
l 
From  quantum measurement and estimation 
towards quantum tomography and back I: 

Quantum Tomography 

Zdeněk Hradil 
Department of Optics,  Palacký 

University 
Olomouc, Czech Rep.  

Work done in collaboration with J. Řeháček, D. Mogilevtsev.  
L. Sanchez-Soto, B.Englert, Y-S Teo, B. Stoklasa and others 

 



Lecture 1 :   General Concepts of MaxLik estimation  
• Introduction: inverse problems, quantum measurement and estimation  
• MaxLik estimation and implementation in QM  
• Fisher information  for  quantification of noises and diagnostics 
• Information principles and MLME estimation 
• Full scheme for MaxLik tomography 
 
Lecture 2:  Exercise on  MaxLik problems 
•  Radon and Inverse Radon transformation 
•  Statistical interpretation of measurement 
•  Fisher information and diffraction on the slit 
•  MaxLik solution  
•  Normalization of the likelihood 
•  Resource analysis for tomography of 5 qbits 
•  Fisher info in quantum interferometry 

 

Full Program   



Linear inverse problems 
 

ML estimation is excellent tool for solving linear inverse 
problems with constraints  (= tomography) 

   
  Ij = Σk cjk µk  

 
detected mean values  Ij, j= 1,2,…M  
reconstructed signal  µk k= 1,2,…N  
 
Over-determined problems     M> N 
Well defined problems          M= N  
Under-determined problems      M< N 



If “direct problem” is not solvable?   
 

Probably intractable … follow the sci-fi 

知子 * 
 

*according to our secretary  
Petra Cabišová 韓思夢, she has 
MA in Chinese  J 



Tomography and 
 Inverse Radon Transformation 

Radon  transformation 

Inverse Radon  transformation- 
Fourier transformation method 

Projection theorem 
(ray sum) 

G✓(⇠) = F (⇠ cos ✓, ⇠ sin ✓)) f(x, y) = F

�1
G✓

g(s, ✓) =

Z
dxdyf(x, y)�(x cos ✓ + y sin ✓ � s)
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   s = x cos � + y sin �
u = – x sin � + y cos � , (8)

   x = s cos � – u sin �
y = s sin � + u cos � . (9)

Substituting Eq. (9) into Eq. (6), it follows that the ar-
gument of the �-function is

   x cos � + y sin � –s
= (s cos � – u sin �) cos � + (s sin � + u cos �) sin � – s
= s (cos2 + sin2 �) – u sin � cos � + u cos � sin � – s
= 0

.

(10)

Since the translation from the (x, y)-coordinate to the
(s, u)-coordinate yields no expansion or shrinkage,
we get dxdy = dsdu. Thus we get from Eq. (6)

   g(s, �)

= f (s cos � – u sin �, s sin � + u cos �) �(0) dsdu
– �

� .

(11)

Since the �-function in Eq. (6) is a function of vari-

able s, we get

   �(0) ds
– �

�

= 1 . (12)

It follows from the above that the Radon transforma-
tion g(s, �) in Eq. (6) is translated into the following
integral of one variable u,

   g(s, �) = f (s cos � – u sin �, s sin � + u cos �) du
– �

�

.

(13)

This equation expresses the sum of f(x, y) along the
X-ray pass whose distance from the origin is s and
whose normal vector is in � direction. This sum, g(s,
�) is called ray-sum.

Projection theorem
The image reconstruction from projection is equiva-
lent to the inverse Radon transformation, i. e. obtain-
ing f(x, y) from given g(s, �) for 0 � � < �*). An im-
portant key for solving this problem is projection
theorem, explained in the following.

Fig. 3. Projection theorem.
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*) Note that the range is not 0 � � < 2�.



Probability in Quantum Mechanics: 
  pj= Tr(ρAj) 

 
Measurement: elements of positive-valued 
operator measure (POVM)     Aj ≥ 0 
 
Relation of completeness Σj Aj  = 1 
 
Signal:   density matrix ρ ≥ 0 

 
 

Elements of quantum theory 



Von Neumann Measurement 



Estimation Theory in Words 
 

• Variable of interest is a c-number θtrue    
• This variable cannot addressed directly  
• Only some variable-dependent data D can be detected  
• Presence of variable θtrue is manifested by conditional probability 
distribution  p(D| θtrue) 
• Estimator θ = θ(D) relates the data to the variable of interest 
• Due to the stochastic nature of data there is no unique and 
deterministic mapping between D and θ. 
• The inversion can be formulated just in statistical sense by Bayes 
theorem  

  p(θ|D) = p(D|θ) p(θ) p(D)-1, 
 
prior distribution  p(θ)  
normalization   p(D) = ∫ dθ p(D|θ) p(θ)  



