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Informationally incomplete tomography

For an unknown quantum state ρ (D-dimensional):

Informationally complete (IC) measurement (M ě D2 outcomes) ñ
unique reconstruction (ρ for noiseless data).

A non-IC measurement gives a convex set C of infinitely many estimators
that are consistent with the data (max. likelihood (ML) probabilities).

Yong Siah Teo Adaptive compressed sensing



Known results
New Results
Conclusions

Economical quantum tomography
Compressed Sensing

Informationally incomplete tomography

'
&

$
%

For an unknown quantum state ρ (D-dimensional):

Informationally complete (IC) measurement (M ě D2 outcomes) ñ
unique reconstruction (ρ for noiseless data).

A non-IC measurement gives a convex set C of infinitely many estimators
that are consistent with the data (max. likelihood (ML) probabilities).

Can we get ρ with incomplete data ` some more information?
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Compressed sensing (CS) in quantum tomography

Can we get ρ with incomplete data ` some more information?

If ρ is known to have a rank of at most r (r-sparse):

A specialized set of IC CS measurement ` rank minimization ñ unique
reconstruction ρ (non-convex l0 problem).

A specialized set of IC CS measurement ` feasible reconstruction scheme
with positivity constraint ñ unique reconstruction ρ.
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Can CS be more versatile?

In standard CS schemes:

Either the r-sparsity assumptions is needed to construct CS measure-
ments, or certain CS random measurements (like random Pauli bases)
are employed.

The r-sparsity assumption requires more experimental justifications.
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Can CS be more versatile?

In standard CS schemes:

Either the r-sparsity assumptions is needed to construct CS measure-
ments, or certain CS random measurements (like random Pauli bases)
are employed.

The r-sparsity assumption requires more experimental justifications.

Is CS achievable without any a priori information, and with other
more experimentally convenient (deterministic) measurements?
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Adaptive compressed sensing (ACS)—tackling the crux of the problem

Yes, CS can be asymptotically achieved without any a priori information
about ρ and with deterministic measurements.

The heart of CS: rapidly shrink the convex set C to the point ρ.

Rephrasing the problem: For a given ρ, find the set of measurement
outcomes A of minimal cardinal M such that C is a single point.

There are three issues:

(a) Choosing the optimal measurement set A.

(b) Computing the size s of C
(c) Dealing with a completely unknown ρ
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(a) Choosing the optimal measurement set A

Without any information about ρ, optimal A depends on a posteriori
information given by data.

The optimal A may be found through an adaptive scheme.

Experimental observers frequently pick A to be a set of measurement
bases A “ tB1,B2 . . .u, so that Bk`1 depends on tB1,B2, . . . ,Bku.

So B1 affects the next choice of B2, which in turn affects the next
choice of B3, and so on.
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(b) Computing the size s of C

A standard definition of size of a (convex) set, say for C, is the integral

s “

ż

C
pdρq ď 1, pdρq : prior of ρ .

s is hard to compute (especially for higher dimensions).

We need a feasible indicator of s.
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(b) Computing the size s of C

ONE recipe for a feasible indicator—size monotone

Pick a concave (convex) function fpρq that has a unique maximum
(minimum) to characterize convex set C for some measurement A.

Define scvx “ const.ˆ pfmax ´ fminq over C.
One normalization: scvx,1 ” 1 and scvx,kIC ” 0.

scvx is a size monotone when the sufficient condition holds

Data are noiseless so that as B1, B2, . . . are progressively measured,
C1 Ě C2 Ě . . .. This condition ensures that fmax,1 ě fmax,2 ě . . .
and fmin,1 ď fmin,2 ď . . . due to concavity of fpρq.

Since C is a convex set, scvx “ 0 ñ s “ 0 whenever f has a unique
maximum.

Von Neumann entropy Spρq “ ´trtρ log ρu is one example of such fpρq.
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(b) Computing the size s of C: Monotonicity of scvx
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N : Number of data copies

k: Number of measured
bases

pρmlme: Max. entropy state
over Ck consistent with
all ML probabilities for
each k

A fixed sequence of mu-
tually unbiased bases
(MUB) are measured on
a randomly generated
5-qubit pure state.
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(b) Computing the size s of C

If the sufficient condition holds, smaller scvx implies smaller s.

