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Background: Precision and Fisher information in
optics

Quantum Fisher Information in general

“Rayleigh limit" and two-point resolution




Optical resolution- Rayleigh criterion
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Measurement and parameter estimation

Measurement: Born rule for (normalized) measurement
on j-channel of transformed state

pi(s) = (jlp(s)]J) p(s) =U(s)'pU
A=) a4l AA:|a§:>|As

» Estimation: read-out of the parameter s from the
registered values

» Variance of any unbiased estimation is limited by the
Fisher Information (FI)

- Quantum Fisher Information (QFI) =Fisher information
optimized over all possible detections



Fisher Information
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Fisher information: limit for unbiased parameter estimation
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Rayleigh curse
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Fisher information for two point resolution: limit for unbiased
parameter estimation
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Quantum Fisher Information

For QFI, see the arguments of Helstrom 1975 ...
Optimize over all the measurementll!

The necessary ingredient are symmetric logarithmic
derivation expressed in diagonalizing basis.
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Example: QFI for pure state

Zero eigenvalues cannot be neglected but eliminated !

Problems of QFI: large ambiguity as far
measurement is concerned, optimality many aspects...



Two-point resolution
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* FI and QFI for two-point resolution: Tsang 2016

* Here: optical arguments and symmetry
arguments” for optimal measurement achieving

QFI



Symmetry for achieving QFI

Assume symmetry of the point-spread- function as
well as the symmetry of the measurement

V(r) = ¥(-2z) (x[n) = £(=z|n)
The measurement does not feel the two-component structure of

the signal! The original two-point resolution problem has been
effectively transformed to localization of a single point source.
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QFI can be obtained from FI just by expressing
probabilities by complex amplitudes ...
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Optimality conditions:
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FI vs FQI
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Measurement achieving FQI

There is an ambiguity how to fulfill the optimality
conditions. The ultimate resolution should not be
considered as a rarity, but rather as a feature
shared by many permissible detection schemes.



Efficiency vs. universality

How to do the detection efficiently?

Suggestion: Project the signal on a set of
orthonormalized derivatives of W(x)-PSF
adapted schemes

®n(p) = (pIn) = )V (p)

d,(x) = (x|n) = /Qn e'P?
V2




Example 1: Gaussian PSF

U(x) = (277)_1/4 exp(—x2/4), o=1

The optimal PSF-adapted set :

Hermite-Gauss modes

Fe=1/4




Example 2: Sinc PSF

U(x) = —=sinc(z), ¥(p) = %rect(pﬂ)

The optimal PSF-adapted set is linked with
Legendre polynomials orthogonal on (-1/2,1/2)




Example 2: Sinc PSF...

Efficient measurement modes:

®,(x) =/n+1/2 JnJ\r/%(x)

Fisher information consists of partial contributions:

2

7,y (3/2) = (04 1)J,05 (5/2)
(2n+1)s
Fs=1/3

Fs,n:
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FI for the first D projections on the HG basis with arbitrarily
chosen ¢ =  (orange bars) and the PSF Sinc adapted measurement,
Separation s= 1, Rayleigh limit = w. More than a hundred of
Hermite-Gauss projections must be measured to access 98.5% of
the QFT (horizontal red line), whereas just three projections of the
PSF-adapted measurement are sufficient.
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As before, Separation s= 2, Rayleigh limit = =
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As before, Separation s= 15,Rayleigh limit = =
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Fisher Info Matrix provides a useful tool for assessing the
performance of reconstruction schemes
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Thanks for your attention!




