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Quantum communication

* Distribution of quantum states (typically photonic), with
non-classical properties, for specific quantum tasks
(e.g., quantum key distribution, quantum teleportation,
distributed quantum computing etc)

* Is well known for discrete-variable systems (e.g.,
single photons or entangled photon pairs with direct
photodetection)

* Novel methods are based on continuous-variable
systems (e.g., coherent shot-noise limited states of light
or entangled beams with homodyne detection)
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Continuous-variable entanglement

Typical CV entangled states — twin beams
a.k.a. two-mode squeezed vacuum states (TMSV)
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Continuous-variable entanglement

Typical CV entangled states — twin beams
a.k.a. two-mode squeezed vacuum states (TMSV)

Laser beam

s (signal) -

Pump

Vertically-polarized

. / photons

Nonlinear | (idler)

x? crystal \

Horizontally-polarized ¥

photons ) 9
------- \ )

S I Entangled photons



Athens'2018

Continuous-variable entanglement

Typical CV entangled states — twin beams
a.k.a. two-mode squeezed vacuum states (TMSV)
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Continuous-variable entanglement

Entanglement between field quadratures:

r=a"+a, p=ila” —a)

Quadratures can be measured using

homodyne detector:
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Depending on the phase-shift of the local oscillator,
X or p quadrature is measured; Xo = X cosf + Psing
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Continuous-variable entanglement

TMSV (produced by type-ll SPDC) and measured by homodyne
detectors:
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Continuous-variable entanglement

TMSV characterization using covariance matrices
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Continuous-variable entanglement

TMSV characterization using covariance matrices
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TMSV entanglement characterization using logarithmic negativity

LN = max{0, — log, v}

[G. Vidal and R. F. Werner, “Computable measure of
entanglement,” Phys. Rev. A, vol. 65, no. 3, p. 032314, 2002]
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Multimode CV entanglement
distribution
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Two-mode entanglement distribution scheme over noisy and lossy quantum
channel with cross-talk in the source
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Multimode CV entanglement
distribution
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Two-mode entanglement distribution scheme over noisy and lossy quantum
channel with cross-talk in the source. Covariance matrix of the resulting state:

VI Ve TIVV2-1 Z 01 Nre BW2IS1Z
| N TWISIZ [T(V=-D)+1]1 vre TYVI-1 Z 01
VA1A2B1By T 01 Vre TIVVI-1Z VI Vic LVVi-1zZ
—Vre TIVV2-1 Z 01 Vic DYW2-1Z [B(V-1)+1]1



Athens'2018

Role of cross-talk
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Effect of cross-talk on two-mode TMSV entanglement in dependence on the
initial entanglement (left) and on the channel noise (right).

Initial entanglement must be drastically limited in the presence of cross-talk.
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The states become more sensitive to the channel noise.
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Cross-talk compensation by local
manipulations

Phase shifts and linear coupling
prior to detection on the remote side.

remote detection
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Entanglement restoration by optimal
reverse coupling and phase flips.
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Role of channel unbalancing
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Possibility to restore entanglement in the case of unbalanced channels
(transmittance of 0.9 and 0.7 for different modes)
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Summary

Linear cross-talk degrades entanglement of continuous-variable states;

Cross-talk requires optimization (reduction) of the initial entanglement
and makes the states more sensitive to the channel noise;

We suggest the method of phase shifts and linear coupling on the
remote side prior to detection;

In the optimal setting, the method can fully restore the entanglement in
the case of balanced channels (with the same transmittance for both
the modes);

For the strongly unbalanced channels the method is limited, but is still
close to full reconstruction of entanglement.
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