6 size monotone ” size-reduction witness under this condition.

We judge the quality of measurements by the rate at which scvx ap-
proaches zero.
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(c) Dealing with a completely unknown ρ

With no information about ρ, CS should then depend only on a
posteriori information from measured data.

With the concave function fpρq assigned, the unique maximum pρmax

that gives fmax may act as the a posteriori information.

For fpρq “ Spρq, pρmlme may be used as the a posteriori guide to find
the next optimal measurement basis.

pρmlme Ñ ρ as number of measured bases increases.
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Main idea of ACS, with fpρq “ Spρq

After measuring k “ 1 basis B1 (reference basis B0 ” B1), we look for
pρmlme,1 and use this as an a posteriori estimate of ρ.

Choose the optimal U2 that gives the smallest scvx,2 to rotate B0

according to measured data combined with data predicted by
pρmlme,1. Then measure this U2-rotated basis.

Then with these k “ 2 measured bases tB1,B2u, choose the next
optimal U3 that gives the smallest scvx,3 according to all measured
data combined with data predicted by pρmlme,2, and measure this
U3-rotated basis.

Continue until scvx,k is small enough.

Structure of U is flexible; E.g. U may take local tensor-product
structure (common in experiments), or other device-dependent
structure in some degrees of freedom.
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Pseudocode

Step 1 Set k “ 1 and measure basis B1 and set it as the computational basis.

Step 2 Perform MLME and obtain pρmlme,1 and Smax,1. That Smin,1 “ 0 is
clear, and thus scvx,1 “ 1.

Step 3 Search for the unitary operator Uk`1 that defines Bk`1 “ Uk`1BkU
:

k`1

such that scvx,k`1 is minimized with the cumulatively measured bases
tB1, . . . ,Bku by using pρmlme,k as an a posteriori estimator of ρ to
generate simulated data for Bk`1. Minimization of scvx,k`1 may be
done with a nonlinear optimization routine.

Step 4 Measure the basis Bk`1 and perform MLME to obtain pρmlme,k`1 with
the cumulatively measured data.

Step 5 Raise k by 1.

Step 6 Repeat Step 3 through Step 5 until scvx,k is below certain pre-chosen
threshold value.
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Rank-1 states
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ACS: Adaptive CS over arbitrary U space

ACS local: Adaptive CS over tensored U space

MUB: Optimization over a set of MUB (D “ 25
“ 32)

˚ Averaged over 8 Haar-distributed 5-qubit pure states.
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Mutual unbiasedness: double-edge sword in ACS
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MUB are asymptotically optimal in minimal-basis tomography

But can perform extremely badly in ACS when ρ is one of their eigen-
states.

ACS schemes can, on the other hand, adapt to any ρ and fpρq to improve
the a posteriori information and size monotone.
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Rank-r states (r “ 1, 2, 3, 4)

ACS plots averaged over 8 random 5-qubit states distributed according
to the Hilbert-Schmidt measure for each r.

IC k “ kIC never exceeds D ` 1.
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Rank-r states (r “ 1, 2, 3, 4)

Random-Pauli-bases (RPB) measurement plots averaged over 8 random
5-qubit states for each r.

Avg. kIC can exceed D ` 1 due to overcompleteness of the RPB. (i.e.
minimal number of 2-qubit RPBs for r “ D “ 4 is 6 ą 5.)

Minimal sets of RPBs are highly specific, not random.
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Rank-r states (r “ 1, 2, 3, 4)
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Rank-r IC Bases

Avg. scaling for ACS is better
than that for RPB.

Known state-of-the-art rank-r IC
bases: rank-r Goyeneche-type
bases (4r ` 1).

Avg. kIC for ACS is comparable
and can beat the Goyeneche-type
bases for larger r.
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Implications

Golden lesson: When no a priori information is available,
tomography schemes that depend on data a posteriori information
should be adaptive and not restricted to specific measurement sets.

ACS can achieve CS behavior with size monotones constructed from
any convex function, for any unknown ρ and no a priori information.

ACS beats current known RPB measurements in terms of the average
kIC, and eventually beats even the state-of-the-art Goyeneche-type
rank-r bases which are strictly-IC.

Adaptation is versatile (accepts any forms of A).
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