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Boolean Matrix Factorization (BMF) in parallel?

BMF also called Boolean matrix decomposition, Boolean factor analysis, . . .
= (approximate) decomposition of Boolean matrix (entries 1 or 0) to (Boolean) matrix

product of two Boolean matrices 1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 0 0 0 1

 =

 1 0 1 0
1 1 1 0
1 0 0 1
0 1 0 0

 ◦

 1 1 0 0 0
1 0 0 0 1
1 1 0 1 0
1 1 1 0 0


optimization problems:
1 find a decomposition with inner matrix product dimension as low as possible for a given

maximal decomposition approximation = Approximate Factorization Problem (AFP)
2 find as exact decomposition as possible for a given maximal inner dimension = Discrete

Basis Problem (DBP)
least dimension of exact decomposition = Boolean (Schein) rank of matrix
NP-hard problems → approximation algorithms for sub-optimal decompositions:
GreConD, GreEss (both for AFP), Asso (for DBP) and other (PaNDa, Hyper)
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Boolean Matrix Factorization (BMF) in parallel?
Algorithms

heuristic = final decomposition constructed from partial (approximate)
decompositions which are only locally optimal
sequential = choice of optimal partial decomposition hardcoded in algorithm design,
one cannot explore several most optimal (or even all) → parallel computation
(preferred – multicore CPUs, GPGPU)
no parallel algorithm for Boolean matrix factorization – there are for methods designed
for real-valued matrices (SVD, NMF), but they lack interpretability when applied to
Boolean matrices! – crucial for knowledge discovery ⇒ BMF more appropriate for
Boolean matrices
reasons? (most commonly used) greedy heuristic approach is inherently sequential,
BMF is young compared to real-valued factorization methods (?)
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Our contribution

not a parallel BMF algorithm
→ general parallelization scheme to compute in parallel several locally optimal

decompositions and select the most optimal one(s) hoping to find the globally optimal
following several choices of locally most optimal partial decompositions in the
heuristics, constructing several most optimal final decompositions – in more processes
running simultaneously in parallel
return the single most optimal decomposition or several top-k of them
applicable to any sequential heuristic BMF algorithm – chosen GreConD for
demonstration (simple, well-known, efficient)
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Boolean Matrix Factorization (BMF) – preliminaries

= (approximate) decomposition of Boolean matrix I (entries 1 or 0) to (Boolean) matrix
product of two Boolean matrices A and B

Iij ≈ (A ◦B)ij = kmax
l=1

min(Ail, Blj)

 1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 0 0 0 1

 =

 1 0 1 0
1 1 1 0
1 0 0 1
0 1 0 0

 ◦

 1 1 0 0 0
1 0 0 0 1
1 1 0 1 0
1 1 1 0 0


I . . . object-attribute incidence relation, A . . . object-factor i. r.,
B . . . factor-attribute i. r.

= discovery of k factors (approximately) explaining I ≈ “new attributes”:
(A ◦B)ij . . . “object i has attribute j (Iij = 1) if and only if there exists a factor l that
applies to i (Ail = 1) and j is one of the manifestations of l (Blj = 1)”
geometric view: factor ∼ rectangle full of 1s → decomposition of I ∼ coverage of 1s
of I by rectangles
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Boolean Matrix Factorization (BMF) – preliminaries

optimization problem (AFP): find a decomposition with the number k of factors as
small as possible such that ||I −A ◦B|| ≤ ε . . . explain a prescribed portion of data

E(I, A ◦B) = ||I −A ◦B|| =
m,n∑

i,j=1
|Iij − (A ◦B)ij |

quality of decomposition → coverage quality of the first l factors:

c(l) = 1− E(I, A ◦B)/||I||

� Belohlavek R., Vychodil V.: Discovery of optimal factors in binary data via a novel
method of matrix decomposition. Journal of Computer and System Sciences
76(1)(2010), 3–20.

� Belohlavek R., Trnecka M.: From-Below Approximations in Boolean Matrix
Factorization: Geometry and New Algorithm, Journal of Computer and System
Sciences 81(8)(2015), 1678–1697.
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GreConD – base (sequential) algorithm

� Belohlavek R., Vychodil V.: Discovery of optimal factors in binary data via a novel
method of matrix decomposition. Journal of Computer and System Sciences
76(1)(2010), 3–20.

chosen base (sequential) BMF algorithm for demonstration of our general
parallelization scheme

