Running Boolean Matrix Factorization in Parallel

Jan Outrata and Martin Trnecka

DEPARTMENT OF COMPUTER SCIENCE
PALACKY UNIVERSITY, OLOMOUC
CZECH REPUBLIC

AusDM 2016
December 6-8, Canberra


http://www.inf.upol.cz
http://www.inf.upol.cz
http://www.inf.upol.cz
http://www.inf.upol.cz

Outline @

the problem, our contribution
preliminaries in Boolean Matrix Factorization (BMF)

running BMF in parallel
m base (sequential) algorithm
m general parallelization scheme

experimental evaluation

conclusions

Jan Outrata (Palacky University, Olomouc) Running Boolean Matrix Factorization in Parallel AusDM 2016, Canberra 1/14


http://www.inf.upol.cz

Boolean Matrix Factorization (BMF) in parallel? @

m BMF also called Boolean matrix decomposition, Boolean factor analysis, ...

= (approximate) decomposition of Boolean matrix (entries 1 or 0) to (Boolean) matrix
product of two Boolean matrices

el
O~ ==
o= O o
SO = =
= o = O
O~ ==
= o = O
SO = =
o~ OO
e
== O
_= o o O
o~ OO
OO = O

m optimization problems:

find a decomposition with inner matrix product dimension as low as possible for a given
maximal decomposition approximation = Approximate Factorization Problem (AFP)

find as exact decomposition as possible for a given maximal inner dimension = Discrete
Basis Problem (DBP)

m least dimension of exact decomposition = Boolean (Schein) rank of matrix

m NP-hard problems — approximation algorithms for sub-optimal decompositions:
GRECOND, GREESS (both for AFP), Asso (for DBP) and other (PANDA, HYPER)
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Boolean Matrix Factorization (BMF) in parallel? @

Algorithms

m heuristic = final decomposition constructed from partial (approximate)
decompositions which are only locally optimal

m sequential = choice of optimal partial decomposition hardcoded in algorithm design,
one cannot explore several most optimal (or even all) — parallel computation
(preferred — multicore CPUs, GPGPU)

m no parallel algorithm for Boolean matrix factorization — there are for methods designed
for real-valued matrices (SVD, NMF), but they lack interpretability when applied to
Boolean matrices! — crucial for knowledge discovery = BMF more appropriate for
Boolean matrices

m reasons? (most commonly used) greedy heuristic approach is inherently sequential,
BMF is young compared to real-valued factorization methods (?7)
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Our contribution @

m not a parallel BMF algorithm

— general parallelization scheme to compute in parallel several locally optimal
decompositions and select the most optimal one(s) hoping to find the globally optimal
m following several choices of locally most optimal partial decompositions in the
heuristics, constructing several most optimal final decompositions — in more processes
running simultaneously in parallel

m return the single most optimal decomposition or several top-k of them

m applicable to any sequential heuristic BMF algorithm — chosen GRECOND for
demonstration (simple, well-known, efficient)
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Boolean Matrix Factorization (BMF) — preliminaries @

= (approximate) decomposition of Boolean matrix I (entries 1 or 0) to (Boolean) matrix
product of two Boolean matrices A and B

Iij ~ (A o B)ij = I{ligilx min(Ail, Blj)
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m [ ...object-attribute incidence relation, A ...object-factor i. r.,
B .. .factor-attribute i. r.

= discovery of k factors (approximately) explaining I ~ “new attributes”:
(Ao B);; ... "object i has attribute j (I;; = 1) if and only if there exists a factor [ that
applies to i (A; = 1) and j is one of the manifestations of I (B;; =1)"

m geometric view: factor ~ rectangle full of 1s — decomposition of I ~ coverage of 1s
of I by rectangles
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Boolean Matrix Factorization (BMF) — preliminaries @

m optimization problem (AFP): find a decomposition with the number k of factors as
small as possible such that || — Ao B|| < e ...explain a prescribed portion of data
m,n
E(I,AoB)=||I —AoB||= > |I;; — (Ao B)jj|
ij=1

m quality of decomposition — coverage quality of the first [ factors:

c(l)=1-E(, Ao B)/|1||

Belohlavek R., Vychodil V.: Discovery of optimal factors in binary data via a novel
method of matrix decomposition. Journal of Computer and System Sciences
76(1)(2010), 3-20.

(] Belohlavek R., Trnecka M.: From-Below Approximations in Boolean Matrix

Factorization: Geometry and New Algorithm, Journal of Computer and System
Sciences 81(8)(2015), 1678-1697.
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GRECOND - base (sequential) algorithm @

Belohlavek R., Vychodil V.: Discovery of optimal factors in binary data via a novel
method of matrix decomposition. Journal of Computer and System Sciences
76(1)(2010), 3-20.

m chosen base (sequential) BMF algorithm for demonstration of our general
parallelization scheme

= greedy search for factors — each factor explains as much of input matrix as possible,
until the prescribed number of 1s is covered (i.e designed for the AFP)

m factor = maximal rectangle — maximal numbers of objects and attributes, stems
Formal concept analysis (FCA) (maximal rectangle ~ formal concept) — “Greedy
Concepts on Demand”