Estimation Theory in Words… 
 

• The quality of estimation should be assessed by the  cost function 
C(θ, θtrue ) 

 -least square fit C(θ, θtrue )= (θ- θtrue)2 

 -maximum likelihood fit C(θ, θtrue ) =- δ(θ- θtrue) 

 
• The risk function  

           R(θ|D) = ∫dθtrue  C(θ, θtrue ) p(θtrue|D)  
• Optimal strategy minimizes the risk taking into account all prior 
probabilities and costs 
• Conclusion: for  the choice of no prior and   delta peaked cost 
function to minimize  risk means to maximize the likelihood 

 L ~ p(D| θ) ~ p(θ|D) 



Estimation Theory in Drawings  
 

Necessary ingredients: 
 
• Input signal  
• Controllable transformation 
• Feasible detection 
   



Quantum Estimation Theory  
 

  Quantum Estimation Theory  
  =  Quantum Theory + Estimation Theory 
 
Some peculiarities: 
• Quantum state ρ plays the role of c-number (matrix) with 
special constraints (ρ ≥ 0 ) 
• Quantum measurement must obey uncertainty principle 



Motivation: Diffraction on the slit  
 

Detection on the screen may be used as geometrical 
estimate for impulse since θ = ξ/d and px =h sinθ/λ 



Diffraction continues 1 … 
 

• The uncertainty is given by wave theory 
 P(µ|ν) =π-1 sinc2(µ- ν);  µ=ξ (πa/λd), ν = px a/2ħ 
 
• Straightforward but wrong argumentation based on the first 
minimum of sinc function  gives  
Δ x =a/2 , Δ px = (h/a)  and  therefore Δx Δ px ~ h/2  !  
 
• But the correctly calculated variance  of sinc2  function gives the 
infinite width !! 
• The estimate of px based on single event will be very uncertain !!! 
• The remedy is to accumulate the events and relate the estimate to 
some collective variable (=centre of mass of the interference pattern) 
• Proper estimation theory  should be formulated with the mathematical 
statistics.  





Diffraction continues 2  … 
 

• The prediction should be based on some posterior distribution 
 P(ν)post = Πµ  p(µ|ν)Nµ = exp[ΣµNµ log p(µ|ν) ]. 
Here ν is our estimate  of  some true value νtrue, which is hidden in 
detected data µ 
• Note: product of detected probabilities is denoted as  likelihood L  
and its logarithm in exponential is called log-likelihood log L 
• Significant sampling (N large)      Nµ= N p(µ|νtrue) 
• Gaussian approximation of log L as the expansion near νtrue : 
Σµ Nµlog p(µ| ν) ~  N Σµ p(µ|νtrue) log p(µ|ν) ~  
(1st term)    N Σµ p(µ|νtrue) log p(µ| νtrue)  
(2nd term)  + N Σµ  p(µ|νtrue)  ∂νlog p(µ|ν)|true  (ν-νtrue)  
(3rd term)  + ½ N Σµ p(µ|νtrue) ∂2

ν log p(µ|ν)|true  (ν-νtrue)2  



Diffraction continues 3  … 
 

1st term is entropy  S =  Σµ p(µ|νtrue) log p(µ| νtrue)  
2nd term is zero since  Σµ  p(µ|νtrue)  ∂νlog p(µ|ν)|true  = 
Σµ ∂ν p(µ|ν)|true  (ν-νtrue) = (ν-νtrue) ∂ν 1 = 0 
 
3rd term similarly gives the only nonzero contribution   
   F =   N Σµ p(µ|νtrue) [ ∂ν log p(µ|ν)|true ] 2  

     =  N Σµ p(µ|νtrue)-1 [ ∂ν p(µ|ν)|true ] 2  
  F = Fisher information 

 
 L ~ exp(S) exp[ - ½ F (ν-νtrue)2 ] 

 
This means that parameter estimation is done with the 
precision 1/F ! 



Diffraction continues 4  … 
 

Believe or not Fisher information is remedy for uncertainty 
relations on the slit! 
(Δ x)2 =a2/12  
(Δ ν)2

 = (a/2ħ)2 (Δ px)2   and  F=  4π-1∫dµ [∂µ sinc µ]2 =4/3 
and  therefore Δx Δ px = ħ/2 !  
 