= greedy search for factors – each factor explains as much of input matrix as possible,
until the prescribed number of 1s is covered (i.e designed for the AFP)
factor = maximal rectangle – maximal numbers of objects and attributes, stems
Formal concept analysis (FCA) (maximal rectangle ∼ formal concept) → “Greedy
Concepts on Demand”
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GreConD – base (sequential) algorithm

greedy “on demand” factor/rectangle computation, not selection among candidates
starting empty set of attributes is repeatedly grown by a selected attribute – such that the
rectangle grown by the attribute covers as many still uncovered 1s in input matrix as
possible, as long as the number of 1s increases
other attributes may be added with the selected one – due to construction as maximal
rectangle = closure (with all attributes shared by all objects having the attributes, see the
paper)

char. vectors of object sets of rectangles = columns of object-factor matrix A

char. vectors of attribute sets of rectangles = rows of factor-attribute matrix B

in details commented pseudocode in the paper (Algorithm 1) 1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 0 0 0 1

 =


 ◦



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Running GreConD in parallel?

alone factors computed by GreConD optimal (in explaining as much of input matrix
as possible), but several (or all) together may be not ⇒ partial decompositions (factor
+ previous factors) only locally optimal
can be more equally optimal factors → different final decompositions – will be
important in experiments later 1 1 0 1 0

1 1 0 1 1
1 1 1 0 0
1 0 0 0 1

 =

 1 0 1 0
1 1 1 0
1 0 0 1
0 1 0 0

 ◦

 1 1 0 0 0
1 0 0 0 1
1 1 0 1 0
1 1 1 0 0

 =

 1 0 0
1 0 1
0 1 0
0 0 1

 ◦

( 1 1 0 1 0
1 1 1 0 0
1 0 0 0 1

)

alone selected attributes in factor/rectangle computation optimal (in covering as many
still uncovered 1s in input matrix as possible), but several together may be not ⇒
partial factor (attribute + previous attributes) also only locally optimal
can also be more equally optimal attributes to select → different factors
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Running a BMF algorithm in parallel

= construct, simultaneously in parallel, several (locally) most optimal partial
decompositions and select among them several most optimal final decompositions, in
hope to find the globally optimal one

For GreConD
in factor search (= decomposition construction), compute several factors explaining
most of the input matrix = several locally optimal partial decompositions – parallel
computation
in factor computation, select several attributes so that the corresponding rectangle
covers most still uncovered 1s in the input matrix = several locally optimal partial
factors – serial computation
in details commented pseudocode in the paper (Algorithms 2 and 3):

several instances of (modified) GreConD running simultaneously in parallel processes –
each (serially) computing several most optimal distinct (partial) factors

→ GreConDP = GreConD in Parallel runs
joint construction of several most optimal decompositions of input matrix – sorted from the
most optimal one
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Experimental evaluation

comparison of GreConDP with base GreConD: quality of decomposition →
coverage quality – most important in evaluation of performance of BMF algorithms
1 numbers of factors for large coverage  low, slowly increasing (AFP view)
2 values of coverge for few factors  high, quickly increasing to 1 (DBP view)
comparison of GreConD with other BMF algorithms in e.g.
� Belohlavek R., Trnecka M.: From-Below Approximations in Boolean Matrix Factorization:

Geometry and New Algorithm, Journal of Computer and System Sciences 81(8)(2015),
1678–1697.

in the paper examined also similarities of several (most optimal) decompositions
delivered by GreConDP – they are rather similar but starting from different
running time?: time complexity not a primary concern in BMF, GreConDP p/2
times slower than GreConD for p times more processes than processor units
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Experimental evaluation
Datasets

1 synthetic: matrix product of randomly generated matrices with known characteristics
(density, inner product dimension), enables average case evaluation

2 real: real factors, well known from various BMF papers and UCI Machine Learning
Repository1

Dataset Size Dens. 1 Equal
Emea 3046×35 0.095 157.279
DBLP 19×6980 0.130 2.105
Firewall 1 365×709 0.124 31.168
Mushroom 8124×119 0.193 3.148
Paleo 501×139 0.051 5.868
Zoo 101×28 0.305 5.867

real datasets and their characteristics
column Equal = average number of equally (locally) optimal factors per factor in
GreConD – recall slide 18, new characteristics influencing results

1archive.ics.uci.edu/ml
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Experimental evaluation
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Emea dataset,
4 parallel processes

GreConDP worse than GreConD (from AFP viewpoint) – extreme Equal
characteristics, advantage of utilizing more equally optimal factors vanishes
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Conclusions

general parallelization scheme for Boolean matrix factorization (BMF) –
applicable to any sequential heuristic BMF algorithm
new algorithm GreConDP utilizing the scheme – based on simple, well-known and
efficient GreConD
in experiments GreConDP outperforms GreConD in quality of decomposition, at
moderate computing time expenses
decomposition quality improvement depends the number of parallel runs (higher =
better) and the number of equally locally optimal factors in decomposition
constructions (not much higher that the number of parallel runs)

Future research

application to other BMF algorithms (GreEss, Asso)
study of properties of the equally locally optimal factors – to factorize better
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