Jan Outrata (Palacky University, Olomouc) Running Boolean Matrix Factorization in Parallel AusDM 2016, Canberra 7/ 14


http://www.inf.upol.cz

GRECOND - base (sequential) algorithm @

m greedy “on demand” factor/rectangle computation, not selection among candidates

B starting empty set of attributes is repeatedly grown by a selected attribute — such that the
rectangle grown by the attribute covers as many still uncovered 1s in input matrix as
possible, as long as the number of 1s increases

m other attributes may be added with the selected one — due to construction as maximal
rectangle = closure (with all attributes shared by all objects having the attributes, see the
paper)

m char. vectors of object sets of rectangles = columns of object-factor matrix A
m char. vectors of attribute sets of rectangles = rows of factor-attribute matrix B

m in details commented pseudocode in the paper (Algorithm 1)
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GRECOND - base (sequential) algorithm W
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Running GRECOND in parallel? W

m alone factors computed by GRECOND optimal (in explaining as much of input matrix
as possible), but several (or all) together may be not = partial decompositions (factor
+ previous factors) only locally optimal

m can be more equally optimal factors — different final decompositions — will be
important in experiments later
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m alone selected attributes in factor/rectangle computation optimal (in covering as many
still uncovered 1s in input matrix as possible), but several together may be not =
partial factor (attribute + previous attributes) also only locally optimal

m can also be more equally optimal attributes to select — different factors
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Running a BMF algorithm in parallel @

= construct, simultaneously in parallel, several (locally) most optimal partial
decompositions and select among them several most optimal final decompositions, in
hope to find the globally optimal one

For GRECOND

m in factor search (= decomposition construction), compute several factors explaining
most of the input matrix = several locally optimal partial decompositions — parallel
computation

m in factor computation, select several attributes so that the corresponding rectangle
covers most still uncovered 1s in the input matrix = several locally optimal partial
factors — serial computation

m in details commented pseudocode in the paper (Algorithms 2 and 3):

m several instances of (modified) GRECOND running simultaneously in parallel processes —
each (serially) computing several most optimal distinct (partial) factors
— GRECONDP = GRECOND in Parallel runs
m joint construction of several most optimal decompositions of input matrix — sorted from the
most optimal one
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Experimental evaluation @

m comparison of GRECONDP with base GRECOND: quality of decomposition —
coverage quality — most important in evaluation of performance of BMF algorithms
numbers of factors for large coverage ~~ low, slowly increasing (AFP view)
values of coverge for few factors ~~ high, quickly increasing to 1 (DBP view)

m comparison of GRECOND with other BMF algorithms in e.g.

(] Belohlavek R., Trnecka M.: From-Below Approximations in Boolean Matrix Factorization:

Geometry and New Algorithm, Journal of Computer and System Sciences 81(8)(2015),
1678-1697.

m in the paper examined also similarities of several (most optimal) decompositions
delivered by GRECONDP — they are rather similar but starting from different

m running time?: time complexity not a primary concern in BMF, GRECONDP p/2
times slower than GRECOND for p times more processes than processor units
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Experimental evaluation @

Datasets

synthetic: matrix product of randomly generated matrices with known characteristics
(density, inner product dimension), enables average case evaluation

real: real factors, well known from various BMF papers and UCI Machine Learning

Repository!
Dataset Size Dens. 1 Equal
Emea 3046x35 0.095  157.279
DBLP 19x6980  0.130 2.105

Firewall 1 365x709 0.124 31.168
Mushroom  8124x119 0.193 3.148
Paleo 501x139 0.051 5.868
Zoo 101x28 0.305 5.867

real datasets and their characteristics

m column Equal = average number of equally (locally) optimal factors per factor in
GRECOND - recall slide 18, new characteristics influencing results

1 - . )
archive.ics.uci.edu/ml
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Experimental evaluation @

0.9F 1

0.7f 1

061 synthetic datasets

16 parallel processes

coverage
o
(5]
T
L

0.4 1
0.3 1
0.2f 4
—v— PGreConD
G'0 1‘0 éo 3‘0 4‘0 50

k (number of factors)

k =40 ...expected number of factors (inner matrix product dimension),
delivered original factors
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Experimental evaluation @

Mushroom dataset
4 parallel processes

coverage
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Experimental evaluation W
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GRECONDP worse than GRECOND (from AFP viewpoint) — extreme Equal
characteristics, advantage of utilizing more equally optimal factors vanishes
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Conclusions @

m general parallelization scheme for Boolean matrix factorization (BMF) -
applicable to any sequential heuristic BMF algorithm

m new algorithm GreConDP utilizing the scheme — based on simple, well-known and
efficient GRECOND

m in experiments GRECONDP outperforms GRECOND in quality of decomposition, at
moderate computing time expenses

m decomposition quality improvement depends the number of parallel runs (higher =
better) and the number of equally locally optimal factors in decomposition
constructions (not much higher that the number of parallel runs)

Future research

m application to other BMF algorithms (GREESS, Asso)

m study of properties of the equally locally optimal factors — to factorize better
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