This is not an accident but a consequence of Cramer-Rao inequalities 
(N=1):   
Unbiased estimator :  Σµ  p(µ|νtrue) (ν - νtrue) = 0     /∂νtrue 

 Σµ ∂νtrue p(µ|νtrue) (ν - νtrue) =  1  /Cauchy-Schwarz inequality 

 Σµ [p(µ|νtrue
)] -1/2 ∂νtrue p(µ|νtrue) [p(µ|νtrue

)] 1/2 (ν - νtrue) =  1   
    
   (Δν)2  F ≥  1 



Some pedagogical remarks … 
   

   ΔA ΔB ≥ ½ |[A,B]| 
 
• The meaning of Heisenberg uncertainty principle is  
pedagogically confusing.  Does it mean the constraints on 
measurement? Which one? Both? 
• No, this is the constraint  on possible quantum states (see 
the derivation or see the condition for covariance matrix). 
• Heisenberg uncertainty is weaker than Cramer-Rao 
inequality   
    (Δν)2  F ≥  1 
 
• Cramer-Rao can be formulated even for simultaneous 
estimation (measurement) of several parameters. 



Maximum Likelihood Estimation (1922) 
 

Sir Ronald Aylmer Fisher, FRS (17 February 1890 – 29 July 1962) 
http://digital.library.adelaide.edu.au/coll/special/fisher/papers.html 

• Maximum Likelihood (MaxLik)  principle is 
not a rule that requires justification: Bet 
Always  On the Highest Chance! 
• Numerous applications in signal analysis, 
optics, geophysics, nuclear physics,…  
• A. Witten, The application of ML 
estimator to tunnel detection, Inverse 
Problems 7(1991), 49.  
• MaxLik analysis= pea plant experiment 
of G. Mendel was contrived (too good to 
be true, statistically J ) 



Fisher information 
 

• B. Roy Frieden, Physics from Fisher information: A Unification, 
Cambridge University Press, 1999 
•  Fisher information for shift invariant distributions p(x)  

   p(x|θ) = p(x-θ)  
 Amplitude q(x)  as generalized coordinate    p(x) = q(x)2 

   
  F= ∫dx (dp/dx)2/ p(x) = ∫dx (dq/dx)2  

 
Fisher information measures the gradient content of the field q(x) 
and the “square gradient term” is a part of all Lagrangians, see 
the second order  Lagrange-Euler equations,  e.g. classical 
mechanics L = ½ m (dq/dt)2 – V(q) 



 
• Likelihood  L  quantifies the degree of belief in 
certain hypothesis under the condition of the given 
data. 
• MaxLik principle  selects  the most likely  
configuration 
• Information is updated according to the Bayes rule 
prior probability    è  posterior  probability 
 
              P(ρ|D) = P(D|ρ) p(ρ) [p(D)]-1 
 

Maximum Likelihood Tomography  



ML reconstruction: 
 Complete measurement 

Log-likelihood for generic measurement pi = Tr(ρAi) 
   L(ρ)  = Πi pj

Ni 

Normalization   Tr(ρ) = 1 
Constraint    ρ ≥ 0   
Maximize the likelihood !!! 
Jensen inequality (inequality between geometric and arithmetic 
means)  Πi (xi/ai)fi ≤  ∑i fi xi/ai 
 
L(ρ)1/N = Πi pj

fi ≤ (Πi ai
fi) Tr(R ρ)  

   R = ∑i (fi/ai) Ai  
Let us chose for extreme  ai = Tr(ρAi) 
 
Extremal equation  R ρ = ρ 



Differentiate formally  the Log-likelihood with the  constraint 
   
 log L(ρ)  = ∑i Ni log pj(ρ) – λ Tr(ρ)            /∂ρkl 
 ∑i Ni/pj(ρ)   (Ai)kl  |k><l| – λ δkl |k><l| = 0       /ρ 
 ∑i Ni/pj(ρ) Ai  ρ = λ ρ                   /Trρ = 1
   R ρ = ρ 

Other hints:  
ρ = ∑i λi |φi><φi|, ∂<φi|  [ <φi|Aj |φi>] = Aj |φi> ; 
ρ = ΩΩ†                      ∂ Ω†  Tr(Aj ΩΩ† ) = Aj Ω 
 
 
(Log)-likelihood is convex functional over the convex manifold of 
density matrices  = convex optimization 

Easy derivation 



Likelihood is convex functional defined on the 
convex manifold of density matrices 



MaxLik interpretation 

Linear inversion  
Σk Ak ≡ 1                   Tr(ρAk) = fk 
 

MaxLik inversion 
Σk A’k = 1G                   Tr(ρ A’k) ≡ fk 
           where A’k = (fk/pk) Ak 
 



 
. 
 
