmission
- Low error rate (per distance)
- High detection efficiency

- Universal (deterministic) gates
- Storage time

Trapped rubidium 87

- High state detection efficiency
- Universal deterministic gates
- Quantum registers
- Entanglement with 780 nm photons

Propagation loss in silica optical fibers

Taken from http://www.macao.communications.museum

Experimental Setup

Entanglement creation in Sagnac-interferometer

Pump 📕 Idler V-polarized

Experimental Setup

- Nonlinear Crystal
- Glass

- Glan-Thompson prism
- Calcite block
- Polarization rotator

Experimental Setup

- Nonlinear Crystal
- Glass

- Glan-Thompson prism
- Calcite block
- Polarization rotator

Performance

Performance

- Spectral: Central wavelength and spectral width of signal and idler
- Rates: Collection efficiency and (spectral) brightness
- State preparation: Correlation measurements and quantum state tomography

Single photon spectra

$$\Delta \lambda_S = 2.0 \pm 0.1 \text{nm}$$

$$\Delta \lambda_I = 6.0 \pm 0.5 \text{ nm}$$

Estimating collection efficiency

Signal and idler are created strictly in pairs

$$\Rightarrow \frac{R_{AB}}{R_B} = \frac{\eta_A \eta_B R_{tot}}{\eta_B R_{tot}} = \eta_A$$

$$\eta_S^{(c)} = 12.8\%$$
 $\eta_I^{(c)} = 10.0\%$

Contributions to photon loss

• Interferometer:

vertically polarized:	33%
barizantallı (palarizadı	5 00/

horizontally polarized: 59%

Bandpass filters:

780 nm: 20%

1550 nm: 50%

Coupling into SM fibers: 35%

- Nonlinear Crystal
- Glass

- Glan-Thompson prism
- Calcite block
- Polarization rotator

Contributions to photon loss

• Interferometer:

vertically polarized:	33%
barizantallı (palarizadı	5 00/

horizontally polarized: 59%

Bandpass filters:

780 nm: 20%

1550 nm: 50%

Coupling into SM fibers: 35%

Brightness and spectral brightness

$$B := \frac{R_{SI}^{\text{(created)}}}{P_{\text{pump}}} = \frac{R_{SI}^{\text{(measured)}}}{P_{\text{pump}}\eta_S\eta_I} = 2.4 \times 10^6 \text{s}^{-1} \text{mW}^{-1}$$

$$B_{\text{spect}} \coloneqq \frac{B}{\Delta \nu_S} = 2.6 \times 10^6 \text{s}^{-1} \text{mW}^{-1} \text{THz}^{-1}$$

Performance

Performance

State tomography with maximum likelihood method

- 1)Find suitable parametrization for $\bar{n}\hat{
 ho}$
 - ⇒ Cholesky decomposition:

$$\bar{n}\hat{\rho} = \hat{T}\hat{T}^{\dagger}$$

- 2)Formulate a likelihood as function of the parametrisation
- 3) Numerically maximize the likelihood for the given measurement result

Performance

$$\mathcal{L}(t_1, \dots, t_{16}) = \frac{1}{N} \prod_{i} exp \left(-\frac{(\bar{n}_i - n_i)^2}{2\sigma_i^2} \right)$$
$$= \frac{1}{N} \prod_{i} exp \left(-\frac{(\langle i|\hat{T}^{\dagger}\hat{T}|i\rangle - n_i)^2}{2\langle i|\hat{T}^{\dagger}\hat{T}|i\rangle} \right)$$

State tomography with maximum likelihood method

- 1)Find suitable parametrization for $\bar{n}\hat{
 ho}$
 - ⇒ Cholesky decomposition:

$$\bar{n}\hat{\rho} = \hat{T}\hat{T}^{\dagger}$$

- 2)Formulate a likelihood as function of the parametrisation
- 3) Numerically maximize the likelihood for the given measurement result

Reconstructed density matrix

Reconstructed density matrix

High fidelity

Compact

Stable

Coupling efficiency

Spectrum of SPDC

- Nonlinear Crystal
- Glass

- Glan-Thompson prism
- Calcite block
- Polarization rotator

High fidelity

Compact

Stable

Coupling efficiency

Spectrum of SPDC