  

⇓

⇓

⇓

Why the optimal estimation 
must be nonlinear: 
 
• Various projections  are counted 
with different accuracy. 

• Accuracy depends on the 
unknown quantum state. 

• Optimal estimation strategy 
must re-interpret the registered 
data and estimate the state 
simultaneously. 

• Optimal estimation should be  
nonlinear. MaxLik is doing this. 



 
• Reconstruction is not equally good in the full  Hilbert space: 
Field of view defines the visible part of the Hilbert space 
• How to reconstruct  and where to reconstruct are NOT 
independent  tasks  in  generic tomography schemes 
Hradil, Mogilevtsev, Rehacek, Biased tomography schemes: an objective approach, 
PRL 96, 230401 (2006). 
 
Generic over-complete / un-complete measurements    

   ∑j Aj  = G ≥ 0 
may always be cast in the form of POVM 

  G-1/2 /        ………             /G-1/2 
   ∑j G-1/2 Aj G-1/2 = 1G 

 
Every  measurement is complete…somewhere !!! 

Objective (Biased) Tomography 



Generic reconstruction scheme 

Log-likelihood for generic measurement 
log L  = ∑i Nj log pj / (∑k pk) 

(probabilities are mutually normalized) 
 

Equivalent formulation: estimation of parameters with 
Poissonian probabilities and unknown mean  λ 

(constrained MaxLik by Fermi) 
 

log L  = ∑j Nj log (λ pj )   - λ ∑j pj  
 
  



Extremal equation 

R ρ = G ρ

R = (∑jpi) /(∑jNi) ∑k (Nk/pk) Ak 
 

G= ∑i Ai 

RG ρG = ρG 
 

RG = G-1/2RG-1/2, ρG = G1/2 ρ G1/2 

Solution in the iterative form 
ρG=RGρGRG 



Tomography for quantum diagnostics 

• The most likely state does not surely tell everything. 
• The result of MaxLik reconstruction is not a single state 
but a family of states with some posterior distribution.  
• MaxLik reconstruction characterizes the estimated state 
as random variable. 
• Any prediction based on tomography e.g. fidelity, Wigner 
function at origin, etc. is uncertain  
                   Q = <Q>ML ± ΔQ 
  



•  Quantum state = set of M= d2-1 parameters 
•  Ωi  …  generator basis 

    ρ =  Ω0/d + ∑I ρi Ωi ,  ρML =  Ω0/d + ∑I ρi
ML Ωi ,  

  
•  Relative coordinate  ri= ρ – ρML , r = (r0,r1, … rM-1) 
 
•  Posterior (multi-normal) distribution  

   
  Pρ(r)= (2π)-M/2 (detF)1/2 exp(-½ rFr )  
  Fisher information matrix, P = ∑i pi 
       Fjk = N2 ∑i 1/Ni ∂rj [pi/P]  ∂rk [pj/P] 

 
•  Performance measure  linear in quantum state  

     z = Tr(Zρ) 
•  Wigner function at origin   Z = ∑n  (-1)n |n><n| 
•  Fidelity    Z = |ψtrue>< ψtrue | 



•  Expansion in fixed operator basis 
    
   Z =    ∑i zi Ωi ; |z>  = (z0, z1, … zM-1 ) 
  

•  Experimental uncertainty 
  
   (Δz)2  = <z|F-1|z> 

 
•  Experimental uncertainty relations 

   (Δa)2 (Δb)2 = |<a|F-1|b>|2 
 

•  Self-consistency check:   
  
 measured data fk  should be compared  with the mean values  

    Tr(ρAk)  within the error <a|F-1|a> 
 

 
  



     
•  Diagnostics inferred from  quantum tomography should be 

always  related to statistical prediction 

 
    z   = Tr(ZρML)  ±  {<z|F-1|z>}1/2 

    F … Fisher information matrix   
     |z>… vector with components of Z in the fixed          
             operator basis 
 

•  Any tomography scheme should be tailored to a particular 
purpose,  it cannot  be universally optimal !!! 

•  The mean value of the effect Tr(ZρML)  and its variance 
 <z|F-1|z> are equally important for diagnostic purposes 

•  The variance term scales with the dimension and depends 
strongly on the measurement!  Indeed, one cannot do any 
prediction about quantities which have not been measured! 

 



All models are wrong, some are useful           
(George E. P. Box) 



Entropy and quantification of 
ignorance 

 Yong Siah Teo, Huangjun Zhu, B-G Englert, J. Řeháček, Z. Hradil, 
Quantum-State Reconstruction by Maximizing Likelihood and 

Entropy,Phys. Rev. Lett. 107, 020404 (2011)  



MLME estimation 

Likelihood L(ρ) quantifies the knowledge 
 
Entropy  S = -Tr(ρlog ρ)    quantifies the ignorance 
 
I(λ,ρ) =  λ S(ρ) +  1/N  log L(ρ) 
 
In the limit  λ = 0 we are searching for the most likely states with  
the  highest entropy. 
 
MLME  is robust and always selects the single solution. 
 
 
 
 
 
 
 
 
 
 
 



Some MLME results 

Left panel: As lambda decreases entropy and likelihood sets their optimal values;  
Right panel: State with positive value of Wigner function in 20 dim Hilbert space is estimated as 

non classical with mild negativity in low dimensional spaces.   



Resource analysis 

• To control the quantum system means to control all relevant errors…. 

• Pure state in dimension d:  2d -1 real parameters 
Estimation is not a convex problem…  
 
• Density matrix   d2 – 1  real parameters 
Fisher info matrix: ½(d2-1)(d2 –2) real parameters 
 
• CP maps: d2 (d2– 1)  real parameters 
Fisher info matrix for CP maps: ½d2 (d2– 1)(d4 - d2 -1) real parameters 
 
Quantum computation with 5 qbits: d = 25 = 32 
Quantum state: ~ 103 parameters 
Fisher info: ~ 106 parameters 
CP maps: ~ 106 parameters 

Fisher info of CP maps: ~ 1012 parameters  



End of General concepts  



• Phase estimation 
• Transmission tomography 
• Tomography of CP maps 
• Reconstruction of photocount statistics 
• Image reconstruction  
• Vortex beam analysis 
• Quantification of entanglement 
• Reconstruction of neutron wave packet 
• Reconstruction based on homodyne detection  
• Full reconstruction based on on/off detection 
• Reconstruction of coherent matrix 

Several examples 



Scanning of the optical field: 
Hartmann-Shack sensor 

Roland Shack 
(1970’s) 

Johannes Hartmann 
(1865-1936) 



Scheme of the wave-front reconstruction 



•  Detected amplitude: 

  φdet(ξ)= ∫dx’ dq’ φ(x’)h(x’-q’)Ai(q’) exp(i kξq’/f)  
•  Detected signal: 

    Si(ξ) =<|φdet((ξ)|2>average  
 = ∫dx’ dx’’ ∫dq’ dq’’ Q(x’,x’’) h(x’-q’) α(q’, ξ) h*(x’’-q’’) α*(q’’, ξ)  

where  Q… function of mutual coherence 
       αi(q’,ξ) = Ai(q’) exp(i kξq’/f)  

•  Quantum formulation in x-representation 
   Si(ξ) = <αiξ|U† Q U|αiξ> 

Q(x’,x’’)= <x’|Q|x’’>, h(x’-q’)= <q’|U|x’>, < x’|αiξ> = αi(q’,ξ)  
 

Wave theory for HS sensor 

φ 
h 

Ai 



HS sensor: Quantum Consequences 

• Smooth Gaussian approximation of aperture function: 

  Ai(q’) ≈ exp[- (q’-xi)2/4 (∆x)2] 
 
• Detection= Projection into the minimum uncertainty states 

  
 αi,ξ= exp[- (q’-xi)2/4 (∆x)2  + i kξq’/f ] 

 
• Heisenberg uncertainty relations 
 

  ∆x ∆p ≥  ћ/2 
• Generalized measurement of non-commuting variables x and p, (Arthurs, 
Kelly 1964) 

   ∆X ∆P ≥  ћ 
See the excellent paper: S. Stenholm, Simultaneous measurement of 
conjugate variables, Annals of Physics 218, 233-254 (1992).  



Detection of partially coherent signal  



Hartmann-Shack sensor of the wavefront?  



Planck mission of ESA: 
scanning of cosmic background radiation   



Temperature anisotropies  

COBE-DMR resolution 

Planck resolution 




